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Abstract —We consider the problem of an autonomous robot
searching for objects in unknown 3d space. Similar to the well
known frontier-based exploration in 2d, the problem is to determine a
minimal sequence of sensor viewpoints until the entire search space
has been explored. We introduce a novel approach that combines
the two concepts of voids, which are unexplored volumes in 3d,
and frontiers, which are regions on the boundary between voids
and explored space. Our approach has been evaluated on a mobile
platform using a 5-DOF manipulator searching for victims in a
simulated USAR setup. First results indicate the real-world capability
and search efficiency of the proposed method.
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I. INTRODUCTION

We consider the problem of an autonomous robot searching

for objects in unknown 3d space. Autonomous search is a

fundamental problem in robotics that has many application

areas ranging from household robots searching for objects in

the house up to search and rescue robots localizing victims

in debris after an earthquake. Particularly in urban search and

rescue (USAR), victims can be entombed within complex and

heavily confined 3d structures. State-of-the-art test methods

for autonomous rescue robots, such as those proposed by

NIST [1], are simulating such situations by artificially gener-

ated rough terrain and victims hidden in crates only accessible

through confined openings (see Figure 1 (b)). In order to clear

the so called red arena, void spaces have to be explored in

order to localize any entombed victim within the least amount

of time.

The central question in autonomous exploration is “given

what you know about the world, where should you move

to gain as much new information as possible?” [2]. The

key idea behind the well known frontier-based exploration in

2d is to gain the most new information by moving to the

boundary between open space and uncharted territory, denoted

as frontiers. We extend this idea by a novel approach that

combines frontiers in 3d with the concept of voids. Voids are

unexplored volumes in 3d that are automatically generated

after successively registering observations from a 3d sensor

and extracting all areas that are occluded or enclosed by

obstacles. Extracted voids are combined with nearby frontiers,

e.g., possible openings, in order to determine adequate sensor

viewpoints for observing the interior. By intersecting all gen-

erated viewpoint vectors, locations with high visibility, i.e.,

locations from which many of the void spaces are simultane-

ously observable, are determined. According to their computed

visibility score, these locations are then visited sequentially by

the sensor until the entire space has been explored. Note that

by combining void spaces with frontier cells the space of valid

sensor configurations for observing the scene gets significantly

reduced.
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Fig. 1. The long-term vision behind frontier-void-based exploration: Efficient
search for entombed victims in confined structures by mobile autonomous
robots.

For efficient computations in 3d octomaps are utilized,

which tessellate 3d space into equally sized cubes that are

stored in a hierarchical 3d grid structure [3]. By exploiting

the hierarchical representation, efficient ray tracing operations

in 3d and neighbor queries are possible.

We show experimentally the performance of our method

on a mobile manipulation platform using the manipulator

searching for victims in a simulated USAR setup (see Figure 1

(a)). First results indicate the real-world capability and search

efficiency of our approach.

The reminder of this paper is organized as follows. In

Section II related work is discussed. In Section III the problem

is formally stated, and in Section IV the presented approach is

introduced. Experimental results are presented in Section V,

and we finally conclude in Section VI.

II. RELATED WORK

Searching and exploring unknown space is a general type

of problem that has been considered in a variety of different

areas, such as finding the next best view for acquiring 3d



models of objects, the art gallery problem, robot exploration,

and pursuit evasion.

Traditional next best view (NBV) algorithms compute a

sequence of viewpoints until an entire scene or the surface of

an object has been observed by a sensor [4], [5]. Banta et al.

were using ray-tracing on a 3d model of objects to determine

the next best view locations revealing the largest amount of

unknown scene information [4]. The autonomous explorer by

Whaite and Ferrie chooses gazes based on a probabilistic

model [6]. Although closely related to the problem of ex-

ploring 3d environments, NBV algorithms are not necessarily

suitable for robot exploration [7]. Whereas sensors mounted on

mobile robots are constrained by lower degrees of freedom,

sensors in NBV algorithms are typically assumed to move

freely around objects without any constraints. The calculation

of viewpoints, i.e., solving the question where to place a sensor

at maximal visibility, is similar to the art gallery problem.

In the art gallery problem [8] the task is to find an optimal

placement of guards on a polygonal representation of 2d

environments in that the entire space is observed by the guards.

Nüchter et al. proposed a method for planning the next

scan pose of a robot for digitalizing 3d environments [9].

They compute a polygon representation from 3d range scans

with detected lines (obstacles) and unseen lines (free space

connecting detected lines). From this polygon potential next-

best-view locations are sampled and weighted according to

the information gain computed from the number of polygon

intersections with a virtual laser scan simulated by ray tracing.

The next position approached by the robot is selected accord-

ing to the location with maximal information gain and minimal

travel distance. Their approach has been extended from a 2d

representation towards 2.5d elevation maps [10]. Newman et

al. base their exploration on features, as for example walls,

with the goal to target places of interest directly [11].

In pursuit-evasion the problem is to find trajectories of

the searchers (pursuers) in order to detect an evader moving

arbitrarily through the environment. Part of that problem is

to determine a set of locations from which large portions

of the environment are visible. Besides 2d environments,

2.5d environments represented by elevation maps have been

considered [12].

III. PROBLEM FORMULATION

In this section the exploration task is formally described. We

first describe the model of the searcher and then the structure

of the search space. Then we formulate the search problem

based on these two definitions.

We consider mobile robot platforms equipped with a 3d

sensor. The 3d sensor generates at each cycle a set of n 3d

points {p1,p2, . . . ,pn} with pi = (xi, yi, zi)
T representing

detected obstacles within the sensor’s field of view (FOV). The

state of the sensor, and thus the searcher, is uniquely deter-

mined in ℜ3 by the 6d pose (x, y, z, φ, θ, ψ)T , where (x, y, z)T

denotes the translational part (position) and (φ, θ, ψ)T the

rotational part (orientation) of the sensor.

Let X be the space of 6d poses, i.e., X ∼= R
3×SO(3) [13]

and C ⊂ X the set of all possible configurations of the

sensor with respect to the kinematic motion constraints of

the robot platform. In general, C depends on the degrees

of freedoms (DOFs) of the robot platform. Without loss of

generality we assume the existence of an inverse kinematic

function IK(q) with q ∈ X that generates the set of valid

configurations C. Furthermore, let Cfree ⊂ C be the set of

collision free configurations in C, i.e., the set of configurations
that can be taken by the sensor without colliding into obstacles.

For computing Cfree we assume the existence of collision

detection function γ : C → {TRUE,FALSE} that returns

FALSE if q ∈ Cfree and TRUE otherwise. Note that for

experiments presented in this paper a 5-DOF manipulator

mounted on a mobile robot platform has been used. Also note

that the set of valid configurations can be precomputed for

efficient access during the search using capability maps [14].

The search space S can be of arbitrary shape, we only

assume that its boundary δS is known but nothing is known

about its structure. Similar to the well known concept of

occupancy grids in 2d, our 3d search reagin S is tessellated

into equally sized cubes that are stored in a hierarchical 3d

grid structure [3]. The size of the cubes is typically chosen

according to the size of the target to be searched.

Let the detection set D(q) ⊂ S be the set of all locations

in S that are visible by a sensor with configuration q ∈
Cfree. The problem is to visit a sequence q1,q1,q3, . . . of

configurations until either the target has been found or the

entire search space S has been explored, i.e., S\
⋃m

i=1
D(qi) is

the empty set. Since our goal is to reduce the total search time,

the sequence of configurations has to be as short as possible.

Note that this problem is related to the next best view (NBV)

problem [4] and the art gallery problem [8].

IV. FRONTIER-VOID-BASED EXPLORATION

In this section the procedure for computing the next best

viewpoints based on extracted frontiers and voids is described.

This is an iterative procedure where at each cycle of the

iteration the following steps are performed: (1) to capture a

3d point cloud from the environment (2) to register (align) the

point cloud with previously acquired scans (3) to integrate the

point cloud into the hierarchical octomap data structure (4) to

extract the frontier cells (see Section IV-A) (5) to extract the

voids (see Section IV-B) (6) to determine and score next best

view locations (see Section IV-C) (7) to plan and execute a

trajectory for reaching the next best view location.

A. Frontier cell computation

In this section we describe the process of extracting frontier

cells from the incrementally build octomap data structure.

Similar to the occupancy grid classification in 2d frontier-

based exploration, all 3d cells in the octomap are classified

into occupied, free, and unknown. Whereas occupied cells are

regions covered with points from the point cloud and free cells

are regions without points, unknown cells are regions that have

never been covered by the sensor’s field of view.



Fig. 2. This figure shows the pointcloud data integrated in an octomap
structure (left) and computed frontiers (red) and voids (violet).

The set of frontier cells F consists of free cells that

are neighboring any unknown cell. Note that occupied cells

neighboring unknown cells are not belonging to F . For the

sake of efficient computation, a queue storing each cell from

the octomap that has been updated during the last scan

integration, is maintained. By this, frontiers can be computed

incrementally, i.e., only modified cells and their neighbors are

updated at each cycle. After each update, frontier cells are

clustered by an union-find algorithm [15] forming the frontier

cluster set FC.

B. Void Extraction

Similar to frontier cells, void cells are extracted from the

octomap in a sequential manner, i.e., only cells modified by

an incoming 3d scan are updated during each cycle. The set of

void cells V contains all unknown cells that are located within

the convex hull of the accumulated point cloud represented

by the octomap. Extracted frontiers and voids can be seen in

Figure 2. The convex hull of each sensor update is efficiently

computed by using the QHull library [16].

We are utilizing ellipsoids to build clusters of void cells

since they naturally model cylindrical, and spheroidal distri-

butions. The symmetric positive definite covariance matrix for

a set of n 3d points {p1,p2, . . . ,pn} with pi = (xi, yi, zi)
T

is given by:

Σ =
1

n

n∑

i=1

(pi − µ)
T (pi − µ), (1)

where µ denotes the centroid of the point cloud given by

µ = 1/n
∑n

i=1
pi. Matrix Σ can be decomposed into principle

components given by the ordered eigen values λ1, λ2, λ3, with
λ1 > λ2 > λ3, and corresponding eigen vectors e1, e2, e3.
The goal is to maximize the fitting between the ellipsoids and

their corresponding void cells. The quality of such a fitting

can be computed by the ratio between the volume of the point

cloud covered by the void and the volume of the ellipsoid

representing the void:

Si =
NiR

3

4

3
πλi1λi2λi3

, (2)

where Ni denotes the number of void cells inside the ellipsoid,

R the resolution of the point cloud, i.e., the edge length of a

Algorithm 1 Compute Next Best V iew

// Compute utility vectors

UV ← ∅
for all fvi = (vi, Fi, ui) ∈ FV do

for all c ∈ corners(vi) do
for all fi ∈ Fi do

vp← fi
dir = normalize(pos(fi)− c)
UV ← UV ∪ (vp, dir, ui)

end for

end for

end for

// Accumulate utilities in Cfree
for all uv = (vp, dir, u) ∈ UV do

RT ← set of grid cells on the line segment of length sr
in direction dir originating from vp.
for all c ∈ RT do

util(c)← util(c) + u
end for

end for

void cell, and λi1, λi2, and λi3 the eigen values of the ith
void ellipsoid.

Motivated by the work from Pauling et al. [17] voids

are extracted from the set V by randomly sampling starting

locations that are then successively expanded by a region

growing approach until the score in Equation 2 surpasses a

certain threshold value. The procedure terminates after all void

cells have been assigned to a cluster. The set of void clusters is

denoted by VC, where each cluster vi ∈ VC is described by the

tuple vi = (µi, ei1, ei2, ei3,λi1, λi2, λi3), see also Figure 3.

Fig. 3. On the left frontier and void cells are shown. The right side shows
the result of the clustering the void cells as three ellipsoids.

The set of void clusters VC and the set of frontier cells F
are combined in the final set of frontier-voids FV , where each
frontier-void fv ∈ FV is defined by the tuple fvi = (vi ∈
V, Fi ⊂ FC, ui ∈ ℜ

+), where ui describes a positive utility

value. In FV frontier clusters are associated with a void if they

neighbor the void cluster. Utility ui is computed according to

the expectation of the void volume that will be discovered,

which is simply the volume of the void.

C. Next Best View Computation



The computation of the next best view has the goal to

identify the configuration of the sensor from which the max-

imal amount of void space can be observed. As shown by

Algorithm 1 this is carried out by generating the set of utility

vectors UV by considering each frontier cell and associated

void cluster from the set of frontier-voids fvi ∈ FV . For
each uv ∈ UV ray tracing into Cfree is performed in order to

update the expected utility value of possible viewpoints. Ray

tracing is performed efficiently on the octomap and at each

visited cell of the grid the utility value from the void from

which the ray originates is accumulated. In Algorithm 1 sr
denotes the maximal sensor range, function pos(.) returns the
3d position of a grid cell, and normalize(.) is the unit vector.

corners(vi) is a function returning the center and the set of

extremas of a void cluster vi = (µi, ei1, ei2, ei3,λi1, λi2, λi3),
i.e. corners(vi) = µi ∪

⋃
j∈{1,2,3} µi ± λij · eij.

Fig. 4. The left image shows the computed utility vectors. On the right
the accumulated utilities pruned by the workspace are shown from red (low),
yellow (medium) to green (high).

The space of view points is then pruned by intersecting

it with the sensor’s workspace, i.e., locations that are not

reachable by the sensor due to the kinematic motion model

of the robot or due to obstacles in the way, are removed. This

can efficiently be implemented by using capability maps [14].

An example is given in Figure 4.

In the last step of the procedure the generated set of

viewpoints is taken as a starting point for determining the next

best view configuration of the sensor. For this purpose valid

camera orientations (φ, θ, ψ) are sampled at the viewpoints

c sorted by util(c) for computing the set of valid sensor

configurations Csens ⊂ Cfree. Each ci ∈ Csens is defined

by the tuple (xi, yi, zi, φi, θi, ψi, Ui), where xi, yi, zi denote

the viewpoint location, (φi, θi, ψi) a valid orientation at this

viewpoint, and Ui denotes the expected observation utility

for the configuration computed by raytracing the sensors field

of view from the pose (xi, yi, zi, φi, θi, ψi). The computation

stops after N valid poses have been computed in Csens. In our

experiments we used N = 50. Finally, the next best sensor

configuration is determined by:

c∗ = arg max
ci∈Csens

Ui. (3)

V. EXPERIMENTAL RESULTS

A. Experimental Platform

The robot is a Mesa Robotics matilda with a Schunk

custom-built 5-DOF manipulator that has a work space radius

View # Integration time (s) Search Time (s) Void
Cells

Utility
(dm3)

1 3.07 22.91 1245 19.45
2 3.21 30.27 988 15.44
3 3.12 99.22 739 11.55
4 3.51 66.85 306 4.78
5 4.20 00.01 0 0.0

TABLE I

THIS TABLE SHOWS THE RESULTS FOR THE FIRST RUN. EACH ROW

REPRESENTS ONE SCAN INTEGRATION AND NEXT BEST VIEW

COMPUTATION.

View # Integration time (s) Search Time (s) Void
Cells

Utility
(dm3)

1 3.83 43.58 2292 35.81
2 3.25 53.32 392 6.13
3 2.99 53.28 167 2.61
4 2.79 67.90 120 1.88
5 3.87 68.53 1615 25.23
6 4.46 14.49 103 1.61
7 4.11 3.35 0 0.0

TABLE II

THIS TABLE SHOWS THE RESULTS FOR THE SECOND RUN. EACH ROW

REPRESENTS ONE SCAN INTEGRATION AND NEXT BEST VIEW

COMPUTATION.

of one meter. It is shown in the top left image in Figures 5

and 6. During the experiments the base was stationary while

the manipulator was used for the search. For 3d obvervations

we use a Microsoft Kinect RGBD-camera on the sensorhead.

B. Results

We conducted experiments in two different settings. The

first setting displayed in Figure 5 has a computer and two

boxes that are open on the top as well as some two-by-fours.

The second setting shown in Figure 6 features two larger

closed boxes and smaller boxes with small openings.

For both experiments the robot was positioned in an initial

start position. Each execution of one view consists of: Inte-

grating the scan into the world representation, computing the

next best view configuration, and moving the sensor to the

next best view position configuration. Views were executed

until the algorithm reports that there are no more void cells

that are reachable by the manipulator, i.e. the algorithm returns

a utility of 0 for the best view.

The results of both experiments are shown in Table I and

Table II. The integration time notes the time to integrate the

scan into the octree and compute the frontier and void property

incrementally. Search time gives the time to search for the

next best view. The last two columns list the expected number

of void cells to be seen by the view and the corresponding

volume.

VI. CONCLUSIONS

We introduced a novel approach for solving the problem of

selecting next best view configurations for a 3d sensor carried

by a mobile robot platform that is searching for objects in



Fig. 5. The figure shows the first experiment. In the top left the experiment setting is displayed. The consecutive images show the best views chosen by the
algorithm from the current world representation. The bottom left image shows the final result.

Fig. 6. The figure shows the second experiment. In the top left the experiment setting is displayed. The consecutive images show the best views chosen by
the algorithm from the current world representation. The bottom left image shows the final result.

unknown 3d space. Our approach extends the well known 2d

frontier-based exploration method towards 3d environments by

introducing the concept of voids.

Although the number of sensor configurations in 3d is sig-

nificantly higher than in 2d, experimental results have shown

that frontier-void-based exploration is capable to accomplish

an exploration task within a moderate amount of time. Due

to the computation of utility vectors from void-frontier com-

binations the search space of viewpoint configurations of the

sensor was drastically reduced. As a comparison perspective

consider that the robot’s workspace discretized to 2.5cm
contains 444 925 nodes. A rough angular resolution of 10
degrees will result in 444 925·363 ≈ 2.08·1010 configurations.

The hierarchical octomap structure allowed us to perform

efficient ray tracing and neighbor query operations, which are

typically expensive when working with 3d data.

However, the performance of our approach needs still to

be improved in order to be applicable in real-time. Future

improvements will deal with a more compact representation

of the inverse kinematics of the robot, as well as a further

exploitation of the hierarchical structure for accelerating the

search procedure.

We also plan to evaluate the approach on different robot

platforms, such as unmanned aerial vehicles (UAVs) and

snake-like robots, as well as extending the empirical evaluation

for various types of environments, such as represented by

realistic point cloud data sets recorded at USAR training sites.
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