
Integrated Symbolic Planning in the Tidyup-Robot Project

Christian Dornhege and Andreas Hertle
Department of Computer Science

Georges-Köhler-Allee 52
University of Freiburg, Germany

email: {dornhege, hertle}@informatik.uni-freiburg.de

Abstract

We present the integration of our symbolic planner as
the high-level executive in the Tidyup-Robot project.
Tidyup-Robot deals with mobile manipulation scenar-
ios in a household setting. We introduce our system ar-
chitecture and report on issues and advantages observed
during development and deployment.

Introduction

When designing a complex mobile manipulation robotic
system, high-level decision making is a central task. Espe-
cially when multiple heterogeneous actions are added, main-
taining hand-written scripts or other approaches, like state
machine based control, become cumbersome or very com-
plex. A symbolic task planner solves abstract planning prob-
lems often arising in such scenarios efficiently. However, as
those planners usually operate on an abstracted symbolic do-
main description, it is an important issue to properly inte-
grate a symbolic planner into a system acting in the real-
world.

The Tidyup-Robot project aims to solve mobile manipu-
lation tasks with the PR2 robot by Willow Garage. The goal
is to tidy objects in the world, i.e., to bring them back to the
place, where they belong. This entails to be able to detect ob-
jects, grasp and place them, open doors and as an additional
task wipe the spots where objects were found (see Fig. 1).

In this paper, we focus on the integration of the symbolic
task planner Temporal Fast Downward/Modules (TFD/M) to
facilitate high-level control. We use two key concepts: First,
the planner runs in a observation-monitoring-execution loop
to be able to react to the possibly changing state of the world.
Second, the planner uses semantic attachments that deter-
mine predicate semantics during the planning process by an
external procedure.

Earlier approaches for combined task and motion plan-
ning extended the planner Metric-FF to support manipu-
lation planning (Cambon, Alami, and Gravot 2009). Our
work provides a domain-independent interface to separate
the planner from the specific application (Dornhege et al.
2009) by allowing to compute predicate semantics exter-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b)

(c) (d)

Figure 1: Example scenes from the PR2 operating in the
Tidyup-Robot domain. The robot collects any cups and
bowls from the two tables (a). Next, it opens the door to
the other room (b) to put the objects into the shelf (c). Fi-
nally, the robot wipes the tables where the objects were ini-
tially located (d). A video is available at: http://www.
youtube.com/watch?v=pTSz2RBZ2wA

nally. More recently Gregory et al. (2012) developed a sys-
tem to integrate first-order theories into a generic planner.

Kaelbling and Lozano-Perez (2011) use a hierarchical de-
composition of the planning process to quickly find exe-
cutable plan prefixes also integrating motion planners in the
symbolic planning. Other approaches for combining sym-
bolic and geometric reasoning use plan-based action control
to implement sophisticated symbolic actions (Kresse and
Beetz 2012; Beetz et al. 2001).

In the following sections, we will describe those concepts
in more detail and then discuss our experiences within the



Figure 2: This figure gives an overview of the planner’s in-
tegration in the continual planning loop.

Tidyup-Robot project identifying key issues with the integra-
tion of symbolic planning in a robotics context and conclude
with solution concepts and possible future improvements.

Continual Planning

In a real-world system the first plan cannot always be as-
sumed to fulfill the goal when blindly executed. The system
must be able to deal with unexpected events, such as execu-
tion failures, and common events like detecting a new object
that is not in the current state. Therefore, the planning pro-
cess runs in an observation, monitoring and execution loop
(see Fig. 2), based on continual planning. In each iteration
the current state is merged with observations of the world.
Then, the current plan is monitored, i.e., it is determined, if
executing the plan leads to the goal, given the current state.
If that is not the case, a new plan is produced. In our case,
we use the TFD/M planner to perform monitoring and plan-
ning. For monitoring, we only perform applicability tests
of the current plan’s actions. As a special case, we gain a
generic goal test: If the empty plan fulfills the goal, we are
in a goal state. After monitoring, the first action of the plan is
executed and removed from the plan and the loop continues
until the goal is reached or no plan can be found.
The generic continual planning loop is implemented

domain-independently. Integration with a specific system
needs two interfaces: One to estimate and update the sym-
bolic state from real-world observations and another to be
able to execute symbolic actions. Both interfaces are pro-
vided by a plugin-based architecture. Multiple accumulat-
ing StateEstimator plugins can be defined and each action
in the domain description requires an ActionExecutor plu-
gin. Besides actually executing the actions, ActionExecutor
plugins also update the state depending on the action out-
come. This allows, for example, to implement and plan for
an explicit sensing action, such as object detection. In our
case the detect-objects action inserts perceived ob-
jects into the state. Replanning will be triggered automati-
cally, if the objects are relevant for the goal.

Planning with Semantic Attachments

Symbolic planners work with an abstracted logic-based
world state. Such an abstraction can lead to over-
approximations, which in turn prevents the plan from being
executed. Consider a grasp action that has no information

(:durative-action putdown-object

:parameters (?l - loc ?o - obj

?s - surf ?a - arm)

:duration (= ?duration 5.0)

:condition

(and (grasped ?o ?a) (...)

([canPutdown ?o ?a ?s ?l]))

:effect

(and (not (grasped ?o ?a)) (...)

([updatePutdownPose ?o ?a ?s ?l])))

Figure 3: This excerpt from the Tidyup-Robot PDDL do-
main shows the putdown-object action. Semantic at-
tachments are denoted in square brackets. Temporal qualifier
and additional conditions and effects were omitted.

whether a kinematic solution exists to reach an object. We
integrate geometric reasoning into symbolic planning with
semantic attachments (Dornhege et al. 2009). They allow
to attach external semantics to predicates in the symbolic
domain description in a domain-independent way. We ex-
tended the standard Planning Domain Definition Language
(PDDL) (Fox and Long 2003) to support semantic attach-
ments implemented as modules. In PDDL/M external se-
mantics are given by dynamically loadable libraries. Besides
applicability testing, there are also modules for cost compu-
tation.
Once defined in a domain, modules are used like normal

predicates in action definitions. Within the planner, module
calls are made precisely when they are needed. Applicabil-
ity testing will naturally evaluate predicates’ truth values. If
there is a semantic attachment to a predicate, instead of read-
ing a value from the state, the appropriate module is called.
This is handled similarly for cost computation. TFD sup-
ports PDDL 2.1 level 2 and thus the planner state contains
logical and numerical fluents. A callback interface is passed
that allows to retrieve the current state and compute the cor-
rect semantics based on that.

Implementation in the Tidyup-Robot Project

For the mobile manipulation scenario in the Tidyup-Robot
project we supply planner modules for navigation and ma-
nipulation. The navigation module calls a motion planner
with full body collision checking to determine if there is a
path and compute its cost. The manipulation module deter-
mines whether an object (e.g. a cup) held by the robot can be
placed on a specified surface. A free 6D pose for the object
on the surface is determined and a trajectory planner com-
putes a safe arm trajectory. This pose is also updated when
the planner applies the action when generating successors in
a state and is considered for collision checking during tra-
jectory planning in subsequent module calls. Figure 3 shows
the PDDL/M notation of semantic attachments which invoke
the manipulation modules.
When the planner checks the applicability of the

putdown-object action, the canPutdown module re-
ceives parameters specifying the location of the robot, the
object and the arm holding it and the destination surface.



Since the applicability of this action needs to be determined
in a future state, where the robot would have interacted with
the world, the module retrieves the coordinates of the robot
location and possible objects on the surface via the supplied
callback interface from the planner state. A 3D scene of this
future state is constructed and passed on to the trajectory
planner. If a safe trajectory is found, then the action is appli-
cable in that state.

Calling geometric planners via semantic attachments is
an expensive operation. The task planner might ask simi-
lar queries from different internal states. However, only part
of the full state might be relevant for the geometric com-
putation. For example canPutdown is only interested in
objects’ locations on the target surface. Only the module
implementation can know what part of the planner state is
relevant. Therefore, an intelligent internal caching strategy
is crucial for producing plans in an adequate time frame.

Conclusions and Future Work

We successfully integrated our planner TFD/M to provide
the high-level control decisions for the PR2 in the Tidyup-
Robot project. During development and deployment we
identified several issues and advantages of this approach.
One disadvantage in comparison to scripted systems is the
runtime. Observed runtimes were in the tens of seconds up
to some minutes. This is a result of the reasoning using mod-
ules calls, which at the same time is an advantage as it allows
us to determine the best plan more precisely than by using
symbolic approximations. There are however techniques to
mitigate this issue. One way is to provide fast relaxed ver-
sions of modules for the search guidance heuristic and thus
gain an informed heuristic quickly as done in TFD/M. An-
other way is to not produce a complete plan, but only an
executable prefix (Kaelbling and Lozano-Perez 2011).

The major advantage of using a planner shows when mul-
tiple different actions are used by the system. A scripted
system needs to take action dependencies into account ex-
plicitly, which can become arbitrarily complex. Consider the
simple situation, when observing two objects that need to be
brought into another room. If the door is closed, only one
object can be taken as the robot requires a free hand. If it
is open, both objects should be taken immediately. Those
situations will easily be handled correctly by a plan-based
approach. It is especially valuable as a developer does not
need to imagine every possible situation to be solved, but
only determine conditions and effects of each single action.

Our planner reasons about actions by searching the state
space. A logical domain description defines if actions can
be applied in a state during search and how they change this
state. Semantic attachments might reason about geometric
queries in searched states. Therefore geometric reasoners
must support queries on arbitrary states independent from
the current world state. An example query would be: Can
the robot put down a cup, if it were grasped in the left hand
and the robot were located in another room? This function-
ality is not necessarily available on all robotic systems, but
forms an important requirement for integrating task and mo-
tion planning.

We believe semantic attachments to be crucial to gener-
ate good plans for robotic systems. However, in its current
form the TFD module interface is difficult to use due to its
generality. For instance, retrieving a predicate from the plan-
ners state is based on its name in the PDDL domain. This
is a source of error, since the names cannot be verified at
compile time. Thus, we introduced the Object-oriented Plan-
ning Language (OPL) that provides methods to automati-
cally generate a domain-specific module interface (Hertle et
al. 2012). Class instances are derived from the OPL descrip-
tion allowing type-safe access to the current planning state.

Beyond OPL, we investigate the automated generation of
action executor plugins, similar to the module interface. The
generated action executors will be able to update the plan-
ner state based on the OPL action preventing unintended or
accidental state changes.
Our overall goal is to make a generic planning based ex-

ecution architecture available, in particular to researchers of
other subject areas.

Acknowledgments
This work was partially supported by DFG as part of the
SFB/TR8 project R7 and in the PACMAN project within the
HYBRIS research group (NE 623/13-1). We would like to
thank all members of the Tidyup-Robot project.

References
Beetz, M.; Arbuckle, T.; Bennewitz, M.; Burgard, W.; Cre-
mers, A.; Fox, D.; Grosskreutz, H.; Haehnel, D.; and Schulz,
D. 2001. Integrated plan-based control of autonomous ser-
vice robots in human environments. IEEE Intelligent Sys-
tems 16.

Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
International Journal of Robotics Research 28(1):104–126.

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In International Conference
on Automated Planning and Scheduling (ICAPS), 114–121.
AAAI Press.

Fox, M., and Long, D. 2003. An Extension to PDDL for Ex-
pressing Temporal Planning Domains. Journal of Artificial
Intelligence Research 20:61–124.

Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm.
In International Conference on Automated Planning and
Scheduling (ICAPS).

Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In European Conf. on Artificial Intelligence (ECAI).

Kaelbling, L., and Lozano-Perez, T. 2011. Hierarchical task
and motion planning in the now. In IEEE Conference on
Robotics and Automation (ICRA).

Kresse, I., and Beetz, M. 2012. Movement-aware action
control – integrating symbolic and control-theoretic action
execution. In IEEE Conference on Robotics and Automation
(ICRA).


