
Behavior maps for online planning of obstacle negotiation and
climbing on rough terrain

Christian Dornhege and Alexander Kleiner
Institut für Informatik
University of Freiburg

79110 Freiburg, Germany
{dornhege, kleiner}@informatik.uni-freiburg.de

Abstract—To autonomously navigate on rough ter-
rain is a challenging problem for mobile robots, requir-
ing the ability to decide whether parts of the environ-
ment can be traversed or have to be bypassed, which
is commonly known as Obstacle Negotiation (ON). In
this paper, we introduce a planning framework that
extends ON to the general case, where different types
of terrain classes directly map to specific robot skills,
such as climbing stairs and ramps. This extension is
based on a new concept called behavior maps, which
is utilized for the planning and execution of complex
skills. Behavior maps are directly generated from ele-
vation maps, i.e. two-dimensional grids storing in each
cell the corresponding height of the terrain surface,
and a set of skill descriptions. Results from extensive
experiments are presented, showing that the method
enables the robot to explore successfully rough terrain
in real-time, while selecting the optimal trajectory in
terms of costs for navigation and skill execution.

I. INTRODUCTION

To autonomously navigate on rough terrain is a chal-
lenging problem for mobile robots, requiring the ability
to decide which parts of the environment can be traversed
or have to be bypassed, which is commonly known as
Obstacle Negotiation (ON) [21]. While this problem has
been mainly addressed for semi-rough terrain, e.g. within
outdoor [13], [16], [19], and indoor scenarios [23], rough
terrain, containing steep structure elements, demands
robots to be explicitly aware of their context, thus allow-
ing to execute specific skills with respect to the situation.

In this paper, we introduce a planning framework that
extends ON to the general case, where different types of
terrain classes directly map to specific robot skills, such
as climbing stairs and ramps. The framework is based
on a new concept called behavior maps, which is utilized
for the planning and execution of complex skills on
rough terrain. Behavior maps are directly generated from
elevation maps, i.e. two-dimensional grids storing in each
cell the corresponding height of the terrain surface [3],
[12], and a set of skill descriptions. Skill descriptions
contain a set of fuzzy rules for the classification of
structures they can handle, a set of spatial constraints
encoding preconditions required for their execution, a

1This research was partially supported by DFG as part of the
collaborative research center SFB/TR-8 Spatial Cognition R7

cost function utilized for A* planning on the map, and
the skill routine to be executed. According to these
skill descriptions, elevation maps are segmented into
different regions, where each region corresponds to a
skill that can be executed therein. We utilize Markov
Random Field (MRF) models, which are automatically
constructed from the set of fuzzy rules, for detecting
structure elements on the elevation map. Furthermore,
behavior maps are augmented with preconditions, such
as starting locations and angles, which are automatically
generated from the sets of spatial constraints. The re-
sulting 2D representation encodes context information
of the environment, and can efficiently be utilized for
the planning and execution of skills. The final system
consists of four main modules, which are all executed in
real-time during navigation: elevation mapping, terrain
classification, skill planning, and motion control.

Fig. 1. The Lurker robot climbing up a ramp during the Rescue
Robotics Camp 2006 in Rome.

We conducted extensive experiments within an in-
door environment containing pallets and ramps, which
was designed accordingly to the testing arenas build by
NIST for evaluating robots for USAR (Urban Search
And Rescue) [11]. Note that these kind of scenarios do
not yet capture the true complexity of rough terrain
found in real USAR situations. However, they provide a
benchmark yearly increasing in difficulty for facilitating
the stepwise development of autonomous robot mobility.

Results from our experiments show that the robot was
able to successfully explore such environments in real-
time, while selecting the optimal trajectory in terms of
costs for navigation and skill execution.

Former work mainly focused on behavior-based ap-
proaches for robot navigation on rough terrain. For ex-
ample, Hebert and colleagues developed a tracked robot
for scrambling over rubble with autonomous navigation
based on visual servoing and stereo vision-based obstacle
avoidance [9]. Ye and Borenstein extracted traversability
field histograms from elevation maps for obstacle avoid-
ance on a Segway platform [22]. While purely behavior-
based approaches are successful on moderately rugged
3-D terrain, they might fail within densely structured
environments due to a limited lookahead needed for
concluding efficient sequences of skills.

Methods for terrain classification [13], [16], [19], [18]
and terrain trafficability characterization [14] have been
extensively studied in the past. These methods mainly
focus on the question whether a terrain feature can be
traversed or has to be bypassed, e.g. they classify the
terrain into classes such as road, grass, and rock.

The remainder of this paper is structured as follows. In
Section II we describe the utilized hardware platform, in
Section III we explain the construction of behavior maps,
and in Section IV planning on these maps is described.
Finally, we provide results from robot experiments in
Section V and conclude in Section VI.

II. HARDWARE PLATFORM

Figure 1 shows the tracked Lurker robot, which is
based on the Tarantula R/C toy. Although based on
a toy, this robot is capable of climbing difficult obsta-
cles, such as stairs, ramps, and random stepfields [11].
This is possible due to its tracks, which can operate
independently on each side, and the “Flippers” (i.e. the
four arms of the robot), which can freely be rotated at
360◦. The base has been modified in order to enable
autonomous operation. First, we added a 360◦ freely
turnable potentiometer to each of the two axes for mea-
suring the angular position of the flippers. Second, we
added 10 touch sensors to each flipper, allowing the robot
to measure physical pressure when touching the ground
or an object.

Furthermore, the robot is equipped with a 3-DOF
Inertial Measurement Unit (IMU) from Xsens, allowing
drift-free measurements of the three Euler angles yaw,
roll, and pitch, and two Hokuyo URG-X004 Laser Range
Finders (LRFs), one for scan matching, and one for
elevation mapping, which can be tilted in the pitch angle
within 90◦.

III. BUILDING BEHAVIOR MAPS

In this section we describe the process of building
behavior maps, which later serve as a basis for skill plan-
ning and execution. Behavior maps are generated from
elevation maps, which are two-dimensional arrays storing

for each discrete location the corresponding height value
and variance. We utilize a method for real-time eleva-
tion mapping on rough terrain that facilitates mapping
while the robot navigates on uneven surfaces [12]. The
method generates an elevation map by the successive
integration of the robot’s three-dimensional pose and
range measurements of a downwards tilted Laser Range
Finder (LRF). In order to determine the height for each
location, endpoints from readings of the tilted LRF are
transformed with respect to the robot’s global pose, and
the pitch (tilt) angle of the LRF. Thereby the three-
dimensional pose of the robot is tracked by integrating
the orientation measured by the IMU and a translation
estimate generated by a visual odometry method. Fur-
thermore, the three-dimensional pose is updated from
height observations that have been registered on the map.

Compared to conventional world representations, as
for example occupancy maps, behavior maps contain
context information for negotiating different kinds of
structures, such as ramps and stairs. Within the pro-
posed planning framework they serve as a basis for skill
planning and execution, and are automatically generated
from elevation maps and a set of skill descriptions. For
this purpose skills are implementing a set of fuzzy rules
for the classification of structures they can handle, a set
of spatial constraints encoding preconditions required for
their execution, a cost function utilized for A* planning
and the skill routine to be executed. Figure 2 summarizes
the process of constructing behavior maps, and their
application for planning and skill execution. Note that
fuzzified features are utilized for both pre-classification
and a MRF-based (Markov Random Field) classification.
The pre-classification allows real-time extraction of triv-
ially decidable regions, such as floors and walls, whereas
the MRF-based classification is executed delayed in the
background in order to detect undecided regions, such
as ramps and stairs, more reliably. In the following, all
components of skill descriptions are discussed in more
detail.

A. Fuzzy rules for structure detection

Depending on the structure element to be recognized,
both classification methods need to have a set of rep-
resentative features that can differentiate the structure
element from the environment. We choose to use fuzzified
features, which are generated for each cell of the elevation
map by functions that project parameters, as for exam-
ple, the height difference between cells, into the [0, 1] in-
terval. In contrast to binary {0, 1} features, fuzzification
facilitates the continuous projection of parameters, as
well as the modeling of uncertainties. This is especially
useful for the later MRF classification, which requires
continuous features as input. Fuzzification is carried out
by combining the functions SUp(x, a, b) (Equation 1) and
SDown(x, a, b) (Equation 2), where a and b denote the

Fig. 2. The planning framework based on behavior maps, which
are generated from elevation maps and skill descriptions.

desired range of the parameter.

SUp(x, a, b) =


0 if x < a
x−a
b−a if a ≤ x ≤ b

1 if x > b

(1)

SDown(x, a, b) = 1− SUp(x, a, b) (2)

For example, the features Flat Surface, Wall Height and
Ramp Angle are build from the parameters δhi, denoting
the maximum height difference around a cell, and αi,
denoting the angle between the normal vector ni and
the upwards vector (0, 1, 0)T , as shown by Equation 3
and Equation 4, respectively.

δhi = max
j is neighbor to i

|hi − hj | (3)

αi = arccos
(
(0, 1, 0)T · ni

)
= arccos

(
niy

)
(4)

For the described robot platform, these features are
defined by:

• Flat Surface = SDown(δhi, 15mm, 40mm)
• Wall Height = SUp(δhi, 200mm, 300mm)
• Ramp Angle = SUp(αi, 3◦, 25◦) ·

SDown(αi, 25◦, 40◦)
Each time the elevation map is updated, the pre-
classification procedure applies fuzzy rules on the latest
height estimates in order to classify them into regions,
such as flat ground, wall, and undecidable region. The
rules for flat ground and wall are trivial, as for example,
“if δhi is flat surface, then class is flat ground”. Regions
that are undecidable by the pre-processing, and which
will be classified by the more time consuming MRF
classifier, are extracted by “if δhi is not flat surface and

δhi is not wall height, then class is undecidable region”.
Inference is carried out by the minimum and maximum
operation, representing the logical and and or operators,
respectively, whereas negations are implemented by 1−x,
following the definition given in the work of Elkan [8].
After applying the rule set to each parameter, the pre-
classification result is computed by defuzzification, which
is carried out by choosing the rule yielding the highest
output value.

The procedure is executed in real-time and is the first
step to classify cells into traversable and non-traversable
terrain. For discriminating more complex obstacle types,
such as ramps and stairs, Markov Random Field (MRF)
models, are used. Since MRFs do not linearly scale with
the size of the map, they are exclusively applied on
undecided regions which have not been classified by the
pre-classification procedure. In order to extract those
regions from the map, a color thresholding technique
borrowed from computer vision [4] is utilized. This is
carried out by generating a color image from the pre-
classified elevation map with each color corresponding
to one obstacle class. Then, the image is processed by
color thresholding, resulting in a segmentation of these
areas into connected regions, which are then separately
processed by dynamically generated MRF classifiers. An
example of the result of color thresholding applied on an
elevation map is shown in Figure 3.

The input map Extracted regions of interest
Fig. 3. Extraction of regions from a pre-classified map, which can
be further classified by MRFs. Brown rectangles indicate obstacle
regions, and yellow rectangles indicate ramp regions.

B. Markov Random Fields

To recognize complex structures from noisy data is
generally a challenging task which can hardly be solved
by heuristics applied on single cells of the elevation map.
Hence, we utilize Markov Random Fields (MRFs) for
modeling the neighborhood relations between them.

A MRF is defined by an undirected graph G = (Y, E),
where Y is a set of discrete variables Y = {Y1, . . . , YN},
and E is a set of edges between them. Each variable Yi ∈
{1, . . . ,K} can take on one of K possible states. Hence,
G describes a joint distribution over {1, . . . ,K}N .

According to the approach of Anguelov and his col-
leagues [2] we utilize pairwise Markov networks, where a
potential φ (yi) is associated to each node and a potential
φ (yi, yj), to each undirected edge E = {(ij)} (i < j)

between two nodes. Consequently, the pairwise MRF
model represents the joint distribution by:

Pφ(y) =
1
Z

N∏
i=1

φi(yi)
∏

(ij)∈E

φij(yi, yj) (5)

where Z denotes a normalization constant, given by Z =∑
y′

∏N
i=1 φi(y′i)

∏
(ij)∈E φij(y′i, y

′
j).

A specific assignment of values to Y is denoted by
y and represented by the set

{
yk

i

}
of K · N indicator

variables, for which yk
i = I(yi = k). In order to foster

the associativity of the model, we reward instantiations
that have neighboring nodes, which are labeled by the
same class. This is enforced by requiring φij(k, l) =
λk

ij , where λk
ij > 1, for all k = l, and φij(k, l) = 1,

otherwise [17]. Inference is carried out by solving the
maximum a-posterior (MAP) inference problem, i.e. to
find arg maxy Pφ (y).

For our specific problem, we define the node poten-
tials φ (yi) by a vector of features, where each feature
is produced by fuzzifying a parameter as defined in
Section III-A. Likewise we define the edge potentials
φ (yi, yj) by a vector of features that reflect the spatial
relations between surface cells. More specific, we consider
the height difference δh = |hi − hj | between neighboring
cells as an input parameter for features expressing those
relations, as for example:

• Flat Transition = SDown(δh, 15mm, 40mm)
• Obstacle Transition = SUp(δh, 25mm, 80mm) ·

SDown(δh, 200mm, 350mm)
• Wall Difference = SUp(δh, 200mm, 300mm)

Given the node and edge potentials for each extracted
region of interest, one MRF graph is dynamically con-
structed with each node connecting to the four closest
neighbors in the vicinity. Note that the maximal number
of neighbors has to be limited due to the limited compu-
tation time.

For the sake of simplicity potentials are represented
by a log-linear combination log φi(k) = wk

n · xi and
log φij(k, k) = wk

e ·xij , where xi denotes the node feature
vector, xij the edge feature vector, and wk

n and wk
e the

row vectors according to the dimension of node features
and edge features, respectively. Consequently, we can
denote the MAP inference problem arg maxy Pφ (y) by:

arg max
y

N∑
i=1

K∑
k=1

(wk
n ·xi)yk

i +
∑

(ij)∈E

K∑
k=1

(wk
e ·xij)yk

i yk
j . (6)

Equation 6 can be solved as a linear optimization prob-
lem by replacing the quadratic term yk

i yk
j with the

variable yk
ij and adding the linear constraints yk

ij ≤ yk
i

and yk
ij ≤ yk

j . Hence, the linear programming formulation

of the inference problem can be written as:

max
N∑

i=1

K∑
k=1

(wk
n · xi)yk

i +
∑

(ij)∈E

K∑
k=1

(wk
e · xij)yk

ij (7)

s.t. yk
i ≥ 0, ∀i, k;

∑
k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀ij ∈ E , k,

which can, for example, be solved by the Simplex algo-
rithm [7]. Furthermore, it is necessary to learn the weight
vectors for the node and edge potential from data, which
has been carried out by utilizing the maximum margin
approach recommended by Taskar et al. [17].

C. Encoding skill preconditions
Due to the fact that obstacles might not be traversable

from every point and every direction as flat areas are, we
need to detect transitions that reliably lead the robot
onto the obstacle. Furthermore, it is necessary to deter-
mine from this transitions the according preconditions
for the skill execution, which are basically the starting
location and starting orientation. Therefore, the user has
to define for each skill the specific type of transition the
skill can traverse by spacial relationships.

The Allen’s Interval Calculus [1] defines qualitative
relationships among one dimensional intervals by 13
base relations. Denoting the start and end points of
an interval a by a− and a+, respectively, the relations
{meets, starts, finishes} can be defined by:

• a meets b: {(a, b) | a− < a+ = b− < b+}
• a starts b: {(a, b) | a− = b− < a+ < b+}
• a finishes b : {(a, b) | b− < a− < a+ = b+}

Using this subset of relations, a ramp transition can be
defined as {F meets R,F starts T,R finishes T}. Fig-
ure 4(b) shows a floor-ramp transition that does not con-
tain any other intervals besides floor (F) and ramp (R),
while T stands for the interval containing all intervals
considered.

The clusters generated in Section III-A contain cells
belonging to a specific class. To extract preconditions
from these cells, the following steps are performed: First,
cells that are potentially part of a transition are se-
lected. Second, straight lines from the selected cells are
extracted, where starting and ending cells of these lines
are determined according to the qualitative relations
describe above. In the following, these lines are termed
transition edges. Third, preconditions, i.e. the exact
starting locations for the skill execution, are computed.

For the extraction of suitable cells we select every
cell that fulfills one of the meets rules defined by the
qualitative relations. By this, cells that form a frontier
from one classified region to another are selected, anal-
ogous to the definition of frontier cells [20] that define
the frontier between unexplored and obstacle-free terrain
within occupancy grids.

We assume that the transitions can be considered to
be straight lines and apply the Hough transform [10]

on the selected points to detect these lines. The Hough
transform represents a line in normal form, so that each
point (x, y) is lying on the straight that has an angle θ
to the x-axis and distance ρ to the origin:

x · cos θ + y · sin θ = ρ. (8)

The transformation uses an accumulator in (θ, ρ) space
to count for each point (x, y) each corresponding point
in (θ, ρ). Consequently, the position (θ∗, ρ∗) with the
highest count represents the line that goes through most
points and thus is returned as the best possible line
through the point set.

In order to check whether straight lines are transition
edges, the line’s cells have to be considered. For each
cell, this is accomplished by examining a line perpen-
dicular to the potential transition edge and validating
the spatial constraints on intervals along this line. These
intervals represent adjoint cells of the same class and
are constructed by concatenating adjoining cells of the
same class into the same interval. If the last cell of one
interval lies next to the first cell of the following interval,
we consider the intervals to fulfill the meets condition. If
valid cells are found over an extent of at least the robot’s
width, a transition edge has been detected.

Finally, the preconditions (xs, ys, φs) for the skill ex-
ecution are calculated by projecting a starting point
(xs, ys) perpendicular from the center of the transition
edge with a fixed offset in front of the obstacle. The start-
ing direction φ is set perpendicular to the transition edge
pointing towards the obstacle. Additionally, the signed
height difference hs between the transition edge and the
facing end of the obstacle, i.e. the height difference the
robot has to overcome, is determined as a parameter
for the skill execution. This parameter indicates, for
example, whether a transition is directed upwards or
downwards, and thus influences the execution of the skill.

Each map cell surrounding the transition edge will be
associated with a transition edge object, which contains
the transition edge’s start and end point, as well as its
preconditions with hs and the skill function, thus forming
the behavior map.

(a) (b)
Fig. 4. Visualization of the process of determining skill pre-
conditions: (a) Elevation map with ramp structure. (b) Classified
elevation map with the detected classes floor (green), ramp (yel-
low), and walls (dark red), detected transition edge (red), and
detected preconditions, which are the starting point (blue) and
staring direction (yellow).

As an example consider the analysis of a ramp

in Figure 4. Figure 4(a) shows a ramp structure
on the elevation map. Figure 4(b) shows the clas-
sified elevation map with the detected classes floor
(green), ramp (yellow), and walls (dark red). Constraints
have been tested for each cell along a straight line
through the region, resulting in the transition edge,
marked in red. Note that along the transition edge the
{F meets R,F starts T,R finishes T} rules are always
valid. The detected preconditions are the starting point
(xs, ys), marked as blue, and the starting direction φs

pointing upwards the ramp, marked as yellow.

IV. PLANNING AND SKILL EXECUTION

By utilizing behavior maps for planning and skill
execution we can employ two dimensional A* search for
path planning. This is due to the fact that the behavior
map itself contains the information of how to overcome
an obstacle and thus there is no need to explicitly plan
complex robot skills in three dimensions. The A* algo-
ritm performs informed search on graphs, which have a
cost function assigned to their edges. To guide the search
it uses a heuristic h(n) to estimate the distance of a node
n to the goal and given this heuristic is admissable, i.e.,
h(n) ≤ h∗(n) for all nodes n, with h∗ being the optimal
heuristic, A* guarantees the optimality of a generated
path [15].

To facilitate A* planning a graph has to be constructed
from the behavior map. In a preprocessing step non-
traversable cells are expanded by the robot’s radius to
reflect the robot’s dimensions and base costs are set to
1.0 for non-traversable cells, and 0.0 for traversable cells,
respectively. In a second step these costs are blurred
with a Gaussian kernel to reward plans further away
from walls. A cell in the behavior map represents a
node in the graph and a successor function, used by
A*, returns for each node n, those nodes, to which n is
connected. To permit planning over transition edges and
thus generate paths over obstacles, the successor function
for node n returns all traversable neighbor nodes, which
are either of the same class as n or have a transition
edge assigned to them. Note that traversability is defined
only by the result of the expansion computed in the first
preprocessing step, whereas the blurred costs are used
solely as costs for the planning process.

Applying the A* search to the map might lead to plans
that traverse obstacles. Therefore, we need to take care
of the fact that the costs for negotiating obstacles usually
differ from those given by the base costs. To represent the
higher amount of time spent during the skill execution
on obstacles, and the increased risk of failure, a cost
factor that leads to higher costs and thus to better suited
planning results has to be provided by each skill.

The heuristic used for guiding the A* search is the
Euclidean distance h =

√
δx2 + δy2, which is commonly

employed. It is obvious that due to the increased costs
when traversing obstacles this heuristic is far from being
optimal, but we refrain from changing the heuristic to

guarantee the optimality of planning. Practical exper-
iments have shown that time needed for A* planning
constitutes no problem to the overall system.

The target selection process uses the concept of fron-
tier cells [20], where a frontier cell is defined as being
traversable and having, at least, one uninitialized neigh-
bor. This ensures that the robot will explore unknown
areas. We calculate the utility (Equation 9) based on the
robots angle to the cell δθ and choose the frontier cell
with maximum utility, which prevents frequent turning,
i.e. oscillation.

u = (SDown(δθ, 0◦, 180◦))2 (9)

We want to prevent the robot from choosing plans that
lead over obstacles, if there are still targets reachable by
ground exploration. Therefore, the planner accepts costs
for ground exploration until a certain threshold, before
permitting planning over obstacles.

When executing the actual plan, the skill subroutine
that has to be executed by the controller is determined
from the robot’s current position on the behavior map.
A transition edge stores the precondition that has to be
fulfilled first before executing the skill. Whenever the
controller is queried to execute a new skill routine, it first
ensures this precondition by turning towards the required
starting direction before calling the skill itself.

The skills (besides Ground Exploration) implemented
in our system use as sensory input the robot’s pitch and
roll from the IMU, the angles of the flippers, and touch
point sensors in the flippers that can give feedback about
where the flipper has contact with an obstacle. Based on
features created from these sensors, a state machine is
executed that can run different actions in parallel (e.g.
driving forward while moving the rear flippers down).
Currently our robots have the ability to lift up and drive
down from a pallet-like obstacle, drive a ramp and climb
up stairs.

V. EXPERIMENTAL RESULTS

In order to evaluate the planning framework, a fully
autonomous exploration run has been conducted. Results
from this run can be seen in Figure 5. The test run
demonstrates the system’s ability of online planning and
obstacle negotiation during an exploration task on rough
terrain. Figure 5(c) shows the exploration trajectory,
crossing each obstacle only once, which covers the com-
plete area. Due to the higher costs for obstacle climbing,
the robot first explored flat areas before climbing over
obstacles. Finally, a trajectory with a length of 23.00 m
has been traveled within 9 minutes and 55 seconds
by the robot. Main factors to the overall computation
time were: the hough transform (63.94ms ± 0.78ms),
the occupancy map blur (37.42ms ± 0.98ms) and the
A* planning (32.26ms ± 4.76ms) on a AMD Athlon X2
3800+. Additionally, the MRF algorithm took 26.31s ±
27.88s to classify extracted regions. Note that these
computation times have been measured for an update

(a) (b)

(c) (d)

Fig. 5. (a) Test arena for the exploration task. (b) The created
elevation map. (c) Classified map containing the trajectory of the
exploration. (d) The behavior map showing the detected clusters of
interest for obstacles (brown rectangles) and ramp (yellow rectan-
gles) and recognized obstacle transitions (red). The robot started
exploring the area at the left, crossed the pallet, continued to
explore the center area and finally drove up the ramp.

of the full map consisting of 60, 000 cells. During online
execution, computation time is significantly lower since
only map regions that were updated beforehand by the
elevation mapper have to be considered. Furthermore,
the comparably higher amount of time needed for the
MRF classification did not limit the system’s real-time
ability. This is due to the fact that the robot was able to
rely on the pre-classification for planning and exploration
while the MRF classification has been computed time-
delayed in the background.

Skills are modules that are executed with respect
to the robot’s context, provided by the behavior map,
for climbing and obstacle negotiation. In Figure 6 a
detailed view on the execution of the autonomous skill
for stair climbing is presented. To achieve this task, the
robot lifts itself up by pushing down with the front
flippers after aligning to the stairs. Then, the robot
drives forward while perceiving feedback from touch-
point sensors within the flippers if contacting the stair.
This enables the robot to become aware of its state and
to adjust the flipper angles accordingly. Finally, when
reaching the end of the stairs, the arms are moved back
into driving position. A video showing this test run and
the autonomous stair climbing is available in the video
proceedings [5].

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we introduced an extension to obstacle
negotiation that allows robots to execute specific skills
with respect to their context. The proposed planning
framework is based on a new concept called behavior
maps, which allows robots to deliberatively plan and
execute complex skills on rough terrain. The advantage

Fig. 6. Autonomous climbing of stairs.

of the described framework, i.e. the abstract definition of
skills, is that it can be extended by new skills, and also
be adapted to other robot types.

Our results have shown that the final system imple-
ments a truly autonomous robot that builds an eleva-
tion map of the environment, classifies this map, and
plans the execution of sequences of skills. In contrast
to existing related work, the proposed system performs
all these steps online during execution while overcoming
rough terrain. This is a much harder problem than
processing data offline, e.g. to classify structures from a
pre-computed elevation map captured from fixed robot
locations. During online mapping, incremental states of
the elevation map are only partially representing the
environment due to the robot’s limited field of view.

In contrast to structures found in real disaster areas,
the demonstrated experiments were carried out within
a simplified environment. However, we are convinced
that, given reliably structure detection, the presented
framework is expendable towards more complex struc-
ture components.

In future work, we will evaluate the application of
learning methods within skills by exploiting the context
information given by the behavior map. Furthermore, we
will extend the proposed approach towards a multi-level
representation of behavior maps, allowing the robot to
autonomously explore multistory buildings. One target
scenario in this context will be the benchmark presented
by the TechX challenge [6], which will be held 2008 in
Singapore.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the work done by
all members of the RescueRobots Freiburg team, particu-
larly Rainer Kümmerle and Bastian Steder.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals.
Commun. ACM, 26(11):832–843, 1983.

[2] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller,
D. Gupta, G. Heitz, and A.Y. Ng. Discriminative learning of
markov random fields for segmentation of 3D range data. In
IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), San Diego, California, June 2005.

[3] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell,
R. Simmons, and W. R. L. Whittaker. Ambler: An au-
tonomous rover for planetary exploration. 22(6):18–22, 1989.

[4] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color
image segmentation for interactive robots. In Proceedings of
IROS-2000, Japan, October 2000.

[5] C. Dornhege and A. Kleiner. Fully autonomous planning and
obstacle negotiation on rough terrain using behavior maps. In
Video Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2007. To be published.

[6] DSTA. The techx challenge. Homepage: http://www.dsta.
gov.sg/TechXChallenge/index.asp. Referenced 2007.

[7] Minieka E. and J.R. Evans. Optimization Algorithms for
Networks and Graphs. CRC Press, 1992.

[8] Charles Elkan. The paradoxical success of fuzzy logic. In
Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 698–703, Menlo Park, California, 1993.
AAAI Press.

[9] M. Hebert, R. MacLachlan, and P. Chang. Experiments with
driving modes for urban robots. In Proceedings of SPIE, 1999.

[10] P.V.C. Hough. Methods and means for recognizing complex
patterns. In U.S. Patent 069654, 1962.

[11] A. Jacoff, E. Messina, and J. Evans. Experiences in deploying
test arenas for autonomous mobile robots. In Proc. of the
PerMIS Workshop, Mexico, 2001.

[12] A. Kleiner and C. Dornhege. Real-time localization and
elevation mapping within urban search and rescue scenarios.
Journal of Field Robotics, 2007. Accepted for publication.

[13] R. Manduchi, A. Castano, A. Talukder, and Larry Matthies.
Obstacle detection and terrain classification for autonomous
off-road navigation. Auton. Robots, 18(1):81–102, 2005.

[14] L. Ojeda, J. Borenstein, and G. Witus. Terrain trafficability
characterization with a mobile robot. In G. R. Gerhart, C. M.
Shoemaker, and D. W. Gage, editors, Unmanned Ground
Vehicle Technology VII, volume 5804, pages 235–243, 2005.

[15] Stuart J. Russell and Peter Norvig. Artificial Intelligence. A
Modern Approach. Prentice-Hall, 1995.

[16] A. Talukder, R. Manduchi, R. Castano, K. Owens,
L. Matthies, A. Castano, and R. Hogg. Autonomous
terrain characterisation and modelling for dynamic control of
unmanned vehicles. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pages 708–713, 2002.

[17] B. Taskar, V. Chatalbashev, and D. Koller. Learning associa-
tive markov networks. In Proc. of the 21th ICML, 2004.

[18] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,
C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski,
B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney.
Stanley, the robot that won the DARPA grand challenge.
23(9):655–656, 2006.

[19] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert. Natural
terrain classification using 3-d ladar data. In IEEE Inter-
national Conference on Robotics and Automation, volume 5,
pages 5117 – 5122, April 2004.

[20] B. Yamauchi. A frontier-based approach for autonomous
exploration. In CIRA, 1997.

[21] C. Ye and J. Borenstein. A new terrain mapping method
for mobile robot obstacle negotiation. In Proc. of the UGV
Technology Conf. at the 2003 SPIE AeroSense Symposium,
pages 21–25, Orlando, USA, 2003.

[22] C. Ye and J. Borenstein. Obstacle avoidance for the segway
robotic mobility platform. In Proc. of the American Nuclear
Society Int. Conf. on Robotics and Remote Systems for Haz-
ardous Environments, pages 107–114, Gainesville, USA, 2004.

[23] C. Ye and J. Borenstein. T-transformation: a new traversabil-
ity analysis method for terrain navigation. In Proc. of the
SPIE Defense and Security Symposium, Orlando, USA, 2004.

