
Preferring Properly: Increasing Coverage while
Maintaining Quality in Anytime Temporal Planning

Patrick Eyerich1

Abstract. Temporal Fast Downward (TFD) is a successful tempo-
ral planning system that is capable of dealing with numerical values.
Rather than decoupling action selection from scheduling, it searches
directly in the space of time-stamped states, an approach that has
shown to produce plans of high quality at the price of coverage. To in-
crease coverage, TFD incorporates deferred evaluation and preferred
operators, two search techniques that usually decrease the number of
heuristic calculations by a large amount. However, the current defini-
tion of preferred operators offers only limited guidance in problems
where heuristic estimates are weak or where subgoals require the ex-
ecution of mutex operators. In this paper, we present novel methods
for refinement of this definition and show how to combine the diverse
strengths of different sets of preferred operators using a restarting
procedure incorporated into a multi-queue best-first search. These
techniques improve TFD’s coverage drastically and preserve the av-
erage solution quality, leading to a system that solves more problems
than each of the competitors of the temporal satisficing track of IPC
2011 and clearly outperforms all of them in terms of IPC score.

1 Introduction
Temporal Planning is an important generalization of classical plan-
ning that allows modeling of many applications more realistically by
taking into account not only causal dependencies between actions
but also their temporal interactions. It is a growing research area and
there are many interesting approaches that tackle its challenges. LPG
[11] is based on stochastic local search in the space of action graphs.
Crikey3 [5] employs heuristic forward search interleaving planning
and scheduling via Simple Temporal Networks. CPT4 [24] is a plan-
ning system based on partial order causal links that is optimal for the
conservative semantics of Smith and Weld [23].

A common approach to temporal planning, as for example taken
by SGPlan [16], YAHSP2 [25] and DAEYAHSP [9], is to consider only
logical dependencies between actions first while temporal dependen-
cies are taken into account just afterwards to find an appropriate
scheduling for the chosen actions. While having the potential of be-
ing very fast due to the possibility of utilizing successful techniques
from the much more investigated field of classical planning, such ap-
proaches are doomed to fail in temporally expressive domains [6],
and suffer from severe drawbacks in temporally simple problems, as
choosing the wrong actions might render the final solutions to be
purely sequential and therefore of very low quality.

Another approach as for example taken by Sapa [8], LMTD [17],
or Temporal Fast Downward (TFD) [10], is to perform forward
search in the space of time-stamped states, where at each search state
either a new action can be started or time can be advanced to the end

1 University of Freiburg, Germany, email: eyerich@informatik.uni-
freiburg.de

point of an already running action, thereby combining action selec-
tion and scheduling. Also, POPF2 [2, 3] performs a forward search,
using a partial order rather than a total order like Sapa and TFD do.
While these approaches are usually very good in terms of quality,
their coverage on current benchmarks is typically relatively low.

As a first step to increase its coverage, TFD incorporates pre-
ferred operators and deferred evaluation [21]. The general idea of
preferred operators is to favor operators that are part of a solution for
the heuristic abstraction of the problem. Deferred evaluation post-
pones heuristic computations from the point where a search node is
generated to the point where it is expanded, rating nodes with the
estimate of their predecessor during search. Thereby, the number of
heuristic calculations is decreased by a large amount at the price of
informativeness. Even more than in classical planning, in temporal
planning the heuristic computation is the bottleneck of search, and
indeed it turns out that the use of deferred evaluation and preferred
operators increases the performance of TFD enormously. Unfortu-
nately, this improvement does not occur uniformly over all planning
domains. Instead, there are problems where using preferred operators
and deferred evaluation worsens results.

The first contribution of this paper consists of novel methods
that strengthen the selection criteria for preferred operators. Differ-
ent methods have strengths on different domains and some of them
clearly increase TFD’s coverage on their own. However, all of the
new methods have a common drawback: They produce solutions of
lower quality than the original definition. This leads to the second
contribution, a restarting procedure embedded in a multi-queue best
first search that, besides further increasing coverage, regains the lost
quality. Our resulting system is able to overcome the disadvantage
of searching in the space of time stamped states, i.e., low coverage,
while maintaining its major advantage, high solution quality.

The remainder of this paper is structured as follows: In the next
section we describe TFD with an emphasis on its heuristic. The sub-
sequent section presents narrowing strategies for preferred operators
and a multi-queue search algorithm featuring restarts. Afterwards,
we present detailed experiments before we conclude.

2 Temporal Fast Downward
Temporal Fast Downward (TFD) [10] is a domain-independent pro-
gression search planner built on top of the classical planner Fast
Downward [12]. It extends the original system by supporting du-
rative actions as well as numeric and object fluents. TFD solves a
planning task in three phases: As a first step, the Boolean PDDL
encoding is translated into a finite-domain representation similar to
SAS+ [1, 13]. Afterwards, in a knowledge compilation step, several
internal data structures are generated. The scope of this paper is the
third part, a best-first progression search. For the sake of simplicity,

we only deal with non-numerical fluents. Note, however, that all our
results can be generalized to the numeric case straightforwardly.

In the following, we use the definition of Eyerich et. al. of a tempo-
ral SAS+ planning task [10], a tuple Π = 〈V, s0, s?,A,O〉, where
V is a set of state variables. The initial state s0 is given by a variable
assignment (a state) over all fluents in V and the set of goal states s?
is defined by a partial state (a state restricted to a subset of fluents)
over V . Analogously to the Boolean setting, we identify such vari-
able mappings with the set of atoms v=w that they make true. For an
atom x we write var(x) to denote the variable associated with x. A
is a finite set of axioms and O is a finite set of durative actions.

A time-stamped state S = 〈t, s,E ,C↔,Ca〉 consists of a time
stamp t ≥ 0, a state s, a set E of scheduled effects, and two sets C↔
and Ca of persistent and end conditions.

A durative action is applicable in a time-stamped state S if it can
be integrated into S in a consistent way [10]. The successors of a
time-stamped state are generated by either inserting an applicable
durative action at the current time point or by increasing the time-
stamp to the earliest time point where a scheduled action ends.

2.1 Context-enhanced additive heuristic
For guiding the search, TFD uses a variant of the (inadmissible)
context-enhanced additive heuristic (hcea) [14] extended to cope with
numeric variables and durative actions. To make hcea useful for tem-
poral planning, Eyerich et. al. show how to transform durative actions
to several types of so-called instant actions [14], which we assume
to be given in this paper. Instant actions are sets of effects of the form
v=w′, z → v=w, where v is a variable, z is a partial state not men-
tioning v, and w and w′ are values for v. Such an effect means that
if the current state s satisfies z and maps v to w′, then the successor
state s′, resulting from the application of the operator, maps v to w
(while all mappings that are not changed by any effect of the operator
stay the same). We also write a : v=w′, z → v=w to make clear that
the rule is an effect of the instant action a.

Given a state s and an atom v=w, we denote with s[v=w] the state
that is like s except for variable v, which it maps to w. Similarly, we
write s[s′] where s′ is a partial state to denote the state that is like s′

for variables defined in s′ and like s for all other variables.
For a time-stamped state s and a goal specification s?, the cost-

sensitive variant of hcea is defined as

hcea(s)
def
=
∑
x∈s?

hcea(x|xs),

where xs is the atom that refers to var(x) in state s and hcea(x|xs)
estimates the costs of changing the value of var(x) from the value it
has in s to the one required in s?.

The context-enhanced additive heuristic makes the underlying as-
sumption that for any atom x conditions referring to var(x) are
achieved first, while all other conditions are evaluated in the resulting
state s′′, leading to the following definition:

hcea(x|x′) def
=

0 if x = x′

min
o:x′′,z→x

(
c(o, s′′) +

hcea(x′′|x′) +∑
xi∈z

hcea(xi|x′′i)
)

else

where c(o, s) is the cost of applying operator o in state s. The state
s′′ is the state after reaching x′′ from x′. Note that with the minimum

of the empty set being infinity, hcea(x|x′) might also be infinity and
if it is, there is no plan that satisfies the goal in the original task.

In this definition, the first case is trivial. In the second case, the
first summand, c(o, s′′), captures the cost of applying the minimizing
operator o in state s′′, the second one estimates the cost of achieving
x′′ from x′, and the third one the cost of making all other conditions
z of the rule true. In this third term, atom x′′i is the atom associated
with var(xi) in the state that results from achieving x′′ from x′.

To reschedule solutions in order to reduce their makespan, the
TFD version used for this paper features a partial-order lifting proce-
dure that is inspired by the work of Do and Kambhampati and Coles
et. al. [7, 4] and extended to be able to deal with conditional effects.

3 Preferred Operators
Conceptually, the idea of preferred operators is to transfer informa-
tion about which operator’s application seems to be promising from
the heuristic abstraction to the actual search. This concept was first
realized by McDermott by determining favored actions in the con-
text of greedy regression graphs as those applicable actions that are
part of the minimal cost subgraph achieving the goals [19, 20]. Hoff-
mann and Nebel defined helpful actions in their FF planner as those
actions that achieve a fact required by an action in the relaxed plan
that appears in the first layer of the planning graph [15]. FF consid-
ers only helpful actions in its first attempt of finding a solution and
switches to a complete greedy best-first search if it fails. Another ap-
proach is used in Fast Downward, where besides the usual open list
containing all applicable operators there is a separate open list con-
taining only preferred operators. Different strategies of how to best
combine these two open list have been investigated [21, 22].

Using the definition of the context-enhanced additive heuristic, the
set P(s) of preferred operators is defined as

P(s)
def
=
⋃

x∈s?

P(x|xs),

where

P(x|x′) def
=

{} if x = x′ or hcea(x|x′)=∞

{o} if ∃ o : x′, w → x :

hcea(x|x′) = c(o, s′)⋃
xi∈w

P(xi|x′i) if ∃ o : x′, w → x :

hcea(x|x′) =
(
c(o, s′)+∑

xi∈w

hcea(xi|x′i)
)

P(x′′|x′) if ∃x′′ : hcea(x′′|x′)
+hcea(x|x′′) = hcea(x|x′)

Each condition additionally requires the previous conditions to be
unsatisfied. We furthermore assume that no action with zero cost ex-
ists and that, if the existentially quantified conditions are satisfied for
more than one operator or atom, an arbitrary one is chosen according
to a fixed tie-breaking strategy.

The first case is trivial. The second case defines an operator o that
transforms x′ to x with cost equal to hcea(x|x′) (which means that all
its preconditions have to be satisfied) as preferred. The third case is
similar to the second one except that some of the operator’s precon-
ditions are not satisfied. In that case, preferred operators are recur-
sively defined over those preconditions. In the last case, x′ cannot be

changed to x by a single operator but only via an intermediate state,
so preferred operators are recursively defined over this state.

In its default configuration, TFD uses a straight-forward adapta-
tion of the boosted dual queue approach for preferred operators of
Fast Downward [12]. As can be seen in the experiments section,
preferred operators work best in the context of deferred evaluation.
However, there are certain domain characteristics for which that is
not the case. Especially in problems where goals are conflicting, re-
quiring mutex operators, the preferred operator handling of TFD does
not yield good results in the context of deferred evaluation.

The main reason for this poor behavior is that hcea computes costs
of subgoals independently from each other. In that way, a set of pre-
ferred operators might contain mutex operators each leading to a suc-
cessor state with the same heuristic estimate (due to deferred evalu-
ation) while the successors of each successor have a higher heuristic
estimate. To see this, think of a problem in an elevators domain where
we have two goals g1 and g2 to transport two passengers p1 and p2
from their common starting location f5 to their desired floors f1 and
f10, respectively. When investigating the subproblems independently
from each other, as hcea does, it might be meaningful to use the same
elevator e1, located at f5, to transport both p1 and p2. In such a sit-
uation, both the operators move-down(e1, f5, f1), leading to state
s1, and move-up(e1, f5, f10), leading to state s2, are preferred, and
since we use deferred evaluation, s1 and s2 share the same heuristic
estimation. When s1 is expanded, however, e1 has started to move to
f1 in order to satisfy g1, and the heuristic realizes that g2 becomes
more expensive (potentially to a higher degree than the amount that
g1 becomes cheaper), leading to a worse overall state evaluation for
all successors of s1. Expansion of s2 is analogous. In such a situa-
tion a potentially very large set of states has to be visited before the
search actually progresses in the right direction.

3.1 Narrowing strategies
Our new selection strategies are basically methods to intelligently
narrow the set of preferred operators, motivated by examples like the
one above: If by using only preferred operators a planning task is ren-
dered incomplete anyway, and if generating preferred operators for
all subgoals at once can lead to situations where the search gets stuck,
why not limit ourselves to generating preferred operators for only
up to n subgoals? Of course, the obvious questions are which and
how many operators out of a set of preferred ones we should choose.
We have found three narrowing strategies to be useful in practice:
To utilize only the preferred operators that correspond to the first n
yet unsatisfied goals, called O, or to choose the preferred operators
corresponding to the n goals that are cheapest or most expensive to
satisfy according to the heuristic, called C and E , respectively. More
concretely, a narrowing strategy Xn(s) is defined as

Xn(s)
def
=

⋃
x∈X⊆s?

P(x|xs)

with an appropriate X of cardinality n chosen according to the selec-
tion strategy of X . For O, this strategy is defined such that x ≤O y
for all x ∈ X, y ∈ (s? \ X) holds for some appropriate ordering
relation ≤O . For C it has to hold that hcea(x|xs) ≤ hcea(y|ys) for
all x ∈ X, y ∈ (s? \ X), and for E it has hold that hcea(x|xs) ≥
hcea(y|ys) for all x ∈ X, y ∈ (s? \X).

Basically, all narrowing strategies examine the current state s and
choose up to n goals xi from s? to compute preferred operators for:
O determines the first n unsatisfied goals (according to an appropri-
ate ordering relation≤O), while C and E determine the heuristic cost

of each subgoal as if it would be the only goal to satisfy (as said, this
is done by hcea anyway) and choose the n that are cheapest and most
expensive, respectively. Note that with small n the search is driven
to satisfy the goals more sequentially, however, each goal might be
satisfied by parallel action applications.

Finding a good ordering relation forO is very much related to the
more general task of detecting goal orderings [18]. In this paper, we
only use the natural ordering that is defined by the order in which
variables occur in the problem description for that purpose and defer
the interesting question of how to combine our technique with goal
ordering detection techniques to future work.

3.2 Priority based multi-queue search with restarts
As we will show in the experiments section, utilizing our new tech-
niques in TFD pays off in terms of coverage. Unfortunately, the pro-
duced solutions are typically of a lower quality than those of the orig-
inal definition as the search is driven to satisfy goals more sequen-
tially. Additionally, it can be observed that the different narrowing
strategies have strengths in different domains. Motivated from these
two facts, we have developed an algorithm that incorporates several
narrowing strategies into a best-first search framework that uses an
own open list for each strategy, as outlined in Algorithm 1.

Algorithm 1: Best-first search with restarts, deferred evaluation,
and several open lists in a priority based multi-queue approach.

activeList = chooseOpenListToStartWith()1
forall open in openLists do2

open.priority = 03
activeList.priority += V4
activeList.add(s0)5
closedList← ∅6
lastProgressAtStep = 0, currentStep = 07
while activeList is not empty do8

currentStep += 19
if (currentStep - lastProgressAtStep) >K then10

activeList = nextOpenListToBoost()11
restartAtLine2() or switchToRoundRobinMode()12

s← activeList.pop()13
activeList.priority -= 114
if s 6∈ closedList then15

closedList.add(s)16
if s |= G then17

return s as solution18
h = s.compute heuristic()19
f = s.timestamp + h20
if makes progress(s) then21

activeList.priority += V22
lastProgressAtStep = currentStep23

forall child states s′ of s do24
forall open in openLists do25

if open.matches(s′) then26
open.add(s′, f)27

activeList = selectList()28
return no solution found29

The algorithm is based on the boosted dual-queue best-first search
approach of Fast Downward [12]. It maintains a set of open lists,
each associated with a corresponding selection method. It has been
shown that alternating between different open lists is a good idea if
the open lists contain operators ordered by different heuristics [22].
In our context, however, alternating did not work well, so we have
chosen a priority based approach where each open list is associ-
ated with a priority and at each search step the algorithm selects the
non-empty list with the highest priority (line 28). The search keeps
track of the number of steps that were performed since the last time

progress has been made (progress is made if a state is extracted from
a list that has a lower heuristic estimate than each other state that
has previously been taken from that list). If more than K steps have
been made without making progress, the search restarts (lines 10–
12), boosting a different open list each time by giving it a high initial
priority while all other lists start with priority zero. If the search has
restarted with each open list being boosted initially once, it switches
to a round robin selection mode (line 12, details have been omitted
from the pseudocode to ensure readability). During successor gen-
eration, nodes are inserted into the appropriate open lists according
to their associated selection strategies (lines 24–27). Note that us-
ing a regular open list containing all applicable successors (which is
done in our implementation) ensures completeness of the algorithm
on temporally simple problems.

For the two parameters of the algorithm we have found K = 3000
and V = 1000 to work well in practice (these parameters, however,
are quite robust and we got reasonable results for a wide range of
values for both K and V). Note that the algorithm can be called
from outside in an anytime fashion where the makespan of previously
found solutions can be used to prune the search space.

4 Experiments
In our first experiment2 we show the influence that deferred evalua-
tion and preferred operators have on the search performance of TFD.

IPC 2011 e d Pe Pd
CREWPLANNING 0.0 (0) 0.0 (0) 19.9 (20) 19.9 (20)
ELEVATORS 0.0 (0) 0.0 (0) 0.0 (0) 1.0 (1)
FLOORTILE 4.0 (5) 4.1 (5) 4.9 (5) 4.9 (5)
MATCHCELLAR 1.0 (1) 1.0 (1) 15.6 (20) 15.6 (20)
OPENSTACKS 17.8 (20) 16.7 (20) 17.8 (20) 17.7 (20)
PARCPRINTER 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
PARKING 13.7 (17) 10.2 (14) 7.1 (9) 12.2 (16)
PEGSOL 17.9 (18) 18.0 (18) 17.9 (18) 17.9 (18)
SOKOBAN 2.9 (3) 2.9 (3) 2.9 (3) 2.9 (3)
STORAGE 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TMS 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TURNANDOPEN 12.0 (14) 10.7 (13) 12.5 (17) 13.3 (20)
Overall 69.2 (78) 63.7 (74) 98.6 (112) 105.3 (123)

Table 1. Results on IPC 2011 benchmarks measuring the influence of
deferred evaluation and preferred operators in regular TFD, showing IPC

score and coverage (in parentheses). Used abbreviations are ’P’ for
preferred operators, ’d’ for deferred evaluation, and ’e’ for eager evaluation.

Results showing IPC score3 and coverage (in parentheses) on IPC
2011 benchmarks are presented in Table 1. Without preferred oper-
ators, switching from eager (’e’) to deferred evaluation (’d’) speeds
up the search by saving a lot of heuristic computations but reduces
guidance, altogether leading to a slightly worse performance. This
drawback, however, can be overcome by incorporating preferred op-
erators (’Pd’). With preferred operators bringing back some of the
lost guidance, the advantages of the reduced computational effort of
deferred evaluation can be fully exploited, leading to both a much
higher coverage and IPC score. Note that using preferred operators
increases performance also in the context of eager evaluation (’Pe’),
but to a lesser degree, so combining preferred operators and deferred
evaluation as in the original TFD setting clearly is the best option.

For our second experiment we have implemented the methods pre-
sented in Section 3 to narrow the set of preferred operators. Results
for Cn, En, and On with 1 ≤ n ≤ 3 are shown in Table 2.

2 All our experiments were run on AMD Opteron 2.3 GHZ Dual Core pro-
cessors with a memory limit of 2 GB and a timeout of 30 minutes.

3 If Q∗ is the makespan of a reference solution, a planner producing a solution
of makespan Q receives Q∗/Q points of IPC score. For all our experiments
the best known plans (including ours) are used as reference.

IPC 2011 C1 C2 C3 E1 E2 E3 O1 O2 O3

CREWPLANNING 14.2 15.5 15.6 0.0 2.4 1.6 0.0 2.4 4.2
19 20 20 0 3 2 0 3 5

ELEVATORS 15.1 10.5 7.5 0.0 0.0 0.0 13.4 7.0 4.5
18 12 8 0 0 0 18 10 6

FLOORTILE 4.3 4.9 4.7 4.4 5.2 4.5 4.8 4.8 4.0
5 5 5 5 6 5 5 5 4

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 3.6 5.0 6.4 14.2 14.4 15.3 4.0 6.1 7.8
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 0.0 0.0 0.0 0.0 0.0 9.4 2.7 1.7
1 0 0 0 0 0 10 3 2

PARKING 14.0 14.9 11.4 8.9 8.6 9.0 6.7 8.5 7.5
17 19 14 12 12 12 9 11 10

PEGSOL 17.7 17.4 18.5 18.6 18.8 18.8 18.4 19.0 19.3
18 18 19 19 19 19 19 20 20

SOKOBAN 3.8 3.9 2.9 2.9 2.9 2.9 3.8 3.9 2.9
4 4 3 3 3 3 4 4 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 10.1 10.0 10.8 8.8 8.6 8.6 11.0 8.4 8.6
20 20 20 12 12 12 19 14 14

Overall 99.5 97.7 93.3 73.4 76.5 76.2 87.2 78.5 76.1
142 138 129 91 95 93 124 110 104

Table 2. Performance of new selection strategies on IPC 2011
benchmarks. Gray rows show IPC scores, white rows coverage.

It can be seen that C and O yield very promising results with a
higher coverage compared to the original method, especially in ELE-
VATORS and PARCPRINTER. The reason for the good performance in
ELEVATORS seems to be that by narrowing the set of preferred oper-
ators the weakness of the heuristic to switch between subgoals during
search can be overcome by focusing on a specific goal. In doing so,
it is better to focus on the cheapest goal (C) than on an arbitrary one
(O). It is useless, however, to focus on the most expensive goal (E),
as this changes to often during search. In PARCPRINTER both the
cheapest and the most expensive goal vary a lot during search, so it
is best to focus on a fixed goal like O does. Unfortunately, O does
yield very bad results in CREWPLANNING, where a specific goal or-
dering needs to be respected thatO is not aware of. Here, techniques
to detect goal orderings [18] might be very helpful. While coverage
can be increased using our new techniques, their produced solutions
are typically of lower quality than those of the original method as
they drive the search to satisfy goals more sequentially. This fact be-
comes apparent especially in OPENSTACKS, a domain for which it is
very easy to find a solution but the range of quality is very high and
it is important to start the right actions first in order to create concur-
rent solutions. Interestingly, E works quite well in this domain, as the
actions that are needed to be started first in order to create a compact
solution are also the most expensive ones.

Another interesting observation is that in the good performing
methods C andO it is advantageous to concentrate on a smaller set of
subgoals, while the converse holds for the poor performing method
E . This is due to the fact that with increasing size of the preferred
operators set the original set is resembled more and more.

The most important observation that can be made from this ex-
periment has motivated the design of the search procedure presented
in the previous section: Different selection strategies have strengths
in different domains and it appears to be very desirable to combine
these strengths in a general way. Table 3 shows results of an im-
plementation of Algorithm 1 combining narrowing strategies with a
queue containing the original preferred operators (P). The method

that profits the most from this combination is O1, with the most
important factor being the gain in CREWPLANNING. Besides, the
other versions profit also, especially in terms of quality. Both PC
and PO achieve higher IPC scores than P alone. Table 4 shows that
the power of combining selections strategies can be exploited even
further, with PO1C1E1, abbreviated as TFD+ in the table, achieving
both the highest coverage and IPC score.

IPC 2011 PC1 PC2 PC3 PE1 PE2 PE3 PO1 PO2 PO3

CREWPLANNING 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
20 20 20 20 20 20 20 20 20

ELEVATORS 15.1 7.7 6.5 0.0 0.0 0.0 13.4 4.3 0.9
18 9 7 0 0 0 18 6 1

FLOORTILE 4.6 4.7 4.5 4.4 4.5 4.3 4.5 4.5 4.4
5 5 5 5 5 5 5 5 5

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 17.9 18.0 18.3 18.5 18.7 18.6 18.0 17.7 18.1
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 1.0 1.8 0.0 0.0 0.0 9.3 0.9 0.0
1 1 2 0 0 0 10 1 0

PARKING 13.9 15.7 13.4 10.9 11.5 11.1 11.9 12.9 12.3
18 20 17 15 15 15 16 17 16

PEGSOL 17.9 17.9 18.5 17.9 18.4 18.5 18.7 18.5 18.6
18 18 19 18 19 19 19 19 19

SOKOBAN 2.9 2.9 2.9 3.0 2.9 2.9 3.0 2.9 2.9
3 3 3 3 3 3 3 3 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 13.9 13.2 13.2 13.0 13.4 12.9 14.2 13.7 12.6
20 19 19 18 19 18 20 19 18

Overall 122.6 116.6 114.5 103.1 104.8 103.8 128.4 110.8 105.3
143 135 132 119 121 120 151 130 122

Table 3. Combining narrowing strategies with the original selection
strategy (P) via restarting as described in Algorithm 1. Gray rows show IPC

scores, white rows coverage.

IPC 2011 PC1O1 PC1E1 PO1E1 TFD+

CREWPLANNING 19.9 (20) 19.9 (20) 19.9 (20) 19.9 (20)
ELEVATORS 13.4 (18) 15.4 (18) 13.4 (18) 13.4 (18)
FLOORTILE 4.8 (5) 4.6 (5) 4.7 (5) 4.8 (5)
MATCHCELLAR 15.6 (20) 15.6 (20) 15.6 (20) 15.6 (20)
OPENSTACKS 17.9 (20) 18.2 (20) 18.3 (20) 17.9 (20)
PARCPRINTER 9.5 (10) 0.9 (1) 9.5 (10) 9.5 (10)
PARKING 14.1 (18) 13.8 (17) 12.0 (16) 14.6 (19)
PEGSOL 18.6 (19) 18.5 (19) 18.3 (19) 18.6 (19)
SOKOBAN 2.9 (3) 3.0 (3) 2.9 (3) 2.9 (3)
STORAGE 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TMS 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TURNANDOPEN 14.0 (20) 13.2 (19) 14.1 (20) 14.0 (20)
Overall 130.7 (153) 123.1 (142) 128.7 (151) 131.2 (154)

Table 4. IPC scores and coverage (in parentheses) of combining more than
one narrowing strategy via restarting as described in Algorithm 1. TFD+ is

an abbreviation for PC1O1E1.

To see how these improvements affect the performance of TFD
relatively to other temporal planning systems, we compared both the
original TFD and TFD+, a version of TFD that implements Algo-
rithm 1 with queues for P , O1, C1, and E1 to the participants of the
temporal satisficing track of IPC 2011 that achieved at least one point
in the competition. For this experiment, we did not re-run the other
planning systems, but use the raw results of the competition directly.4

4 IPC 2011 has been run on INTEL Xeon 2.93 GHz Quad Core processors
with a memory limit of 6 GB and a timeout of 30 minutes. Note that TFD
(like most processes) generally runs faster on such a system than on the

Table 5 presents IPC scores (gray rows) and coverage (white rows).
It can be seen that TFD+ clearly outperforms all competitors both in
terms of coverage and IPC score.

Note that for some planners the scores presented in this paper vary
from the scores they received in the competition as we did find bet-
ter plans for many problems and used them as reference plans to
compute all scores. For example, CPT4, which is optimal for the
conservative semantics of Smith and Weld [23], produced some non-
optimal plans in Floortile and Parcprinter. This was not recognized
as its plans were the best of those generated during the competition.

IPC 2011 C
PT

4

L
M

T
D

YA
H

SP
2

YA
H

SP
2-

m
t

PO
PF

2

D
A

E
-Y

A
H

SP

T
FD

T
FD

+

CREWPLANNING 7.0 0.0 16.0 15.9 20.0 20.0 19.9 19.9
7 0 20 20 20 20 20 20

ELEVATORS 0.0 6.7 8.6 8.9 2.2 12.3 1.0 13.4
0 9 20 20 3 15 1 18

FLOORTILE 12.1 4.8 6.9 8.3 0.0 7.3 4.9 4.8
15 5 13 15 0 12 5 5

MATCHCELLAR 0.0 12.5 0.0 0.0 15.3 0.0 15.6 15.6
0 15 0 0 20 0 20 20

OPENSTACKS 0.0 0.0 12.6 12.1 15.0 19.9 17.7 17.9
0 0 20 19 20 20 20 20

PARCPRINTER 2.0 0.0 3.7 4.7 0.0 2.0 0.0 9.5
5 0 7 8 0 4 0 10

PARKING 0.0 0.0 11.0 12.7 14.7 15.9 12.2 14.6
0 0 20 20 20 20 16 19

PEGSOL 19.0 19.9 17.2 18.0 18.6 20.0 17.9 18.6
19 20 20 20 19 20 18 19

SOKOBAN 0.0 0.0 10.9 11.6 2.5 4.5 2.9 2.9
0 0 12 12 3 6 3 3

STORAGE 0.0 0.0 2.7 7.2 0.0 15.5 0.0 0.0
0 0 5 11 0 19 0 0

TMS 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
0 0 0 0 5 0 0 0

TURNANDOPEN 0.0 7.0 0.0 0.0 7.8 0.0 13.3 14.0
0 13 0 0 9 0 20 20

Overall 40.1 50.9 89.6 99.3 101.1 117.2 105.3 131.2
46 62 137 145 119 136 123 154

Table 5. Gray rows show IPC scores, white rows coverage of participants
of IPC 2011 that solved at least one instance. The two rightmost columns

show results of TFD using its original setting and using all new techniques
presented in this paper (TFD+).

In another experiment, presented in Table 6, we focus on quality
by comparing TFD featuring our techniques, called TFD+, pairwise
to all other planners of IPC 2011, only considering problems where
both planners have found a solution by computing the ratio between
the makespan of those solutions. Scores greater than 1.0 therefore
indicate that we found plans of higher quality. It can be seen that our
plans offer the highest quality throughout all domains.

Finally, in our last experiment we show that the good performance
of our techniques is not only a phenomenon on a specific benchmark
set, but occurs on a wider range of domains. Therefore, we use the
benchmark suites of IPCs 2006 and 2008 (excluding Pathways and
TPP, where not only makespan but a more complex metric needs to
be optimized, a feature TFD cannot deal with yet). Results are pre-
sented in Table 7. Note that only for the benchmark set of 2008 refer-
ence plans are used. TFD+ has a higher coverage in all domains but
PIPESWORLD. (In PIPESWORLD, hcea fails to mark certain relevant
operators as preferred, requiring to extract those operators from the

system we used to generate our results, so the comparison is in favor of the
planning systems that participated in the competition.

IPC 2011 CPT4 LMTD Y2 Y2-mt POPF2 DAE-Y TFD
CREWPLANNING 7 1.00 – 20 1.29 20 1.29 20 0.99 20 0.99 20 1.00
ELEVATORS – 9 0.94 18 2.08 18 1.98 3 1.01 15 0.93 1 0.59
FLOORTILE 5 1.67 2 0.99 4 2.38 5 2.22 – 4 2.36 5 0.96
MATCHCELLAR – 15 1.06 – – 20 1.25 – 20 1.24
OPENSTACKS – – 20 1.47 19 1.46 20 1.23 20 0.92 20 1.04
PARCPRINTER 2 1.76 – 7 1.88 7 1.88 – 4 1.95 –
PARKING – – 19 1.50 19 1.35 19 1.12 19 1.11 16 1.03
PEGSOL 18 0.99 19 0.98 19 1.16 19 1.11 18 1.00 19 0.98 18 1.00
SOKOBAN – – 3 1.02 3 1.03 2 1.17 3 1.10 3 1.00
STORAGE – – – – – – –
TMS – – – – – – –
TURN AND OPEN – 13 1.38 – – 9 0.61 – 20 1.03
OVERALL 32 1.15 58 1.08 110 1.54 110 1.48 111 1.08 104 1.08 123 1.05

Table 6. Pairwise plan quality comparisons to TFD+ featuring our new
techniques, namely separate queuesO1, C1, and E1, respectively, and

restarting like described in Algorithm 1. Only instances that are solved by
both approaches (the small number states their number) are considered.

Scores greater than 1.0 indicate that TFD+ generates plans of higher quality.

regular open list. While regular TFD also uses preferred operators, it
expands nodes from the regular open list more often as the number
of lists is smaller than in TFD+.) In this experiment the title of this
paper is reflected very well: Coverage is increased drastically (from
294 to 370) while the average plan quality is not only maintained,
but even slightly improved.

TFD TFD+ Quality
IPC 2006
OPENSTACKS 17.5 (18) 20.0 (20) 18 1.03
PIPESWORLD 17.7 (18) 15.1 (16) 15 0.96
ROVERS 11.9 (12) 16.8 (17) 12 0.99
STORAGE 16.7 (17) 16.7 (17) 17 1.01
TRUCKS 13.5 (14) 29.4 (30) 14 1.00
IPC 2008
CREWPLANNING-strips 29.9 (30) 29.9 (30) 30 1.00
ELEVATORS-numeric 16.7 (20) 25.2 (30) 20 1.02
ELEVATORS-strips 13.0 (16) 20.8 (30) 16 0.96
MODELTRAIN-numeric 1.0 (1) 5.3 (7) 1 1.00
OPENSTACKS-adl 27.1 (30) 27.6 (30) 30 1.02
OPENSTACKS-strips 27.1 (30) 28.1 (30) 30 1.04
PARCPRINTER-strips 9.0 (13) 22.4 (23) 13 1.77
PEGSOL-strips 28.3 (29) 29.3 (30) 29 1.01
SOKOBAN-strips 11.9 (12) 11.9 (12) 12 1.00
TRANSPORT-numeric 4.9 (6) 11.0 (18) 6 1.05
WOODWORKING-numeric 16.6 (28) 21.6 (30) 28 1.36
Overall 262.9 (294) 331.1 (370) 291 1.08

Table 7. The two columns in the middle show IPC scores and coverage (in
parentheses) of regular TFD and TFD+ on the benchmarks suites of IPC

2006 and 2008. TFD+ features separate queues for C1,O1, and E1, as well
as restarting according to Algorithm 1. The last column shows pairwise plan

quality comparisons between TFD and TFD+ on all instances that were
solved by both approaches (the small number states their number). Scores

greater than 1.0 indicate that TFD+ generates plans of higher quality.

5 Conclusion
In this paper we have presented novel methods to narrow sets of pre-
ferred operators. Embedding these methods in the search framework
of TFD increases its coverage at the price of quality. This drawback,
however, can be overcome by utilizing a restarting strategy that is in-
corporated into a priority-based multi-queue best-first search frame-
work. We have implemented these techniques and have shown empir-
ically that combining them increases the coverage of TFD by a huge
amount and preserves the average quality of the produced plans.

Future work includes incorporating goal ordering techniques to
find more sophisticated orderings forO as well as determining addi-
tional selection strategies for preferred operators that might increase
the coverage of TFD even further. While this work is motivated by

the large gap between coverage and quality when searching in the
space of time-stamped states, it can also be applied to classical plan-
ning and doing so is a major part of our future work.

Acknowledgments
This work was supported by the German Aerospace Center (DLR) as
part of the Project “Kontiplan” (50 RA 1010).

REFERENCES
[1] Christer Bäckström and Bernhard Nebel, ‘Complexity Results for

SAS+ Planning’, Computational Intelligence, 11, 625–655, (1996).
[2] Amanda Coles, Andrew Coles, Allan Clark, and Stephen Gilmore,

‘Cost-Sensitive Concurrent Planning under Duration Uncertainty for
Service Level Agreements’, in Proc. ICAPS 2011, pp. 34–41, (2011).

[3] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long, ‘Forward-
Chaining Partial-Order Planning’, in Proc. ICAPS 2010, pp. 42–49,
(2010).

[4] Andrew Coles, Maria Fox, Keith Halsey, Derek Long, and Amanda
Smith, ‘Managing Concurrency in Temporal Planning Using Planner-
Scheduler Interaction’, AIJ, 173(1), 1–44, (2009).

[5] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith, ‘Planning
with Problems Requiring Temporal Coordination’, in Proc. AAAI 2008,
pp. 892–897, (2008).

[6] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S.
Weld, ‘When is Temporal Planning Really Temporal?’, in Proc. IJCAI
2007, pp. 1852–1859, (2007).

[7] Minh Binh Do and Subbarao Kambhampati, ‘Improving Temporal
Flexibility of Position Constrained Metric Temporal Plans’, in Proc.
ICAPS 2003, pp. 42–51, (2003).

[8] Minh Binh Do and Subbarao Kambhampati, ‘Sapa: A Multi-objective
Metric Temporal Planner’, JAIR, 20, 155–194, (2003).

[9] Johann Dréo, Pierre Savéant, Marc Schoenauer, and Vincent Vidal,
‘Divide-and-Evolve: The Marriage of Descartes and Darwin’, in IPC
2011, pp. 29–30, (2011).

[10] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger, ‘Using the
Context-Enhanced Additive Heuristic for Temporal and Numeric Plan-
ning’, in Proc. ICAPS 2009, pp. 130–137, (2009).

[11] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina, ‘Planning
Through Stochastic Local Search and Temporal Action Graphs in
LPG’, JAIR, 20, 239–290, (2003).

[12] Malte Helmert, ‘The Fast Downward Planning System’, JAIR, 26, 191–
246, (2006).

[13] Malte Helmert, ‘Concise Finite-Domain Representations for PDDL
Planning Tasks’, AIJ, 173, 503–535, (2009).

[14] Malte Helmert and Héctor Geffner, ‘Unifying the Causal Graph and
Additive Heuristics’, in Proc. ICAPS 2008, pp. 140–147, (2008).

[15] Jörg Hoffmann and Bernhard Nebel, ‘The FF Planning System: Fast
Plan Generation Through Heuristic Search’, JAIR, 14, 253–302, (2001).

[16] Chihwei Hsu and Benjamin W. Wah. The SGPlan Planning System in
IPC-6, 2008.

[17] Yanmei Hu, Dunbo Cai, and Minghao Yin, ‘The LMTD Planner: On
the Discovery and Utility of Precedence Constraints in Temporal Plan-
ning’, in IPC 2011, pp. 128–131, (2011).

[18] Jana Köhler and Jörg Hoffmann, ‘On Reasonable and Forced Goal Or-
derings and their Use in an Agenda-Driven Planning Algorithm’, JAIR,
12, 338–386, (2000).

[19] Drew McDermott, ‘A Heuristic Estimator for Means-Ends Analysis in
Planning’, in Proc. AIPS 1996, pp. 142–149, (1996).

[20] Drew McDermott, ‘Using Regression-Match Graphs to Control Search
in Planning’, AIJ, 109(1–2), 111–159, (1999).

[21] Silvia Richter and Malte Helmert, ‘Preferred Operators and Deferred
Evaluation in Satisficing Planning’, in Proc. ICAPS 2009, pp. 273–280,
(2009).

[22] Gabriele Röger and Malte Helmert, ‘The More, the Merrier: Combining
Heuristic Estimators for Satisficing Planning’, in Proc. ICAPS 2010, pp.
246–249, (2010).

[23] David E. Smith and Daniel S. Weld, ‘Temporal Planning with Mutual
Exclusion Reasoning’, in Proc. IJCAI 1999, pp. 326–337, (1999).

[24] Vincent Vidal, ‘CPT4: An Optimal Temporal Planner Lost in a Plan-
ning Competition without Optimal Temporal Track’, in IPC 2011, pp.
25–28, (2011).

[25] Vincent Vidal, ‘YAHSP2: Keep it Simple, Stupid’, in IPC 2011, pp.
83–90, (2011).

