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Abstract — Mobile manipulation requires to solve multiple sub-
problems. One is planning in high-dimensional configuration spaces,
that we approach in this work. We decompose the manipulation
problem into a symbolic and a geometric part. The symbolic part
is implemented as a classical symbolic planner that tightly integrates
a geometric planner enabling us to efficiently generate correct plans.
A probabilistic roadmap planner constitutes the geometric part.
During the computation of the roadmap we utilize proximity queries
to determine non-colliding configurations and to verify collision-
free paths between configurations accurately and efficiently. We
demonstrate experiments in two scenarios, one of these being the
manipulator dexterity test scenario that was used in NIST’s response
robot evaluation in Disaster City.

Keywords: mobile manipulation, symbolic planning, manip-
ulation planning

I. I NTRODUCTION

Mobile manipulation requires to solve multiple subprob-
lems: accurate three dimensional world perception in un-
known environments, geometric planning in high-dimensional
configuration spaces and - in the case of tele-operation -
human-robot-interfacing. In this paper, we are concerned with
the planning problem and therewith also provide a helpful
solution for operator assistance. Manipulation problems arise
in autonomous robot operation as well as for tele-operated
robots, where often the manipulator has to operate in confined
scenarios and usually the tele-operator’s comprehension of a
scene is restricted by the camera perspective. Moreover, a ma-
nipulator’s kinematics are not trivial to control. The bestcase
in applied robotic systems is “tool center point control” that
enables an operator or algorithm to control the manipulator’s
tool in cartesian coordinates. Alternate solutions are master-
slave controllers or direct control of individual joints. All
of those methods cannot easily prevent unintended collisions
with the environment, especially in the usual camera-in-hand
setting.

One such difficult scenario is the manipulator dexterity test
proposed by NIST [1] and used in the response robot evalua-
tion in Disaster City [2] (see figure 1). Our experiments show,
among other problems, successful collision free planning in a
reconstruction of this scenario.

We approach the manipulation problem by decomposing it
into a symbolic and a geometric part. The symbolic view uses

Fig. 1. The manipulator dexterity test. Left: Original setupas used in
Disaster City. Note the horizontal bars that can be used to mount vertical
boards extremely restricting the robot’s workspace. Right:The reconstruction
we use in our experiments.

solution steps aspick-up(box) or put-down(box, table). Thus,
it presents a natural representation that can easily be solved
by classical symbolic planners. The geometric view consists
of the full problem description representing the manipulator’s
kinematics and a three dimensional scene description that is
solved using a trajectory planner that computes collision free
trajectories for the symbolic counterparts.

The usual approach to decomposition is to hierarchically
combine symbolic and geometric planners in a top-down
or bottom-up manner. Following the first strategy, a plan is
generated first that is then executed assuming the symbolic
abstraction was correct. Following the second strategy, all
geometric information is precomputed and then provided to
the symbolic planner. Obviously, both strategies are not ideal.
Therefore, we integrate the planners tightly, as we proposed in
our previous work [7]. Thus, the low-level geometric planner
can provide information to the high-level symbolic planner
during the planning process. However, it is only evoked
when it seems relevant to the high-level planner. Contrary to
the hierarchical decomposition and combination, a particular
choice on the symbolic level can lead the low-level planner to
detecting failure and requesting to backtrack immediately.

To integrate information about special-purpose reasoning
into symbolic planning we usesemantic attachments in a
planning domain description. Predicate symbols of the domain
description used in grasp and put-down actions have such a
semantic attachment, which means that these are not uninter-
preted predicate symbols but that the truth values for atomic
ground formulas are specified by anexternal mechanism: the



Fig. 2. Extending planning tasks by modules to planning taskswith semantic
attachments.

trajectory planner.
We decompose the manipulation planning problem by using

the common solution of viewing a manipulation path as a
combination of transit and transfer paths [4]. Transit paths
model pick-up actions that move the manipulator towards a
possible grasp position, resulting in the object being grasped.
Transfer paths move an object from one place to another
and correspond toput-down actions on the symbolic level
resulting in the manipulator releasing the object. To evaluate
the applicability of these actions by semantic attachments, we
run a probabilistic roadmap planner (PRM) [5]. During the
computation of the roadmap we utilize proximity queries to
determine non-colliding configurations and to verify collision-
free paths between configurations accurately and efficiently
similar to the approach by Schwarzer et al. [6]. Additionally
we can give distance bounds to account for inaccurate world
modeling and imprecise execution leading to safer plans.

II. SYMBOLIC PLANNING WITH SEMANTIC ATTACHMENTS

A symbolic planner decides the applicability of actions
by evaluating conditions over state variables. Semantic at-
tachments are external procedural reasoning modules (in the
following just calledmodules) that compute the valuations of
state variables at planner run-time. The symbolic planner itself
is mostly unaffected by this extension. Under the hood of the
module, though, complex computations can be performed that
transcend the capabilities of the planner.

In order to integrate semantic attachments into a planner we
propose the architecture shown in Figure 2. Semantic attach-
ments consist of adeclarative part that describes their use in
the planning domain, i.e., their symbolic use in preconditions
and effects of planning operators. Additionally, they havea
procedural part which is the actual algorithm for computing
the value of a state variable and which is directly included
into and called by the planner as a shared library and which
themselves may access the planning state through callback
functions provided by the symbolic planner.

We use two kinds of semantic attachments that can be part
of operators:Condition checker modules that can test whether
some complex operator precondition is satisfied, andeffect
applicator modules which may compute changes to (several)
numeric state variables.

To actually use semantic attachments in classical planning,
it is necessary to extend the description language for planning
tasks. In our previous work, we extended the planning domain

description language (PDDL) to support semantic attachments
leading to PDDL/M [7]. A PDDL/M domain may contain an
additional section that declares the modules similar to theway
predicates are declared in PDDL. Declarations start with a
unique identifier to reference the module including a possibly
empty list of parameters, similar to a function or predicate
entry in their respective sections in PDDL. Only foreffect-
applicator modules we then list any number of numerical
fluents that are set by the module. Both types of modules
then declare the type and finally the function and library name
where the module can be found by the planning system.

A condition-checker module used in themanipulation do-
main is declared as follows:

(:modules
(checkTransit ?target - movable

?place - static ?grasp - grasp
conditionchecker checkTransit@libTraj.so))

This module is calledcheckTransit. It decides whether it
is possible for the manipulator to grasp the movable object
?target, located at?place using grasp?grasp, and can be
found in the shared librarylibTraj.so by calling the
function checkTransit .

The syntax ofeffect-applicator modules is similar, as can
be seen in the following excerpt:

(:modules
(applyTransit ?target - movable

?place - static ?grasp - grasp
(q0) (q1) (q2) (q3) (q4) (q5) (q6)
(p0 ?target) (p1 ?target) (p2 ?target)
(p3 ?target) (p4 ?target) (p5 ?target)
(p6 ?target) (p7 ?target) (p8 ?target)
(p9 ?target) (p10 ?target) (p11 ?target)
effect applyTransit@libTraj.so))

This module sets the resulting seven DOF manipulator
configuration(q0) - (q6) and the target’s new transformation
matrix (p0 ?target) - (p11 ?target) resulting from grasping
?target using?grasp.

To use a module in an operator, it has to be specified in the
same way as predicates or functions. The only new syntax we
introduce is that a module is given by enclosing its identifier
and parameters in square brackets. All other identifiers used in
the following pick-up operator follow standard PDDL syntax.

(:durative-action pick-up
:parameters (?x - movable

?y - static ?g - grasp)
:duration (= ?duration 1)
:condition (and

(at start (not (arm_moving)))
(at start (on ?x ?y))
(at start (handempty))
(at start ([checkTransit ?x ?y ?g])))

:effect
(and

(at start (arm_moving))
(at end (not(arm_moving)))
(at end (not (on ?x ?y)))
(at end (not (handempty)))
(at end (holding ?x ?g))



(at end ([applyTransit ?x ?y ?g]))))

The implementation of PDDL/M in forward-chaining plan-
ners is described in detail in our previous work [7].

III. SEMANTIC ATTACHMENTS FOR PLANNING TRANSFER

AND TRANSIT PATHS

Semantic attachments for the robot manipulation domain are
implemented as probabilistic roadmap planners (PRM). Upon
a call to a condition checker module, the procedure is provided
with the operator’s parameters: a target object, a place to grasp
an object at for transit paths or to put the object to for transfer
paths and a grasp to use. The first step is to invoke the provided
callbacks to the symbolic planner and thus retrieve the current
robot configuration and the object’s locations. Based on this
information a geometric initial state for the PRM planner is
built. To form the goal state, the previously computed initial
state is now updated placing the manipulator (and for transfer
paths the object) in their desired target positions.

Next, the trajectory planner is called with those computed
initial and goal states. The planner computes a roadmap: a
graph representing the manipulator’s collision free configu-
ration space (Cfree). The roadmap’s nodes are computed by
randomly sampling configurations in the robot’s configuration
space and only retaining collision free samples (i.e. thosewith
a distance bound greater zero). Edges represent collision free
paths between nodes in the roadmap. The robot movement
that an edge represents is a straight line inCfree. To connect
two nodes and thus form an edge that is guaranteed to be
without collision during the robot’s movement performing only
collision tests is not sufficient. Therefore, we use proximity
queries similar to the method by Schwarzer et al. [6]. Once a
roadmap has been built, the initial and goal state are inserted
into the roadmap and we try to connect those nodes to the
roadmap in the same way as sampled nodes are connected. A
simple breadth first search now gives us a path through the
roadmap from the initial to the goal state or results in failure
if the init and goal nodes are not in the same components
of the graph. Successful planning using the trajectory planner
will result in a true evaluation of a semantic attachment.

An effect applicator module needs to supply the symbolic
planner with the robot configuration and object location re-
sulting from an action. We could again run a probabilistic
roadmap planner to generate the geometric plan, but this
plan should already have been generated during the call to
the condition checker module in the same operator. So, for
efficiency reasons, we cache results during condition checker
computation and just return those. Another reason for caching
results is that due to the random sampling in the roadmap
planner, results are not necessarily reproducible.

IV. PROXIMITY QUERIES

Validation of collision free edges in the roadmap requires
fast computation of distances. Proximity queries return the
minimum separation distance between a pair of arbitrarily
shaped non-convex objects in work space. The objects are
given as closed non-convex triangulated surface meshes in

three-dimensional space. The surface meshes consist of points,
edges and triangles.

The algorithm proceeds recursively and can be divided
into three stages. The first stage employs a variation of the
Gilbert-Johnson-Keerthi algorithm (GJK) [8]. It determines the
separation distance between the convex hulls of a pair of non-
convex objects. Thus, the result is a lower distance bound
for the exact separation distance. An upper distance bound
is also derived from the data gathered with GJK. If the lower
distance bound is greater than zero, i.e. the convex hulls ofthe
two objects do not overlap, the algorithm proceeds with stage
two. The second stage employs spatial hashing [9]. The cell
size of the hash grid is determined using the distance bounds
found in the first stage. Thus, only primitives within the same
cell can still contribute to the exact minimum distance. All
other primitive pairs are efficiently culled away by the intrinsic
properties of the subdivision scheme.

If the convex hulls of the mesh pair overlap, the algorithm
proceeds with stage three. In this stage, information computed
by GJK is utilized to adaptively decompose the meshes into
sub-meshes and pair-wise repeat the process in stage one
recursively. The overall minimum distance between the object
pair is the minimum of the set of distances computed for all the
sub-mesh pairs. Figure 3 depicts the results of the proximity
queries posed for all possible pairs of objects in a environment
as green lines.

Fig. 3. Proximity queries are posed for all pairs of objects inthis test
environment. The separation distances are depicted as greenlines. The wall
and ceiling of the left and right structure are rendered transparent for a better
illustration. A vertical board is mounted covering the upperpart of the rear
compartment.

The algorithm quickly converges to the correct solution. In
contrast to other approaches, no offline pre-computations are
performed and no acceleration data structures have to be built.
A decomposition of surface meshes is only performed, if it is
required in the computation of the exact solution. For an in-
depth description of the approach, we refer the reader to our
previous work [10], [11].



TABLE I

RESULTS FOR THE TABLES SCENE. WE SEPARATED THE PROBLEM

INSTANCES IN THREE CLASSES: SIMPLE PICK-AND-PLACE TASKS (CLASS

I), PROBLEMS THAT REQUIRE REPLACING ANOTHER OBJECT TO REACH

THE GOAL CONFIGURATION (CLASS II), AND PROBLEMS THAT REQUIRE

REPLACING MULTIPLE OBJECTS(CLASS III).

Class I Runtime [s]

01 3.48± 1.23
02 6.08± 3.49
03 3.44± 1.61
04 1.47± 0.12
05 3.77± 0.97
06 3.98± 3.01
07 4.75± 2.36
08 5.27± 2.71
09 63.83± 7.67
10 5.66± 7.50
11 12.48± 14.74
12 3.30± 0.96
13 5.80± 2.40

Class II Runtime [s]

01 24.32± 8.63
02 24.95± 9.25
03 91.87± 14.01
04 30.26± 9.74

Class III Runtime [s]

01 37.33± 6.85
02 15.50± 2.52
03 78.55± 45.61

V. EXPERIMENTS

We evaluate our manipulation planning system by
conducting several experiments of increasing difficulty intwo
environments (see figures 4 and 1). The first environment
consists of the robot surrounded by three tables. Various
manipulable items are placed on the tables such as bottles
or cereal boxes. The second scenario is a reconstruction of a
test environment used during the response robot evaluation
in Disaster City [2]. Cubes of 60 cm in size and a hole
of 15 cm in diameter per side are arranged around the
robot. Manipulable cubes of about 8 cm in size are stacked
on top. The object representation in these environments
is twofold. First, the objects’ surfaces are represented as
triangular meshes. They provide the input for the proximity
query algorithm described in section IV. Second, tetrahedral
meshes are used to approximate the objects’ volumes and
to simulate the physical behavior of movable objects in the
world. The robot representation consists of 2400 trianglesand
2500 tetrahedrons, respectively. Triangles and tetrahedrons
sum up to 2500 and 2600 in the first, and 8000 and 6000
in the second environment, respectively. All runtimes were
computed as average runtimes on a Intel Core2Duo E6400
with 2 GB RAM in 32-bit Linux. Although the roadmap
creation phase could be parallelized, we only used one core.
A video of two exemplary plans can be found at:http://
www.informatik.uni-freiburg.de/ ˜ dornhege/
media/symbolicManipulationPlanning.avi .

The two scenarios we used present two different problems.
In the tables scene, we formulate problems that place objects
at other objects’ locations forcing the planner to detect such
situations and plan for them accordingly. Results shown in
table I indicate that even multiple replacing of objects still
results in reasonable runtimes. The manipulation dexterity test
scenario usually only contains simple pick-and-place oper-
ations grasping the cubes and placing them over the target
holes. Its difficulty lies in the fact that a vertical board can be

TABLE II

RUNTIMES IN SECONDS FOR THE MANIPULATION DEXTERITY SCENARIO.

ALL PROBLEM INSTANCES HAVE BEEN EVALUATED WITH AND WITHOUT

THE VERTICAL BOARD PRESENT.

Problem without board [s] with board [s]

01 0.06± 0.01 0.06± 0.01
02 0.06± 0.00 0.06± 0.00
03 0.17± 0.01 59.46± 41.92
04 0.17± 0.00 67.96± 46.87
05 11.22± 9.50 207.66± 143.61
06 0.12± 0.01 0.12± 0.00
07 0.39± 0.01 0.12± 0.00
08 0.23± 0.00 0.24± 0.01
09 0.23± 0.01 0.24± 0.00
10 1.51± 0.01 162.00± 52.99
11 54.79± 21.00 978.35± 1105.81

mounted (see figure 3) to highly limit access to the objects. To
give comparative results, we evaluated all problem instances
with and without the board present. Results in table II show
that especially the problem instances requiring to grasp the rear
cubes (3 - 5, 10, 11) can be solved quite fast when there is no
board obstructing the way (see figure 1 for the cube locations).
The most difficult problem is instance 11 that places the two
rear cubes in holes at the left and right compartment, so that
the manipulator has to be moved from front to back of the
vertical board and vice versa four times.

VI. RELATED WORK

A. Symbolic planning

Domain-dependent planning systems such as SHOP2 [12],
TLPlan [13], or TALplanner [14] are related to our approach as
they allow specifying control rules based on domain knowl-
edge. However, the mentioned systems put their effort into
allowing the user to specify means how to solve a given
symbolic planning problem. In other words, they stay in their
symbolic domain, but try to optimize search.

We, however, try to decompose the planning problem into
different sub-problems that can be solved independently, but
still have non-trivial interactions. In so far, it is similar to the
work by Fox and Long [15], who tried to isolate optimization
problems from planning problems. Furthermore, the work
by Srivastava and Kambhampati on decomposing a general
planning problem into a resource and a planning problem [16]
is relevant here. However, they investigate how resource and
planning problems are related to each other, while we use a
general framework for combining different kinds of planning.

The mechanism we use is similar to an undocumented
feature of TLPlan [13]. This planner also permits semantic
attachments to predicate symbols [17]. The main differences to
our approach are that TLPlan is a domain-dependent planner,
that one cannot inspect the state the planner is in using call-
back functions, and that it is not possible to specify externally
computed effects.

B. Manipulation planning

Solving the robotic planning problems in high-dimensional
configuration spaces is often addressed using probabilistic



Fig. 4. Execution of a manipulation plan in test environment 1.The manipulator (red) executes the task of placing the red boxto where the blue box is
located (lower right). Therefore, it first has to remove the blue box from that position (upper left) and place it somewhere else (upper right and lower left).
This problem is solved by the symbolic planner and included inthe final execution plan.

roadmap planners (PRM) [18], [5], [19]. We also follow this
approach when implementing our semantic attachments. The
integration of proximity queries in the PRM framework was
proposed by Schwarzer et al. [6] allowing to compute proven
collision-free trajectories.

Manipulation planning is addressed by building the “ma-
nipulation graph” that consists of nodes representing viable
grasps and placements. Nodes are connected by transit or
transfer paths moving either the manipulator alone or together
with a grasped object. Those paths are solved using PRM
planners [4], [20].

The work that comes closest to our intentions in the area of
robotic planning is the work by Cambon et al. [21], [22]. They
also work on the integration of manipulation and symbolic
planning. However, in contrast to our work, they did not try
to identify a general interface between symbolic planning and
domain planning, but presented a specialized combination of
a symbolic and a manipulation planner.

C. Proximity queries

Proximity query algorithms can be classified into three cat-
egories: collision detection, separation distance computation
and penetration depth computation. Generally, the first two
categories are of interest in the context of motion planning.
Over the last decades, a large variety of proximity query
algorithms has been proposed. Many algorithms exploit the

properties of convex sets to be able to formulate a linear
programming problem. Queries for separation distance [8],
[23], collision [24] or penetration depth queries [25] can,thus,
be answered efficiently. In dynamic environments, geometric
and time coherence can be exploited to track the closest
points [23], [25]. These algorithms can be employed on non-
convex sets, if the sets are either considered as compositions
of several convex subsets [8], [23], or non-convex sets are
decomposed into convex subsets [26]. The algorithms are then
applied to the convex subsets, respectively. To acceleratethe
pairwise proximity query, the sets can be stored in bounding
volume hierarchies. Different types of bounding volumes have
been investigated [27], [28], [29], [30]. In terms of collision
detection, spatial subdivision schemes are employed to rule
out pairs of sets that are not spatially coherent [9]. Graphics
hardware can be used to accelerate various geometric com-
putations such as collision detection [31], [32], or distance
field computation [33], [34]. Possible drawbacks of GPU-
based approaches are their accuracy due to frame buffer
resolution or the read-back time of frame buffers to the CPU
memory. A hybrid approach that combines the efficiency of
a distance computation approach for convex objects and the
benefits of a spatial subdivision scheme is proposed in [10]
and extended in [11]. For a more detailed discussion about
proximity queries, excellent surveys can be found in [35]



and [36].

VII. C ONCLUSION

We presented a solution to the robotic manipulation plan-
ning problem. By tightly integrating symbolic and geometric
planning we gained a well performing system that furthermore
allows to formulate goals in an intuitive symbolic manner
as “put the box on the table” resulting in collision free
trajectories even in complex scenarios. The runtimes of this
initial implementation are already viable for most scenarios,
although we believe that the most complex problems still need
improvement. This is one of the tasks that we will address in
the future. We plan on integrating geometric heuristics in the
symbolic planning process to significantly reduce calculation
times. We will also work on accurate world modelling using
laser range finders that are mounted on our robot.
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