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Searching for objects and observing parts of a known environment efficiently is a fundamental problem in
many real-world robotic applications, e.g., household robots searching for objects, inspection robots searching
for leaking pipelines, and rescue robots searching for survivors after a disaster. We consider the problem of
identifying and planning sequences of sensor locations from which robot sensors can observe and cover complex
three-dimensional (3D) environments while traveling only short distances. Our approach is based on sampling
and ranking a large number of sensor locations for a 3D environment represented by an OctoMap. The visible
area from these sensor locations induces a minimal partition of the 3D environment that we exploit for planning
sequences of sensor locations with short travel times efficiently. We present multiple planning algorithms
designed for single robots and for multirobot teams. These algorithms include variants that are greedy, optimal,
or based on decomposing the planning problem into a set cover and traveling salesman problem. We evaluated
and compared these algorithms empirically in simulation and real-world robot experiments with up to four
robots. Our results demonstrate that, despite the intractability of the overall problem, computing and executing
effective solutions for multirobot coverage search in real 3D environments is feasible and ready for real-world
applications. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Coverage search is a fundamental robotics problem and is
relevant for many real-world scenarios and applications.
These range from household robots searching for objects,
area inspection (e.g., searching for leaking pipelines or
cracks in walls), up to searching for survivors in debris
after a disaster in an urban search and rescue (USAR) capac-
ity. Particularly in USAR, survivors can be enclosed within
complex and heavily confined three-dimensional (3D) struc-
tures. State-of-the-art benchmarks for autonomous rescue
robots, such as those proposed by the National Institute
of Standards and Technology (NIST) (Jacoff, Weiss, and
Messina, 2003), are simulating such situations using artifi-
cially generated rough terrain and victims hidden in crates
only accessible through confined openings. Figure 1(a) de-
picts such a rescue arena, and Figures 1(b)–1(f) show a se-
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quence of sensor locations from which a robot could observe
the elevated area in the center of the scene.

The primary goal of the 3D coverage search problem is to
compute a sequence of sensor locations that can be visited
by mobile robots on the shortest paths and from which their
sensors will have seen all areas of interest in a known 3D
environment. We assume that the sensor has a specific field
of view with an opening angle and a detection distance that
resembles that of most infrared (ir) and regular cameras. We
do not make any assumptions about the 3D environment
map to cover. In particular, it is not necessary that this map
was acquired with the same robot or sensor that is used for
the coverage search. Coverage search is similar to coverage
planning (LaValle, 2006), where a robot is required to pass
over all points in a given environment. In these applica-
tions, the footprint of the robot does not change, while in
3D coverage search the sensor footprint, e.g., the area seen
by a camera, can vary dramatically with a small change in
its location. The goal of coverage planning is to compute
an optimal shortest motion strategy in order to cover a 2D
environment with mobile robots. Solutions to this problem
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Figure 1. Motivating example: A coverage search of the NIST rescue arena, shown in (a). The map, known a priori, is shown in (b)
with all voxels marked in blue. A mobile robot visits a set of sensor locations in sequence. The first sensor location is marked in (c)
and all voxels visible to the robot’s sensor are shown in red. These voxels are now considered covered. In (d) the robot visits the
second location and thereby covers further voxels that are then also marked in red. Parts (e) and (f) show the result of visiting the
third and fourth sensor location. The arena photo shown in (a) is courtesy of the Jacobs Robotics Group, Jacobs University, Bremen.

often employ decompositions of the free space in two
dimensions (Choset, 2001). In contrast, our 3D problem
relies on sampling since decompositions of 3D spaces are
very costly to compute. Note that our 3D coverage problem
is different from coverage problems that deploy multiple
sensors to continuously monitor the same area for extended
periods of time, such as in Golovin and Krause (2011). In
our case, every part of the environment has to be seen at
most once and does not have to be observed continuously.
Other coverage-related problems often deal with unknown
or partially known environments, such as in Kollar and Roy
(2008) and Bourgault, Makarenko, Williams, Grocholsky,
and Durrant-Whyte (2002) in two dimensions, and they
attempt to improve the map or explore unknown parts of
the map. In our case, the 3D environment is known and we
are interested primarily in computing and visiting a set of

useful sensor locations in the shortest time possible with
paths that are feasible to execute for real systems. We shall
review the literature relating to coverage search in slightly
more detail in Section 2.

The purpose of this paper is to provide a practical so-
lution to 3D coverage search that can be feasibly deployed.
The presented solution copes with realistic sensor models
and the complexity of visibility in three dimensions, as well
as time constraints of robots navigating on rough terrain.
Given that the configuration space for most cameras has at
least six dimensions, the problem is not suited for the kinds
of decomposition approaches that work well in two dimen-
sions. Hence, we utilize a sampling approach that generates
a large number of sensor locations so that the views from
these locations cover the 3D environment of interest, with a
bias toward locations from which the sensor can view large

Journal of Field Robotics DOI 10.1002/rob



Dornhege et al.: Multi-Robot Coverage Search in 3d • 539

areas. This sampled set of sensor locations is large enough to
allow the generation of many different set covers of the envi-
ronment by using the sensor views from these locations. To
select a good set cover and plan sequences of locations that
can be visited in a short time, we use seven different vari-
ants of planning algorithms. These include algorithms that
are greedy, optimal, or based on decomposing the planning
problem into a set cover and traveling salesman problem.
One of the key advantages of our approach is that the in-
put size to the planning problem is significantly reduced by
the sampling of sensor locations. In addition, our approach
uses a minimal partition, introduced in detail in Section 4.2,
that further facilitates the planning.

In our prior work, we presented preliminary results
adopting our approach for the case of a single robot (Dorn-
hege, Kleiner, and Kolling, 2013). As noted in Dornhege
et al. (2013), already with a single robot the overall problem
is intractable, which is not surprising since it contains sub-
problems that require solutions to the set cover problem (Karp,
1972) and the traveling salesman problem (Applegate, Bixby,
Chvatal, and Cook, 2007), two well-known NP-hard prob-
lems. Our preliminary results from Dornhege et al. (2013),
however, indicated that some of the algorithmic variants
of our approach already perform reasonably well, both in
terms of the time to compute solutions and their cost, i.e.,
the estimated travel time of real robots executing the solu-
tion. In this paper, we generalize and extend our approach
to multiple robots with the goal to reduce the total concur-
rent execution time. This includes a generically applicable
procedure that we use to convert single-robot solutions into
multirobot solutions, as well as extensions to our greedy
algorithms that consider the multirobot case directly. In ad-
dition to extensive experiments on 3D maps collected from
real environments, we also present real robot experiments
with four robots, and we demonstrate the applicability and
feasibility of our approach under realistic conditions.

Our primary contributions are summarized as follows.
In Section 3 we introduce and define our 3D multirobot
coverage search problem. We then introduce the key
components that make it possible to efficiently solve the
multirobot 3D coverage problem for realistic scenarios. In
Section 4 we present an efficient approach that utilizes hi-
erarchical 3D maps and Monte Carlo sampling to generate
a set of high utility sensor locations in order to significantly
reduce the search space. The resulting views from these
sensor locations are then used to generate a minimal
partition, as described in Section 4.2. The minimal partition
provides information about the structure of the reduced
search space. This information is exploited in Section 5 for
efficiently planning sequences of sensor locations with short
travel times, and we present multiple planning algorithms
that range from optimal to greedy and consider single and
multiple robots. Greedy algorithms for single robots are pre-
sented in Section 5.1, and an optimal single robot planning
formulation is presented in Section 5.2 as well as a more effi-

cient decomposition into a set cover and traveling salesman
problem. The latter enables the use of state-of-the-art solvers
resulting in high-quality solutions. Section 5.4 extends the
greedy approach to multiple robots, while in Section 5.5 we
adapt the single-robot algorithms to the multirobot case by
splitting single-robot solutions into multirobot solutions.
We demonstrate feasibility and evaluate our approach
with an extensive series of experiments in Section 6. These
include experiments on real 3D maps (Section 6.2) that
also compare our various planning algorithms. Section 6.4
presents the results of real-world experiments with up to
four robots in a two-story scenario that demonstrates the
applicability of the approach, verifies the results of the
simulation experiments, and provides further insight about
problems that are most relevant to address for efficient
execution in realistic scenarios. A discussion is presented
in Section 7, and our conclusions are found in Section 8.

2. RELATED WORK

There are a large number of variations of coverage problems
and a vast literature on the topic. We shall only review the
work that is most closely related to our 3D coverage search
problem. Much of the literature on coverage in robotics
is concerned with approaches for distributing a team of
robots to cover an environment continuously, as one would
do for environmental monitoring and surveillance applica-
tions. This is known as the area coverage problem (Howard,
Matarić, and Sukhatme, 2002), but it is also often referred
to simply as the coverage problem (Cortes, Martinez,
Karatas, and Bullo, 2002). Our coverage search problem
is more closely related to coverage planning, which is mo-
tivated by applications such as lawn mowing, automated
farming, painting, vacuum cleaning, and mine sweeping.
In coverage planning, the goal is to compute an optimal
motion strategy in order to visit every location in the
environment at least once with mobile robots (Choset, 2001;
LaValle, 2006). Coverage planning for finding the optimally
shortest paths is NP-hard, naturally due to the similarity
to the traveling salesman problem, which also appears in
our 3D coverage search problem. Solutions to coverage
planning generally rely on exact or approximate cellular
decompositions of the environment (Choset, 2001), which
then allow planning in the resulting graph structure. The
kinds of decompositions used for this approach vary from
spanning trees to boustrophedon decompositions with
different properties regarding practicality and optimality.
Most of the work on coverage planning was concerned
with 2D environments. The work in Renzaglia, Doitsidis,
Martinelli, and Kosmatopoulos (2011) considers 2.5D
environments and optimization techniques are applied
to compute 3D paths for unmanned aerial vehicles. The
environment, however, is unknown and the emphasis lies
on the application of an optimization technique in order
to maximize area coverage. To the best of our knowledge,
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most of the prior work on coverage planning, i.e., to plan
global and minimal distance paths, was restricted to 2D
environments. It is a considerable challenge to adapt solu-
tions that are based on decompositions of an environment
to 3D environments. Perhaps the best illustration of this
appears in Lazebnik (2001). Therein, the 2D visibility-based
pursuit-evasion problem (Sachs, Rajko, and LaValle, 2004)
is generalized to three dimensions and the resulting
complications are staggering. Needless to say, not much
progress has been made on this problem since then. Other
than the extension to three dimensions, there is another key
distinction between our problem and coverage planning.
The footprint of the robot in coverage planning is static,
i.e., the lawnmower does not change its shape, while due
to the camera model we use, what is visible in the field of
view varies wildly. Hence the distinction between coverage
planning and coverage search. As a consequence of this sensor
model, we have to consider 3D visibility. Note that 2.5D
visibility, as in Renzaglia et al. (2011), is still far simpler than
3D visibility, and no prior work that considers 3D visibility
for coverage planning is known to the authors. Here we
partly rely on our previous work, in which we extended the
well-known problem of frontier-based exploration on 2D
grid maps (Yamauchi, 1997) to 3D environments (Dornhege
and Kleiner, 2011) by computing so called frontier voids.
We will describe this in more detail in later sections. Englot
and Hover (2013) address coverage planning of a ship hull,
while also taking into account visibility by ray casting.
Candidate views are generated by sampling locally around
the geometric primitives to observe given as an input and
collected into a roadmap. The only algorithm they consider
to compute a coverage plan is the subsequent application
of set cover and traveling salesman. They apply an iterative
traveling salesman variant that enables the lazy evaluation
of paths between view poses, as the time to compute
feasible paths is comparably large in this setting. This
results in a less generic formulation than our work, but it
allows them to derive theoretical completeness results and
optimized trajectories for the specific scenario.

Coverage search also relates to research that is con-
cerned with the computation of views and visibility, such
as next best view approaches, the art gallery problem,
and pursuit-evasion problems. Traditional next best view
(NBV) algorithms compute a sequence of viewpoints un-
til an entire scene or the surface of an object has been
observed by a sensor (Banta et al., 1995; Gonzalez-Banos,
Mao, Latombe, Murali, and Efrat, 2000). These methods
are, however, not suitable for coverage search on mobile
robots since they ignore the costs for changing between dif-
ferent sensor poses (Gonzalez-Banos et al., 2000). Our com-
putation of views is based on improvements of our previ-
ous work on frontier-void based exploration in three dimen-
sions (Dornhege and Kleiner, 2011), which dealt specifically
with searching for victims. In Dornhege and Kleiner (2011)
we focused on finding cells at the exploration frontier hav-

ing good views into unknown parts of the environment, so
called voids. In this paper, we not only efficiently compute
next best views in three dimensions but a data structure that
contains many views and has many subsets of views that
can all cover the entire environment. Computing visibility
or views is also addressed by the art gallery problem (Sher-
mer, 1992). There the problem is to find an optimal place-
ment of guards on a polygonal representation of 2D en-
vironments so that the entire environment is continuously
observed by the guards. The emphasis is on the placement
of guards with relation to the complex geometric features of
the environment, and the problem is known to be NP-hard.
Again, the computation of views focuses on 2D environ-
ments. Pursuit-evasion problems (Chung, Hollinger, and
Isler, 2011) relax this requirement since the goal is not to
keep a static coverage of the environment but to search for
moving targets. Toward that end, the environment can be
observed in a dynamic fashion by placing and removing
guards over time. This also requires the computation of the
robot’s field of view, which often induces a decomposition
of the environment, as in Sachs et al. (2004). Again, much of
this work focuses on 2D environments. Approaches for 2.5D
environments appear in Kleiner, Kolling, Lewis, and Sycara
(2013) and Kolling, Kleiner, Lewis, and Sycara (2010), and
they have been tested within real environments.

While area coverage, pursuit-evasion, and the art
gallery problem are naturally multirobot problems, our cov-
erage search problem can be applied to a single robot or
multiple robots, just as coverage planning. Multirobot cov-
erage in two dimensions has been considered in Agmon,
Hazon, and Kaminka (2008) and Kong, Peng, and Rekleitis
(2006). In Rekleitis, Lee-Shue, New, and Choset (2004), a
single robot approach for coverage planning is extended
to multiple robots. It uses a Boustrophedon decomposition
developed for the single-robot case. The environment is un-
known, and robots have line of sight communication that
precludes a multiple traveling salesman approach (Bektas,
2006). Coordination is achieved by having two explorers
detecting critical points in the environment based on visi-
bility. The remaining teams split and cover the cell, whose
existence is implied by the behavior of the explorers. Other
multirobot approaches for coverage planning in two dimen-
sions are also discussed in Choset (2001).

Coverage search and exploration are also closely
related, with the obvious difference that the environment
to be explored is unknown. The literature for robot explo-
ration is also vast, particularly in two dimensions, while 3D
exploration methods are starting to appear. For example,
Surmann, Nüchter, and Hertzberg (2003) propose a method
for planning the next scan pose of a robot for digitalizing
3D environments. They compute a polygon representation
from 3D range scans with detected lines (obstacles) and un-
seen lines (free space connecting detected lines). From this
polygon, potential next-best-view locations are sampled
and weighted according to the information gain computed
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from the number of polygon intersections with a virtual
laser scan simulated by ray tracing. The next position
approached by the robot is selected according to the
location with maximal distance. Their approach has been
extended from a 2D representation toward 2.5D elevation
maps (Joho, Stachniss, Pfaff, and Burgard, 2007). Lozano
Albalate, Devy, Miguel, and Marti (2002) also compute next
best views for 3D exploration. Their approach not only
weighs view utility by unseen volumes, but it also con-
siders sufficient overlap with known volumes to support
matching new views into a consistent 3D representation.

3. PROBLEM DEFINITION

In this section, a multirobot coverage search is formally de-
scribed. We first introduce the model of the searchers, their
sensors, and the environment followed by the definition of
the coverage search problem.

We consider homogeneous mobile robot platforms, the
searchers, each equipped with a 3D sensor in a bounded 3D
environment E ⊂ R

3. The 3D sensor generates a view at each
sensing cycle. A view is a set of n 3D points {p1, p2, . . . , pn}
with pi = (xi, yi, zi)T representing detected obstacles within
the sensor’s field of view. We associate a view with the
sensor state that generates it, i.e., a sensor state x ∈ X ∼=
R

3 × RP
3 [see LaValle (2006) for details], which can also

be written as a 6D pose (x, y, z, φ, θ, ψ)T . Here (x, y, z)T

denotes the translational part (also referred to as position)
and (φ, θ, ψ)T is the rotational part in Euler angles (also
referred to as orientation). The possible sensor states, and
hence the resulting views that can be obtained, depend on
the attainable collision-free configurations of the searcher,
q ∈ Cfree ⊂ C. We make no assumptions regarding C and Cfree

other than that we have a function IK : X → {0, 1} with
IK(x) = 1 if there is a valid path in Cfree for the searcher that
puts the sensor into state x and 0 otherwise.1 This allows
us to define the set of all reachable sensor states Xreach :=
{x ∈ X|IK(x) = 1}.2 Note that we do not consider collisions
between robots when determining IK and Xreach, so that
these are static. In our experiments, we avoid collisions with
a simple scheme that requires robots to wait when a collision
with another robot is predicted. Depending on the robot
type and their knowledge about the position of other robots,
one may choose to use another deconfliction scheme or a
multirobot path-planning approach.

We furthermore assume the existence of a function
cost : Cfree × Xreach → R

+, which returns the time to move
a robot from one configuration to another, place the sensor

1To make this definition complete, we further make the usual as-
sumption that either a starting configuration q0 for the searcher is
given or that Cfree is connected.
2Reachable states can be precomputed for efficient access during
the search using capability maps (Zacharias, Borst, and Hirzinger,
2007).

in a desired state, and record a view. We will refer to this
also as travel time. Strictly speaking, a cost function could
also incorporate additional criteria, such as risk of failure,
detection by hostiles or other undesired consequences that
would lead to increased costs. For our purposes, however,
we equate cost with travel time. Note that for most ap-
plications, we can conflate Cfree and Xreach by mapping ex-
actly one searcher configuration onto each sensor state in
Xreach. This effectively ignores additional degrees of free-
dom of the searcher, and with a slight abuse of notation we
can then write cost(xi , xj ). This is now simply the time of
moving from one sensor state to another. We shall apply
this simplification to the remaining sections as it simplifies
the presentation without directly impacting the applicabil-
ity of our solutions. For applications in which the addi-
tional degrees of freedom can be exploited, e.g., humanoid
searchers with cameras, one would have to consider these
separately.

Finally, the goal of coverage search is to cover every
point in a given search set S ⊆ E . The search set might con-
tain only a small part or all of E , depending on what we
are interested in covering. For every sensor state, let the de-
tection set D(x) ⊂ S be the set of points in S visible from
x ∈ Xreach. Note that there is a subtle formal difference be-
tween D(x) and a view at x, i.e., D(x) is a 3D volume and a
view is a discrete set of points in a 3D volume. In addition,
D(x) is restricted to the search set S while a view contains
points from all of E . Yet, in colloquial terms, we can think
of a detection set as a view. We use the term “detection set”
primarily in a formal context.

The multirobot coverage problem for N robots is to
find and visit a sequence of sensor states for each robot n ∈
{1, . . . , N} with length m(n), written as xn

1, xn
2, xn

3, . . . , xn
m(n),

so that the entire search space S has been seen and covered,
i.e.,

⋃N
n=1

⋃m(n)
i=1 D(xn

i ) = S. In addition, the overall execution
time needed to visit all sensor states given by

costmax = max
n∈{1,...,N}

m(n)−1∑
i=1

cost(xn
i , xn

i+1)

has to be minimized. We refer to travel time when we con-
sider the time a single robot takes to travel between loca-
tions, and execution time when referring to the maximum
combined travel time across all robots, i.e., the time to exe-
cute the entire sequence.

4. SAMPLING AND PARTITIONING VIEWS

4.1. Sampling High Utility Views

We now describe how to find sensor states from Xreach that
have large views by computing a utility function util : E →
R

+ that identifies good 3D poses in E , ignoring the orien-
tation for now. As we have already shown experimentally,
in the context of pursuit-evasion problems (Kleiner et al.,
2013), an efficient sampling-based heuristic can significantly
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decrease the number of states that have to be considered. In
this spirit, we will compute util via sampling and then later
use it to identify 3D poses from which a large part of S can
be seen. These high-utility poses in E are then turned into
sensor states, which will serve as a basis for the coverage
search methods described in Section 5.

The representation of E is given in the form of an
efficient hierarchical 3D grid structure, known as Oc-
toMap (Hornung, Wurm, Bennewitz, Stachniss, and Bur-
gard, 2013). Therein our 3D search region S is tessellated
into equally sized cubes. This effectively discretizes E and
S, and we shall treat them as discrete sets from hereon.
The minimum size of the cubes is typically chosen rela-
tive to the size of the target that one searches for, i.e., the
size of the cubes should generally be smaller than the tar-
get. The implementation for OctoMap is based on an octree
that represents occupied areas in a hierarchical manner. Free
space as well as unknown areas are implicitly encoded in the
map.

We construct util in two steps, shown in detail in Al-
gorithm 1 and briefly described below. First, for every s ∈ S
we sample kmax vectors that start at s and go toward a ran-
dom position in pos(Xreach), sampled using getRandom(.).
Here pos(.) returns the position of a state, simply ignoring
its orientation, or the set of positions for a set of states,
respectively. These vectors are collected in V . Second, for
each vector 〈s, dir〉 ∈ V we compute by using the ray trac-
ing function getGridCells(s, dir, sr ) the set of grid cells GC
that are visible from s in direction dir up to the sensor
range limit sr . Ray tracing is performed efficiently on the
OctoMap. Then, for each cell in GC that corresponds to
a reachable sensor state, the utility value is incremented
by 1.

Algorithm 1 Construct util

1: procedure FindGoodViews(S)
2: V ← ∅
3: // Sample random vectors from S into pos(Xreach)
4: for all s ∈ S do
5: k ← kmax

6: while k = 0 do
7: x ← getRandom(Xreach)
8: dir = normalize(pos(x) − s)
9: s, dir

10: k ← k − 1
11: end while
12: end for
13: // Accumulate utilities in E
14: for all v = s, dir do
15: GC ← getGridCells(s, dir, sr )
16: for all gc ∈ GC ∩ pos(Xreach) do
17: util(gc) ← util(gc) + 1
18: end for
19: end for
20: end procedure

We now obtain our set of sampled sensor states X̃,
from which large parts of S are visible, as follows. First,
we sample grid cells that correspond to points (x, y, z)T ∈ E
with a positive and large util value. Note that by construc-
tion these points are such that (x, y, z)T ∈ pos(Xreach), i.e.,
they correspond to the poses of reachable sensor states. For
each of these points, we sample one orientation (φ, θ, ψ)T

so that we obtain a full sensor state x = (x, y, z, φ, θ, ψ) ∈ X.
Note that for some robots, such as ground robots, the set of
reachable sensor poses pos(Xreach) can be much smaller than
E , and our method samples only from this much smaller
space. Now that we have sampled a sensor state x, we com-
pute its actual utility U (x) := |D(x)| by ray-tracing the sen-
sor’s field of view and counting all visible octree voxels. If
U (x) ≥ ε, for some given ε, then we add x to X̃. Once the
number of poses in X̃ reaches a predefined limit Nsensor that
is given as an input, we stop adding to X̃ and terminate the
sampling.

The method described above for sampling sensor states
with high utility is rather generic and can easily be modified
in order to achieve additional objectives or bias the sam-
pling. For example, to formally guarantee complete cover-
age of S with the sensor states from X̃, one could continue
to sample poses with nonzero util values and incremen-
tally add more views until S is covered, as done in the
work by Kleiner et al. (2013). However, this requires that
every part of S can be seen by some x ∈ Xreach—a property
required for the problem to be solvable that unfortunately
can be violated in many practical applications. There are
no assumptions that the environment data and maps were
collected with the robot that is used for the search and thus
the environment E can cover arbitrary nonreachable space.
In short, from our practical perspective it is easier to ig-
nore completeness and implement a best effort that is more
robust and allows the user to increase Nsensor to increase
coverage and determine whether it is sufficient for the ap-
plication. Other straightforward extensions may include the
use of certain sampling functions that consider movement
cost or risk of failure or destruction at a certain pose. One
may also sample multiple orientations for a given 3D pose
(x, y, z)T or compute the orientation with the highest actual
utility.

The primary feature of our sampling approach is that
we provide an efficient initial estimate of the utility of sensor
states with the util function that can be used in a number of
ways leading to small sets of useful sensor states X̃. In this
paper, we only present the most straightforward sampling
that considers sampling the highest util poses with only one
orientation and an actual utility of at least ε until we reach
Nsensor sensor states for X̃. Investigating the wide range of
possible variations to this sampling method can be a fruitful
area for further work. We shall now proceed to the next
section, which shows how to exploit the set X̃ for planning
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purposes by first constructing a partition of the detection
sets corresponding to the sensor states.

4.2. Partition Induced by Views

Based on the sampled X̃ ⊂ Xreach, which represents a sig-
nificantly smaller number of high utility sensor states, we
now seek to determine an even further smaller set that gives
us sequences of sensor states {xn

1, . . . , xn
m(n)} ⊂ X̃ whose de-

tection sets cover all of S, i.e.,
⋃N

n=1

⋃m(n)
i=1 D(xn

i ) = S. Rather
than computing

⋃m(n)
i=1 D(xn

i ) for different sequences, which
is computationally expensive, we compute a minimal parti-
tion of the search set S that is induced by the detection sets
for a given set of sensor states Q (in our case X̃ = Q). Fig-
ure 2 illustrates the reduction achieved by such a partition.
Without partitioning, one has to merge detection sets using
individual voxels. A minimal partition collects all voxels that
are contained in exactly the same detection sets into one
partition part. We define the reduction factor achieved by a
partition as the ratio of the number of individual voxels to
the number of partition parts, i.e., for the example in Fig-

ure 2 it is 164
6

voxels
partition parts ≈ 27.3. A minimal partition of

S given Q is defined as follows:

Definition 1. Minimal partition given a set of sensor states

Given any Q ⊆ Xreach, then P (S|Q) is a partition of S
minimal for Q if the following conditions are satisfied:

1. ∅ /∈ P (S|Q)
2.

⋃
A∈P (S|Q) A = S

3. ∀A,B ∈ P (S|Q) : A �= B ⇒ A ∩ B = ∅
4. ∀x ∈ Q,∀A ∈ P (S|Q) : A ∩ D(x) = A ∨ A ∩ D(x) = ∅
5. ∀A,B ∈ P (S|Q) : A �= B ⇒ ∃x ∈ Q : A ∩ D(x) �=

∅ ∧ B ∩ D(x) = ∅

Conditions 1. to 3. state that P (S|Q) is a partition. Con-
dition 4. states that every part of P (S|Q) is either entirely in
a detection set or it does not intersect the detection set. Con-
dition 5. states that P (S|Q) is minimal. With slight abuse
of notation, we will write P (x) ⊂ P (S|Q) for all parts of
P (S|Q) with P (x) ⊂ D(x).3 Minimal partitions can be com-
puted iteratively, as shown in Alg. 2, when Q is finite. In
colloquial terms, one can think of P (S|Q) as the Venn dia-
gram of the search set and all detection sets for states from
Q, i.e., ofS, D(x1), . . . , D(x|Q|). As a shorthand, we shall also
write P (Q) = P (S|Q) since S is given and fixed.

Algorithm 2 initializes P (Q) to the trivial partition {S}.
For each x ∈ Q, we update P (Q) by splitting all parts in
P (Q) that violate condition 4. Note that we only test against

3Notice that
(
S \ ⋃

x∈Q D(x)
)

∈ P (S|Q) is a part of the partition for
all Q that does not contain enough configurations to cover S.
From the sensors’ perspective, this part is undetectable from the
states in Q.

Algorithm 2 Minimal Partition for Q

1: P (Q) ← {S}
2: V iews(S) ← Q
3: for all x ∈ Q do
4: P (x) ← P (Q)
5: end for
6: for all x ∈ Q do
7: for all A ∈ P (x) do
8: Ain ← A ∩ D(x)
9: Aout ← A ∩ (S \ D(x))

10: if Ain = ∅ ∨ Aout = ∅ then
11: continue // Condition 4. holds.
12: end if
13: P (Q) ← P (Q) \ {A} ∪ {Ain ,Aout}
14: P (x) ← P (x) \ {A} ∪ {Ain}
15: for all x ∈ V iews(A) \ {x} do
16: P (x ) ← P (x ) \ {A} ∪ {Ain ,Aout}
17: end for
18: V iews(Ain ) ← V iews(A)
19: V iews(Aout) ← V iews(A) \ {x}
20: end for
21: end for
22: return P (Q)

P (x) instead of all parts in P (Q) as required by condition
4. P (x) ⊆ P (Q) is maintained in addition to P (Q) and only
contains those parts that intersect with the detection set
D(x). Thus often P (x) ⊂ P (Q). We also maintain and update
the inverse mapping V iews(A) for each part A in P (Q) to
efficiently update P (x).

5. MULTIROBOT COVERAGE SEARCH

In this section, we are concerned with the problem of se-
lecting a set of states from X̃, assigning these to individual
robots, and computing the shortest paths for each robot,
with the goal of covering the entire environment in the least
amount of time. Note that all the above steps have depen-
dencies that complicate the problem, e.g., the quality of the
shortest paths obviously depends on the assignment, short-
est paths may lead to collisions in additions to obstructions
of views by other robots, and so on. To be able to find fea-
sible solutions in a reasonable amount of time, we treat
individual robot paths as if they were independent from
each other. This means that we will not be dealing with
multirobot collision avoidance, view obstructions, or syn-
chronizing parallel actions for multiple robots. These prob-
lems can be dealt with for each specific application, and
they have varying degrees of impact, depending on the sce-
nario. Hence, we believe these issues should be addressed
in a particular implementation and its execution. Unless a
particularly hard scenario is constructed, the interactions
between the coverage search and the above issues should
be minimal, especially considering that the searchers should
naturally spread to different parts of the environment.
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Figure 2. This figure illustrates the effect of a minimal partition. The left shows the detection sets for three states, i.e., |Q| = 3, as
black triangles. The search set, S, is the entire grid. The individual voxels that are part of the detection sets were determined by
ray tracing and are shown in random colors on the left side, while white voxels are not part of any detection set. The right shows
the minimal partition P (S|Q) with several parts, each represented with a color. Let x be the state for the leftmost view, then P (x)
contains three parts, the set of blue, of green, and of orange voxels.

We now introduce the two principal ideas we use for
solving the multirobot planning problem. The first is to cre-
ate a high-quality single-robot coverage plan and then di-
vide this plan into smaller segments that are assigned to
multiple robots. The second is to adapt planning proce-
dures directly to the multirobot problem, particularly for
the greedy planning approaches. In the following, we will
thus first describe our algorithms for single-robot coverage
plans. These are based on the best performing algorithms,
which have also been presented in Dornhege et al. (2013).
We will then adapt these algorithms to the multirobot case.

5.1. Single-robot Greedy Solutions

We utilize P (X̃), as well as the corresponding mappings
P (x), to construct a sequence {x1, . . . , xm} ⊆ X̃ that covers S
and has a short execution time. Since we now consider the
sequence of sensor states, each with an associated detection
set and view, we define a new sequential utility function Ui

that reduces the original utility U by the volume in S that
has been seen previously in the sequence

Ui(x) :=
∣∣∣∣D(x) \

⋃
j<i

D(xj )
∣∣∣∣.

All greedy strategies compute the coverage sequence
by repeatedly selecting a state x ∈ X̃ until all parts in P (X̃)
are covered. The greedy algorithms differ by how the next x
is selected. For all algorithms, let UC be the uncovered parts
initialized as UC ← P (Q). For every i = 1, . . . , m we select
a new xi and update UC ← UC \ P (xi). The algorithms ter-
minate when UC = ∅. We shall now describe two greedy
algorithms.

Simple Greedy The simplest greedy strategy selects a xi

that minimizes the travel time from the last view, i.e.,
cost(xi−1, xi). The first view is chosen to be the one with
maximum utility U . We denote this variant as Simple-Greedy.

Greedy Next Best View Our second greedy variant also
considers the utility of views in addition to the travel time,
i.e., it chooses a xi that maximizes Ui(xi)/cost(xi−1, xi). The
idea is to prefer high utility views that are also easily reach-
able. For this we choose the ratio of utility and travel time to
quantify the tradeoff between the two. Again, the first view
is chosen to be the one with maximum utility U . We denote
this variant as Greedy Next Best View (Greedy-NBV).

5.2. Optimal Planning Formulation

Greedy algorithms provide simple and reasonably fast so-
lutions that are also easily modified to consider additional
criteria for specific application scenarios. These solutions,
however, are usually not optimal. Hence, we also formulate
the problem of finding a coverage sequence for a set of states
from X̃ as a classical planning problem that can be solved
optimally. As finding optimal solutions to this problem is
often infeasible, as discussed in further detail in Section 6.3,
we also present a suboptimal decomposition of the problem
by solving a set cover and subsequent traveling salesman
problem. We will now present the problem formulation as
a planning problem, and afterward we will show how this
formulation can be easily adapted to solve the decomposi-
tion.

We model our planning problem in the commonly used
Planning Domain Definition Language (PDDL) (Fox and
Long, 2003). The definition consists of the objects involved
in the problem, logical predicates over the objects describ-
ing the state, and actions with preconditions and effects that
determine how the action changes the state. In addition, the
initial state as well as a goal formula must be given. Such
a task definition models a search problem in a state space
implicitly defined by the predicates. Action preconditions
are logical formulas over those predicates that must be true
for an action to be applicable in a state. Action effects assign
new values to predicates. A problem is solved by finding a
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sequence of actions from the initial state to any state fulfill-
ing the goal formula.

In our domain, there are two types of objects:
(:types view view_part)

An object of type view is added for each sensor state in X̃,
and a view_part is defined for each part in the partition.
Next, the planning state is given by the following logical
predicates:

(searched ?xi - view)

describes that a view xi has already been visited and

(covered ?pj - view_part)

states that part pj has been covered in a state. searched and
covered are initially set to false for all views and parts,
respectively. The current view location of the robot is given
by

(at-view)- view

For each view xi and each part pj , the predicate

(view-covers ?xi - view ?pj - view_part)

is set to true in the initial state, iff pj is in P (xi).

Only a single action is needed:

(:action search

:parameters (?v - view)

:duration (= ?duration [costSearch ?v])

:precondition

(not (searched ?v))

:effect

(and

(searched ?v)

(assign (at-view) ?v)

(forall (?_vp - view_part)

(when (view-covers ?v ?_vp)

(covered ?_vp)))))

The precondition prohibits the planner from choosing
the same view twice. Accordingly, searched is set in the
effect. We also assign at-view to the view reached by the
search action. :duration defines the action’s cost. The term
[costSearch ?v] states that the cost of the action is de-
termined by an external function that is integrated via a
modular interface (Wurm et al., 2010). Thus, whenever the
planner requests the cost of this action, the module calls the
cost function defined in Section 3. A detailed description of
this interface is available in our previous work (Dornhege
et al., 2009). The forall statement defines a conditional ef-
fect that sets covered to true for all view parts when the view
part is in P (x).

Finally, we specify the following as the goal formula:

(forall (?vp - view_part) (covered ?vp))

This requires each part to be covered and thus guaran-
tees that any plan found by a planner actually provides
a coverage plan. As we use the actual cost function to de-

fine action costs, a shortest plan found by the planner also
constitutes a minimum execution time coverage sequence,
i.e., an optimal solution to our coverage problem with the
available views restricted to views from sensor states in X̃.
We use a variant of the planner Temporal Fast Downward
(TFD) (Dornhege et al., 2009) to solve all planning tasks in
this paper. We denote this variant as Complete Planning.

5.3. Decomposition into Set Cover and Traveling
Salesman Problem

While the previous planning formulation can yield optimal
solutions, the search space is still rather large and the opti-
mal solutions may not be found in a reasonable amount of
time for large problem instances. Hence, in this section we
simplify the problem by decomposing it into a set cover and
a traveling salesman problem. More precisely, we first find
a minimal set of views that covers all parts of the minimal
partition, i.e., the classical set cover problem. This gives us
a minimum cardinality subset QC ⊆ X̃, so that all parts of
P (X̃) are covered, i.e.,

⋃
xj ∈QC

P (xj ) = ⋃
xi∈X̃ P (xi).

We can use the minimal partition to reduce the input
size to the set cover problem by ignoring views covering
unique parts of the search set that are not covered by any
other view. We call these views necessary, since they have to
be part of any cover, and we only determine the minimum
set cover for the remaining views. The set cover problem is
solved by a simple reformulation of the complete planning
problem using the same planner. More precisely, action costs
from the above definition are set to 1, so that the cost of a
plan is identical with the number of views. These problems
are solved quite fast (within seconds in all our experiments)
as they contain a considerably smaller set of views, and
permutations do not need to be considered.

Given the minimum cardinality subset of views that
covers the search space, it only remains to find an optimal
execution time sequence visiting all views. This is a Traveling
Salesman Problem (TSP) without the requirement to return to
the first location. We already have a PDDL formulation for
the complete problem, and we can easily apply this formu-
lation to the Traveling Salesman Problem by changing the
goal formula to

(forall (?v - view) (searched ?v))

This requires all input views, which are now only the views
that are part of the minimal cardinality cover, to be visited,
and thus an optimal cost plan to this problem results in a
minimum execution time path through all views. The cover-
age information can be safely ignored, as that is guaranteed
by the set cover.

There exist efficient solvers specifically designed for the
Traveling Salesman Problem, and thus we investigate the
application of the LKH solver (Helsgaun, 2000), an efficient
implementation of the Lin-Kernighan heuristic, to solve the
TSP. When we use the TFD planner for solving the TSP in
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the decomposed formulation, we denote this variant as Set
Cover/TSP (TFD). When using the LKH solver we shall call
the variant Set Cover/TSP (LKH). TFD is always used to solve
the set cover problem.

To summarize, the decomposition of the complete
planning formulation into a set cover and a TSP problem
is clearly suboptimal. Yet, it still requires solutions for two
NP-hard problems. But from a practical perspective, this
decomposition allows the application of advanced com-
mercial solvers that have been developed specifically for
these problems. In the experimental sections, we will briefly
investigate the tradeoff between the time to compute solu-
tions and the quality of these solutions between the optimal
complete approach and the decomposition approach.

5.4. Multirobot Greedy Solutions

In this section, we adapt the single-robot greedy algorithms
directly to the multirobot case. As before, we utilize P (X̃), as
well as the corresponding mappings P (x), to construct a se-
quence {xn

1, . . . , xn
m(n)} ⊆ X̃ for each robot n ∈ {1, . . . , N} with

length m(n). The multirobot greedy algorithms compute the
coverage sequences by repeatedly selecting a specific robot
n and a view xn ∈ X̃ until all parts in P (X̃) are covered. Sim-
ilar to the single-robot case, we define a sequential utility
function Uk that reduces the original utility U by the volume
in S that has been seen previously in any sequence, i.e., by
any robot. Here k is the kth step in the greedy procedure,
when the kth view is assigned. Let mk(n) be the sequence
length for robot n in the kth step. Then the utility to choose
the view from state x in the kth step is

Uk(x) :=
∣∣∣∣∣∣
D(x) \

⎛
⎝

N⋃
n=1

⋃
j≤mk−1(n)

D(xn
j )

⎞
⎠

∣∣∣∣∣∣
.

Note that this measure is independent of the robot.
Now, using the expected utility and the time to reach the
state for a view, every robot is choosing its next preferred
view at step k exactly as in the single-robot case, i.e., the
preferred view is selected either using the Greedy-NBV or
the Simple-Greedy equations from Section 5.1, leading to the
Multi-Simple-Greedy and Multi-Greedy-NBV variants.

Let x̂n
k be the state chosen by robot n for step k. We now

select the state from the robot that leads to the minimum
increase in overall execution time, i.e., we greedily select
the robot with the shortest overall path to its preferred state.
More precisely, let this robot be

n∗ := arg min
n∈{1,...,N}

cost
(

xn
mk−1(n), x̂n

k

)
+

mk−1(n)−1∑
i=1

cost
(

xn
i , xn

i+1

)
.

The view x̂n∗
k is then appended to the sequence of views

for robot n∗, and we continue with the next step by incre-
menting k. The procedure continues until all parts in P (X̃)
are covered. Let UC again be the uncovered parts initialized

as UC ← P (Q). For every k, we update UC ← UC \ P (x̂n∗
k ).

The algorithm terminates when UC = ∅.

5.5. Multirobot Solutions From Single-robot
Solutions

The greedy spirit of the single-robot greedy algorithms was
readily extendable to the multirobot case by simply greed-
ily selecting the best robot. The single-robot planning al-
gorithms, however, are not extendable to the multirobot
case in such a straightforward manner, since the naive ap-
proach immediately leads to an exponentially growing state
space that makes the application of our planners infeasible.
Our experimental comparisons from Section 6 additionally
support this. Therefore, our multirobot planning approach
starts with a single robot plan and splits this into N parts
to produce N paths that will be executed by the robots in
parallel. Although this is clearly not optimal, we gain the
practical advantage of being able to utilize improved plan-
ners that work well for the single robot case without any
additional effort, i.e., we can simply substitute a single robot
planner with an improved version and simultaneously im-
prove our multirobot plans. This advantage should not be
underestimated, especially for the development of practical
and fielded systems.

Our multirobot planner takes as the input a single
robot coverage sequence {x1, . . . , xm} ⊆ X̃ that covers S.
Our goal is to split this into N sequences {xn

1, . . . , xn
m(n)} ⊆ X̃

for each robot n ∈ {1, . . . , N} with length m(n). There are
N − 1 splitting points sn for N robots. A splitting point
sn ∈ {1, . . . , m}; i < j ⇒ si < sj defines the end index of the
nth robot’s subsequence, so that xn

m(n) = xsn . Starting points
are one past the end of the previous robot’s sequence,
so that the subsequences connect, i.e., xn

1 = xsn−1+1. The
first robot’s subsequence must start with the first sensor
view of the single-robot plan, i.e., x1

1 = x1, and likewise the
last robot’s subsequence must complete the single-robot
sequence, so that all views are covered, i.e., xN

m(N) = xm.
There are in the order of mN−1 ways to perform such splits.
As long as the number of robots N is not too large, it is still
feasible to enumerate all solutions, despite the exponential
complexity in the number of robots. We do so and select
the split that minimizes the overall execution time as our
solution.

The method described above can clearly be improved,
e.g., by k-means clustering of waypoints to prevent different
robots operating in the same local area or using approx-
imation algorithms for the multiple traveling salesman
problem. In the experimental section, however, we shall
see that the complexity of this step plays a minor role in the
overall computation time. A multiple traveling salesman
approach might also improve the quality of solutions, but
it would require access to a robust implementation of a
solver for this problem. Again, the experimental section
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Figure 3. This figure shows the data sets used for evaluation: The 3D scan in our lab (a), Building 78 (b), the rescue arena (c), and
the Computer Science Campus at the University of Freiburg (d). For a better visualization of the plan in the campus, a top-down
view is given (e). The plans (green) are generated with the Set Cover/TSP (LKH) method for one robot. Occupied cells are displayed
in blue, covered cells are red.

will show that even this rather naive splitting method
already produces reasonable multirobot solutions. Section 7
also discusses issues and possible improvements of this
approach in practice.

Applying the above splitting method to the single-
robot algorithms described in Sections 5.1 and 5.3 leads to
four new variants. To describe these, we append an ‘-S’ to
the single-robot variant name leading to the new variants
Simple-Greedy-S, Greedy-NBV-S, Set-Cover/TSP (TFD)-S, and
Set-Cover/TSP (LKH)-S.

6. EXPERIMENTS AND EVALUATION

We evaluated our approach and algorithms on four real-
world data sets, i.e., OctoMaps obtained from sensor data
collected by robots in real environments. In addition, we
carried out real-world experiments in which robots execute
the computed solutions for 3D coverage search. The results
of the experiments on the data sets are presented in Sec-
tion 6.2, and the results of the real-world experiments are
found in Section 6.4. Section 6.1 discusses how to compute
travel times efficiently, while Section 6.3 briefly discusses
optimality for the planning problem.

The four data sets represent one small indoor, two large
indoor, and one large outdoor environment. The small in-
door data set consists of a 3D scan taken in the robotics lab
at the University of Freiburg. The two large indoor data sets

were recorded in Building 78 at the University of Freiburg,
which consists of two rooms separated by a door and at
the NIST rescue arena at Jacobs University in Bremen. The
large outdoor data set was recorded on the Computer Sci-
ence Campus at the University of Freiburg. OctoMaps for
the indoor data sets are generated with 5 cm resolution,
while the outdoor data set uses a 20 cm resolution. Visual-
izations of the maps obtained from the data sets are shown
in Figure 3.

In all simulation experiments, the search set S to be
examined consists of all vertical structures of the map, thus
aiming for a complete coverage of everything that is not a
floor or a ceiling. This choice models an inspection task for
inspecting walls, but for our purposes it serves to have a
large search set S in a larger environment E , but within a
similar order of magnitude, i.e., a similar number of cells
that are vertical vs horizontal.

The robot model used is a mobile ground robot with
the sensor mounted on a 6-DOF manipulator with a reach
of 1 m. The sensor model is a camera with a 60◦ horizontal
and a 40◦ vertical field of view. For the indoor data sets, a
maximum range of 5 m was used; the outdoor data set was
searched with a 35 m sensor. The small indoor map, denoted
as Lab, was used for two scenarios. The first scenario, de-
noted by Lab 1, only allowed manipulator movements and
no motion of the ground platform. The map is sufficiently
small so that the manipulator has a reasonably large Xreach.
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Figure 4. One of the robot platforms used for coverage search.
Sensors are mounted on a versatile manipulator arm.

This searcher model is motivated by a common setup for
USAR robots depicted in Figure 4: A tracked robot with
a manipulator arm as a sensor platform. The second sce-
nario, denoted by Lab 2, allowed manipulator movements
and navigation for the ground platform. In all other maps
we considered manipulator movements and navigation for
the ground platform.

The variants of our algorithm, described in de-
tail in Section 5, that we used for the experiments
are Multi-Greedy-NBV, Greedy-NBV-S, Multi-Simple-
Greedy, Simple-Greedy-S, Set-Cover/TSP (TFD)-S, and Set-
Cover/TSP (LKH)-S. Note that all variants with appended
‘-S’ default to the single-robot variant when N = 1, since
the single-robot solution is split into only one segment and
therefore remains intact. The TFD planner that was used
during the experiments supports both numerical values
and temporal actions. But since we are only interested in
numerical computations, temporal actions have been dis-
abled for our experiments. The LKH solver was executed
with the default parameters supplied by the software. All
greedy variants of the algorithm were run until a solution
was found.

6.1. Efficient Travel Time Computation

As noted in the problem definition in Section 3, we require
the computation of time estimates for moving between dif-
ferent sensor states on the map, i.e., the function cost(xi , xj ).
A major part of the computation time is spent when comput-
ing the travel time between poses. We base our travel time
planner on value iteration, a popular dynamic program-
ming algorithm frequently used for robot planning (Bur-
gard et al., 1998). As shown by Figure 5, the planner takes as
input a segmented elevation map in which important struc-
tural elements such as stairs and ramps are discriminated
and indicated by a different color. Value Iteration computes
then efficiently for each grid cell (ex, ey) on the elevation

Figure 5. Computation of travel time on segmented elevation
maps. Shown is the generated plan between two locations (blue
line): traversable terrain (green) and nontraversable terrain
(red). The segmentation represents structural elements such
as stairs (magenta), ramps (yellow), and random step fields
(violet).

map a time estimate for reaching a goal cell (gx, gy). These
time estimates are composed of travel distance as well as
costs for overcoming different types of terrain. Costs differ
according to the terrain type (e.g. stair, ramp, etc.) and the
robot type (e.g. tracked or wheeled ground vehicle, UAV,
etc.).

The resulting value function is then used by an A∗ plan-
ner as heuristic for finding the shortest paths (and comput-
ing their times) on the map.

Besides these travel times between robot base poses,
we are also considering the time for moving the manipu-
lator from one view configuration to the next based on the
maximum angular displacement of any joint. The expected
combined time defines the cost of moving between two sen-
sor states, and hence we obtain cost(xi , xj ).

6.2. Evaluation of Coverage Search Algorithms

The first series of experiments applies all variants of our
multirobot coverage search algorithm to the scenarios gen-
erated from our real-word data sets, using one to four robots.
For these experiments, we are reporting computation times
and the planned execution times of the best plans found by
the algorithms on each of the maps. Since the generation of
views for X̃ involves randomization, we ran the algorithm
ten times for each scenario, and we report mean values
with standard deviation. The minimum utility ε to accept a
view as well as the number of views, Nsensor, that need to be
generated for X̃ was chosen with respect to the average ex-
pected utility, which depends on the sensor model and the
environment. Therefore, for the outdoor environment with
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Table I. This table shows computation times for the generation of X̃ and its minimal partition. In addition, the reduction factor
achieved by the partition is given, as well as the parameters ε and Nsensor that were used.

Scenario Lab 1 Lab 2 Bldg. 78 Arena Campus

Computing X̃ (s) 2.12 ± 0.20 3.01 ± 0.45 30.80 ± 2.47 78.96 ± 4.85 201.90 ± 10.09
Minimal Partition (s) 0.06 ± 0.01 0.04 ± 0.00 2.19 ± 0.27 5.48 ± 0.67 31.54 ± 2.83
Reduction Factor 127.23 ± 17.14 49.27 ± 12.48 16.48 ± 1.88 37.02 ± 4.58 71.57 ± 4.18
ε (dm3) 150 150 125 250 8000
Nsensor 15 15 100 142 280

Table II. This table shows execution time in seconds for the Lab 1 and Lab 2 scenarios.

Scenario Lab 1

Num Robots 1 2 3 4

Multi-Greedy-NBV 25.7 ± 3.2 12.6 ± 2.3 9.1 ± 1.5 7.5 ± 0.8
Greedy-NBV-S 28.8 ± 3.5 17.3 ± 3.9 10.1 ± 1.6 9.8 ± 2.1
Multi-Simple-Greedy 25.9 ± 3.3 13.9 ± 2.2 10.0 ± 1.3 8.0 ± 1.2
Simple-Greedy-S 30.3 ± 7.3 15.8 ± 4.2 11.9 ± 3.1 9.8 ± 2.1
Set-Cover/TSP (TFD)-S 23.4 ± 7.6 11.9 ± 3.4 9.9 ± 2.6 8.0 ± 2.1
Set-Cover/TSP (LKH)-S 21.6 ± 5.4 14.9 ± 3.5 9.3 ± 2.5 8.1 ± 1.9

Scenario Lab 2

Num Robots 1 2 3 4

Multi-Greedy-NBV 60.4 ± 6.9 31.4 ± 3.8 22.0 ± 2.1 17.3 ± 1.8
Greedy-NBV-S 66.6 ± 8.4 38.0 ± 2.6 27.8 ± 3.2 21.1 ± 2.1
Multi-Simple-Greedy 50.5 ± 6.9 29.6 ± 2.9 22.8 ± 2.3 19.3 ± 1.9
Simple-Greedy-S 57.1 ± 5.9 33.9 ± 5.1 26.4 ± 4.1 20.9 ± 2.5
Set-Cover/TSP (TFD)-S 54.3 ± 11.6 35.7 ± 5.5 25.1 ± 4.0 21.4 ± 3.9
Set-Cover/TSP (LKH)-S 60.7 ± 10.0 35.0 ± 5.1 26.5 ± 4.7 22.3 ± 3.2

a 35 m sensor, this minimum needs to be significantly higher
than the one chosen for an indoor environment with a lim-
ited field of view. The choices of parameters are shown in
Table I. Table I also shows computation times for the first
part of our algorithm, i.e., the generation of views for
X̃ and the minimal partition. In addition, we provide a
reduction factor achieved by the partition. This reduction
factor is defined as the ratio of cells in S to parts in the
partition. It provides a measure for the reduction of the
search space achieved by the sampling of X̃ and its minimal
partition. With a large reduction factor, the number of parts
in the partition is significantly smaller than the number
of cells that are to be covered, and the input size to the
planning algorithms can be thought of as being reduced
by this factor. In addition, the reduction factor also relates
to the complexity of the environment, and a low reduction
factor suggests that the environment is complex and
cluttered.

Each of the ten X̃ and minimal partitions obtained for
every scenario were used as an input to the variants for
the coverage search presented in Section 5. This was done

with one, two, three, and four robots, i.e., N = 1, . . . , 4. Ta-
ble II shows the average time to execute a solution for the
smaller Lab scenarios, where all algorithms performed sim-
ilarly well. Figures 6 and 7 plot the resulting execution time
for each variant and number of robots for the Bldg. 78,
Arena, and Campus scenarios. Table III shows the average
measured computation time required to compute the solu-
tions for each variant, number of robots, and scenario.

For the greedy variants, we observe that the Simple-
Greedy variants usually perform better than Greedy-NBV.
The balancing of travel time and utility of views in Greedy-
NBV does not pay off in these experimental scenarios. One
possible explanation for this effect is that the selection of
views for X̃ is already biased toward high utility views,
and the additional consideration of utility penalizes travel
times too much. This suggests that when considering to use
utilities in a greedy approach, a different tradeoff equation
than the simple ratio could be more beneficial. It is unclear,
however, which tradeoff can lead to a good greedy heuristic,
and the simple greedy approach seems already to perform
rather well.
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Figure 6. Box plots of the execution time for N = 1, . . . , 4 of multiple algorithm variants for the Bldg. 78 (left) and Arena (right)
scenarios.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 2 3 4

E
xe

cu
tio

n 
T

im
e 

[s
]

# Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (LKH)-S

Figure 7. A box plot of the execution time for N = 1, . . . , 4 of
multiple variants of our algorithm for the Campus scenario.
The variant Set-Cover/TSP (TFD) was not applicable due to
insufficient memory.

Another interesting observation is found in the compar-
ison of the ‘-S’ variants of the greedy algorithms (Greedy-
NBV-S and Simple-Greedy-S) against the multirobot greedy
variants (Multi-Simple-Greedy and Multi-Greedy-NBV).
For the medium sized scenario, i.e., Bldg. 78, the multi-
robot variants perform slightly better (see Figure 6). This
advantage, however, vanishes for the larger maps (Arena
and Campus). Now, the computation times for the mul-
tirobot variants scale linearly with the number of robots
(see Table III). This is due to the fact that for each step, the
single robot variants compute the travel times to all other
views, while the multirobot implementation computes trav-
els times to all other views for every robot. This linear
growth in the number of robots has a much larger impact
on computation time than the exponential growth in the
number of robots, which is due to the splitting for the ‘-S’
variants. As it happens in real applications, the constants
hidden in the complexity classes can matter more than the

complexity classes themselves, especially when considering
a limited range of input sizes (with N = 1, . . . , 4). The same
effect also explains why the Set-Cover/TSP algorithms are
faster to compute than the multirobot greedy variants as the
number of robots increases. Again, the computation of the
single-robot solution dominates the computation time, and
the splitting into segments, despite the exponential com-
plexity, is comparatively fast and its overhead does not be-
come relevant until four robots are used. The increase in
computation time for four robots is particularly noticeable
on the larger maps. This indicates that computing optimal
scheduling by enumeration is unlikely to scale for larger
number of robots, where more sophisticated scheduling al-
gorithms must be applied.

For the Set-Cover/TSP algorithms, we generally see
better results at the cost of increased computation time. The
results for the smaller scenarios are similar. However, the
Simple-Greedy-S algorithm is quite competitive. Although
execution times computed for the NIST arena do not sig-
nificantly differ, the computation times are shorter. With
increasing problem size, the decomposed variant becomes
superior on the largest map when using a specialized TSP
solver. The planner initially transforms a planning task in a
process called “grounding” to facilitate an efficient search.
The very large problems become infeasible for the planning-
based variants as in those cases the system runs out of
memory during the grounding phase. A brief discussion
of optimal planning is found in Section 6.3.

When we compare the execution time with an increas-
ing number of robots, we see that all algorithms were able
to utilize more robots efficiently. Overall planned execution
times scale down almost linearly with an increasing number
of robots, which is an important aspect, especially for the
larger scenarios. The question of whether this scaling be-
havior extends to real-world settings, especially in smaller
settings where robots can obstruct each other, will be ad-
dressed in Section 6.4.
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Table III. This table shows computation times in seconds for the different scenarios. Set-Cover/TSP (TFD) was not applicable in
the Campus scenario due to insufficient memory.

Num Robots 1 2 3 4

Scenario Lab 1

Multi-Greedy-NBV 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Greedy-NBV-S 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Multi-Simple-Greedy 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Simple-Greedy-S 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Set-Cover/TSP (TFD)-S 2.6 ± 0.5 2.5 ± 0.5 2.6 ± 0.4 2.6 ± 0.5
Set-Cover/TSP (LKH)-S 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.2

Scenario Lab 2

Multi-Greedy-NBV 0.2 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.6 ± 0.0
Greedy-NBV-S 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0
Multi-Simple-Greedy 0.1 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.6 ± 0.1
Simple-Greedy-S 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
Set-Cover/TSP (TFD)-S 2.8 ± 0.8 2.8 ± 0.8 2.9 ± 0.5 2.6 ± 0.6
Set-Cover/TSP (LKH)-S 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

Scenario Bldg. 78

Multi-Greedy-NBV 19.0 ± 1.2 40.7 ± 1.3 59.7 ± 1.3 79.8 ± 4.7
Greedy-NBV-S 21.9 ± 1.2 22.0 ± 1.0 22.5 ± 1.0 34.4 ± 1.2
Multi-Simple-Greedy 17.9 ± 1.1 40.5 ± 1.5 58.9 ± 3.0 79.6 ± 4.3
Simple-Greedy-S 20.1 ± 1.3 21.2 ± 1.0 20.9 ± 0.6 33.3 ± 1.6
Set-Cover/TSP (TFD)-S 158.4 ± 3.5 159.3 ± 4.6 158.8 ± 4.4 174.1 ± 4.6
Set-Cover/TSP (LKH)-S 43.3 ± 2.0 43.9 ± 2.8 43.8 ± 2.2 56.6 ± 2.5

Scenario Arena

Multi-Greedy-NBV 64.4 ± 3.7 133.0 ± 9.0 201.0 ± 10.6 272.5 ± 12.8
Greedy-NBV-S 69.9 ± 4.3 71.6 ± 4.0 73.9 ± 3.3 103.9 ± 3.9
Multi-Simple-Greedy 61.5 ± 3.9 132.9 ± 9.3 210.3 ± 5.9 279.6 ± 15.3
Simple-Greedy-S 65.7 ± 3.7 68.3 ± 3.9 70.9 ± 3.4 101.8 ± 3.1
Set-Cover/TSP (TFD)-S 487.4 ± 33.0 488.7 ± 24.4 504.0 ± 27.1 523.7 ± 25.6
Set-Cover/TSP (LKH)-S 131.7 ± 11.7 131.9 ± 7.9 134.7 ± 8.9 165.1 ± 12.2

Scenario Campus

Multi-Greedy-NBV 690.0 ± 54.6 1471.7 ± 83.3 2164.0 ± 94.4 2847.0 ± 140.3
Greedy-NBV-S 781.8 ± 60.0 803.5 ± 51.8 800.6 ± 33.9 976.0 ± 52.8
Multi-Simple-Greedy 717.9 ± 50.4 1488.8 ± 106.0 2229.5 ± 129.4 2947.6 ± 178.6
Simple-Greedy-S 815.4 ± 44.8 844.6 ± 49.8 845.6 ± 30.6 1071.4 ± 50.4
Set-Cover/TSP (LKH)-S 1249.2 ± 97.8 1285.0 ± 105.2 1275.2 ± 98.0 1432.7 ± 110.9

6.3. Optimal Solutions and Anytime Planning

The first set of experiments investigated the performances
of all our variants except the Complete Planning approach.
The Set Cover/TSP approaches are closely related to the
formulation for the Complete Planning approach, but they
decompose the problem. As briefly discussed in Section
5.3, this decomposition can lead to suboptimal solutions.
Clearly, it is of interest to experimentally determine the loss
of quality of the solutions that is due to the decompositions
into set cover and TSP problems. One problem for such an

experiment is that the Complete Planning variant only runs
within a reasonable amount of time on small maps, and
computing optimal solutions for the larger maps was not
feasible. Thus we used the first X̃ and minimal partition
obtained for the smallest map (Lab), and we ran the Com-
plete Planning variant against the Set Cover/TSP (TFD) until
the state space was completely explored. We used the TFD
planner in both instances, which allowed us to find optimal
solutions and prove optimality.

Table IV shows the quality of the first plan found by
the respective variant, also including Simple-Greedy as a
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Table IV. Comparison of the best results of which the algorithms are capable. Computation time and planned execution time until
the first and best plan are found are listed together with the time of the full run needed by the planners to prove the best plan to
be optimal.

Algorithm First solution Best solution Optimality

Simple-Greedy execution time (s) 22.22 22.22
computation time (s) 0.03 0.03

Set Cover/TSP (TFD) execution time (s) 19.34 16.83
computation time (s) 0.15 7.76 100.09

Complete Planning execution time (s) 20.79 15.78
computation time (s) 0.16 12,722.88 33,281.29

Figure 8. Two-story test environment for multirobot experiments with marked search targets.

reference, the best plan, and the time it took to determine
the plan and prove optimality.

All variants quickly found a reasonable first solution
with the Set Cover/TSP (TFD) variant finding the best first
solution, although taking an order of magnitude longer
than the greedy variant. As one would expect, the final op-
timal solution returned by the Complete Planning variant is
better (15.78 s) than the best solution for the decomposition
approach Set Cover/TSP (TFD) (16.83 s), which is only op-
timal for the set cover and TSP problem independently. The
Set Cover/TSP (TFD) solution is 6.6% longer than optimal,
yet the reduction in computation time from 12,722.88 s for
the optimal solution to 7.76 s is significant. In addition, the
Complete Planning approach only found a slightly better
plan than 16.83 s after 4,996 s. Hence, with an anytime
approach, the Complete Planning formulation is not
likely to yield any improvements over the decomposition
approach. A complete theoretical or experimental analysis
of related questions, e.g., the derivation of approximation
factors, is beyond the scope of this paper. This brief exper-
imental investigation, however, indicates that our choice to

decompose the problem has a reasonable tradeoff between
quality and computation time. This observation encourages
the use of our algorithms for real-world scenarios with the
expectation of finding solutions with reasonable quality.
The next section demonstrates the application of our
approach with a team of real robots.

6.4. Real-world Experiments

We performed real-robot experiments with up to four robots
in a two-story test environment,4 as shown in Figure 8. The
goals for these experiments are manifold. First, we show
that the algorithms presented can be applied in practice.
From the actual execution, we learn how far the simulation
results can predict the real-world performance relative be-
tween algorithms, i.e., which will lead to shorter execution
times, and absolute, i.e., do the observed execution times lie
within reasonable margins of the planned execution time.

4A video of the experiments is available at http://www.youtube
.com/watch?v=jEFZMoxNGMI
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Table V. This table shows computation times for the generation of X̃ and its minimal partition for the real-world scenario shown
in Figure 8.

Computing X̃ (s) Minimal partition (s) Reduction factor ε (dm3) Nsensor

4.8 0.02 1.92 1500 45

In addition, we also determine how well the scaling proper-
ties of the multirobot solutions transfer to the real world and
where the limitations of an offline approach lie. As noted
previously, our approach does not directly consider multi-
robot collisions, view occlusions, and other issues arising
when using multiple robots. These are dealt with on the
implementation level for our specific system, and they may
also have an impact on the real execution of the coverage
search solutions.

The experiments are performed in a two-story test en-
vironment that allows the robots to observe the lower level
from the upper level, and it has a cavelike section to create
a three-dimensional problem. Figure 8 shows the test en-
vironment. The test environment was built according to a
manually created three-dimensional blueprint. In contrast
to the experiments presented in the previous sections, we
did not build an OctoMap from sensor data, rather we used
the 3D blueprint to generate an OctoMap with a resolution
of 0.05 m. This OctoMap was used as an input for our al-
gorithms. We ran the sampling for X̃ to search for volumes
of 0.064 m3—a volume too small for a human not to be
found in. Computation times for this are shown in Table V.
To determine a realistic cost-function, we ran preliminary
experiments and matched the cost-function to the observed
execution times. We ran the multirobot coverage search al-
gorithms from Section 5 for one to four robots, and we ex-
ecuted the resulting plans on the robots. As a robotic plat-
form, we use four modified Turtlebot 2’s, shown in Figure 9,
that are equipped with a laser range finder for localization
and a Kinect RGBD camera that is used as the observa-
tion sensor. Note that the robot is different from the robot
used for the experiments presented in the previous section;
most importantly, it does not have its camera mounted on
a manipulator. Each robot gets its specific path preloaded
for an experiment and all robots visit their sequence of sen-
sor locations in parallel and record a view at each of these
in the form of a 3D point cloud. For safety reasons, ramp
transitions between levels have been teleoperated. All other
actions, especially navigation to sensor locations, were au-
tonomous. Thus in total there were 24 multirobot coverage
search runs containing 60 individual robot runs. Figure 11
gives the measured overall execution time for each algo-
rithm and number of robots in comparison to the overall
execution times computed by the algorithms. Table VI gives
the computation times for running the multirobot coverage
search algorithms, and it shows the total path length of all
robots for each algorithm and number of robots.

Figure 9. One of the Turtlebot 2 robots used in the experiments
with a Kinect sensor and a Hokuyo laser.

7. DISCUSSION

We will now discuss in detail the results from the previous
experiments, especially the applicability of our algorithms
to real-world systems and with respect to the observations
from simulation experiments. First, we report that the ob-
served coverage in the real sensor data was never lower
than 98.4% from what the algorithms predicted for any run.
This indicates that the presented algorithms provide a viable
solution to the coverage search problem for realistic envi-
ronments. As an example for an execution, see Figure 10.
Comparing the algorithms, we see that the Greedy-NBV
variants perform well in comparison to the other variants,
especially against Simple-Greedy. This is due to the fact
that Greedy-NBV considering higher utility views usually
uses fewer views in total, which comes into play in this
particular environment. In relation to the distance to be
driven between views, the time to approach and record a
view matters for this smaller environment in comparison
to the larger simulation maps where the driving distance
dominates the execution time given by the cost function.
We can also see that in the driven path length. Greedy-
NBV usually drives longer distances, but it is still faster
than Simple-Greedy with real robots. In such a situation,
Greedy-NBV should be preferred to Simple-Greedy. Nev-
ertheless, the Set-Cover/TSP variants still have better per-
formance than all greedy algorithms in almost all cases in
their planned execution times and, more importantly, also
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Table VI. This table shows the computation times for the different algorithms (left) and the total path length driven by all robots
in a run.

Computation time (s) Path length (m)

Num Robots 1 2 3 4 1 2 3 4

Multi-Greedy-NBV 6.7 14.4 20.9 27.8 87.0 59.5 50.6 67.6
Greedy-NBV-S 6.7 7.2 7.5 7.5 70.1 80.0 70.6 76.0
Multi-Simple-Greedy 12.4 28.0 40.3 53.0 39.4 44.5 58.7 93.2
Simple-Greedy-S 13.0 13.8 14.1 14.4 44.6 48.6 52.7 53.4
Set-Cover/TSP (TFD)-S 49.7 47.0 47.6 49.2 30.5 33.3 34.7 52.1
Set-Cover/TSP (LKH)-S 37.5 31.5 29.2 29.5 48.7 32.7 48.1 40.0

Figure 10. Illustration of multirobot coverage search in the environment shown in Figure 8. The four-robot solution for Set-
Cover/TSP (LKH) is displayed. End points of view rays are shown in red.

in the observed execution times. This means that the longer
computation times for these algorithms do pay off in faster
execution times. This fact is relevant for real-world appli-
cations as offline computation time is usually cheaper than
robot operation time. Only for online approaches or when
running the algorithms on the robot itself upon deploy-
ment might one prefer a lower computation time, such as
with Greedy-NBV-S.

If we compare the planned execution time with the real
execution time, we observe that computed times are not a

very accurate prediction of real execution times, although
the overall ranking between algorithms is still fairly simi-
lar whether one considers computed or real execution times.
This is not really surprising as autonomous robot navigation
is influenced by many factors, including but not limited to
sensor noise and inaccurate motion execution. These affect
our autonomous navigation and are contained in measured
travel times and thus execution times. But more importantly,
the real execution time is determined by the slowest robot,
and when running multiple robots it is more likely that
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Figure 11. This figure shows the execution times of the real robots (left) in comparison to the planned execution time by the
coverage search algorithms (right).

Figure 12. Illustration of suboptimal real-world behavior. Four-robot solutions from Set-Cover/TSP (TFD)-S (a) and Set-Cover/TSP
(LKH)-S (b) are shown. The path to both ramps is in a confined space marked on the left image. If a robot assigned to the lower level
temporarily blocks access to the ramps, robots aiming for the upper level must wait. The final poses of two robots’ paths might lie
next to each other (marked on the right image), predicting both robots arriving at the same time. It is likely that one robot arrives
earlier and thus should target both views.

at least one will have some delays in its path, increasing
the likelihood of a delay with each new robot. Here our
assumption that robots operate independently also comes
into play. A robot blocking the path of another robot tem-
porarily might have bad effects on the blocked robot’s travel
time. This is what happened in the four-robot case for Set-
Cover/TSP (TFD)-S. See Figure 12(a) for an illustration. An-
other example can be seen in Figure 12(b). Final poses of two
robot paths lie next to each other. Although it is the best so-

lution, in terms of computed execution time, it is very likely
that one robot will arrive at that location earlier than the
other. In such a case, it would be beneficial to transfer the
assignment of sensor locations to the robot that is already
there. Conflicting situations between robots are not always
that extreme, but they do explain most of the cases in which
solutions for three or four robots have computed execution
times that underestimate the real execution times. These sit-
uations are most effectively solved online during execution,
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but it is still beneficial to have plans that distribute robots
preventing possible conflicts in the first place. An example
is the four-robot execution for the Set-Cover/TSP (LKH)-
S solution. Nevertheless, we are approaching the limits of
gaining performance by scaling up the number of robots for
this environment. While keeping this in mind, using mul-
tiple robots to solve the coverage search problem clearly
reduces the time needed to solve the coverage search, and
the algorithms utilize additional robots fairly effectively.

8. CONCLUSIONS

We considered the problem of identifying and planning effi-
cient sequences of sensor locations for covering complex en-
vironments represented in three dimensions. For that pur-
pose, we introduced a sampling based method that reduces
the size of the search space by selecting a large number of
high utility sensor locations, which can then be used to ef-
ficiently plan sequences of sensor locations. We introduced
several variants for the planning problem for single robots
and multirobot teams. We evaluated these empirically in
order to determine the tradeoff between computation time
and execution time of the solutions. Our results in simula-
tion and real-world experiments indicate that despite the
intractability of the problem, efficient multirobot coverage
in three dimensions is feasible.

Small size problems, such as incremental vicinity ex-
ploration by a single robot, were solved close to real time
and thus can directly be deployed in real-world applica-
tions. For larger problems, our Simple-Greedy variant pro-
vided solutions that were competitive with the ones based
on more elaborate planning approaches that solve the set
cover and traveling salesman subproblems. If the time for
visiting a single sensor location is noticeable, the Greedy-
NBV algorithm is a viable alternative. Although the com-
putation times for the Simple-Greedy variants were smaller
than for the advanced solutions, the latter are still the overall
better choice since they result in lower execution times. This
is especially the case when the map is known prior to de-
ployment and not transmitted to robots after deployment,
giving more time for offline computations.

As one would expect, performance increases when
adding more robots. All algorithms were able to reduce
the execution time for the coverage search problem when
given more robots. Yet, the dedicated Multi-Robot Greedy
solutions only showed advantages for small- to medium-
sized problems. The decomposition approach that solves
the set cover and traveling salesman subproblems turned
out to be superior, i.e., producing high-quality solutions
in a short amount of time, especially in combination with
the TSP solver. Even the splitting of the resulting single
robot solution into a solution for multiple robots did not
lead to inferior performance compared to the Multi-Robot
Greedy solutions, which do not require the splitting. Over-
all, producing multirobot plans from single-robot plans was

shown to be a good approach for extending single-robot al-
gorithms.

Our real-world experiments have shown that the sim-
ulation results transfer well to robots acting in real envi-
ronments. The same algorithms that have been shown to be
superior in simulation also performed better in reality, espe-
cially if we value execution time more than offline computa-
tion time. An increasing number of robots also led to shorter
execution times when the robots were well-distributed. Al-
though one would expect that advanced dedicated multi-
robot algorithms might produce better solutions with lower
execution times, our experiences from the real-world exper-
iments suggest that the strongest potential for improvement
is to consider online adaptation of solutions. This is mainly
due to the fact that robot execution times are hard to predict
precisely in reality, and the location of an error or unantic-
ipated delay is crucial for finding a high-quality solution
that mitigates the delay. Overall, despite the large amount
of future work one may carry out to improve a multirobot
3D coverage search, we were able to show that our current
approach is already well-suited for real-world applications.
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APPENDIX A

INDEX TO MULTIMEDIA EXTENSIONS

Extension Media Type Description

1 Video Shows execution of Multirobot
Coverage Search with three
different algorithms
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