BJOLP: The Big Joint Optimal Landmarks Planner*

Carmel Domshlak

Malte Helmert

Erez Karpas

Technion Albert-Ludwigs-Universitit Freiburg Technion
Emil Keyder Silvia Richter Gabriele Roger
Universitat Pompeu Fabra NICTA Albert-Ludwigs-Universitit Freiburg

Jendrik Seipp
Albert-Ludwigs-Universitit Freiburg

Abstract

BJOLP, The Big Joint Optimal Landmarks Planner uses land-
marks to derive an admissible heuristic, which is then used to
guide a search for a cost-optimal plan. In this paper we review
landmarks and describe how they can be used to derive an ad-
missible heuristic. We conclude with presenting the BIOLP
planner.

Introduction

Landmarks for deterministic planning are (possibly logi-
cally compound) facts that must take place at some point
in every plan for a given planning task (Porteous, Sebas-
tia, and Hoffmann 2001; Porteous and Cresswell 2002;
Hoffmann, Porteous, and Sebastia 2004). For example, if
a goal in a Blocksworld task is to have block A stacked on
block B, and initially this does not hold, then clear(B) must
hold at some point for the goal to be achieved, and thus it is
a landmark for that task. Goals are trivially landmarks, and
thus on(A,B) is a landmark as well. We can also infer that
clear(B) must be achieved before stacking A on B, establish-
ing an ordering between these two landmarks.

The two issues with planning landmarks are how to dis-
cover them, and how to exploit them. Even for propositional
landmarks only, sound and complete discovery of all such
landmarks is known to be PSPACE-complete (Porteous, Se-
bastia, and Hoffmann 2001). Still, many landmarks can of-
ten be efficiently discovered (Hoffmann, Porteous, and Se-
bastia 2004; Richter and Westphal 2010; Keyder, Richter,
and Helmert 2010).

Once discovered, landmarks can be extremely helpful in
guiding the search for a plan, as evidenced by the perfor-
mance of the LAMA planner (Richter and Westphal 2010)
in IPC-2008. LAMA uses landmarks to derive a (inadmis-
sible) pseudo-heuristic, used to guide a satisficing heuristic
search.

In this paper,we describe a method for deriving admis-
sible estimates from a set of planning landmarks, with its
instances varying from easy to compute, to, in some sense,
optimally accurate. The resulting heuristics are what we call
multi-path dependent. We also describe a simple best-first

*This paper is strongly based upon Karpas and Domshlak
(2009) and Keyder, Richter and Helmert (2010).

Matthias Westphal
Albert-Ludwigs-Universitit Freiburg

search that exploits such heuristics, and finds optimal solu-
tions more efficiently than standard A*.

Notation and Background

We consider planning in the SAS™ formalism (Bickstrom
and Nebel 1995); a SAS™T description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A sAS™ task is given by a 4-tuple
II=(V,A,s0,G). V={vy,...,v,} is a set of state vari-
ables, each associated with a finite domain dom(v;), where
(assuming name uniqueness) the union of the variable do-
mains F' = |J, dom(v;) is the set of facts. Each complete
assignment s to V' is called a state; s is an initial state, and
the goal G is a partial assignment to V. A is a finite set
of actions, where each action «a is a pair (pre(a), eff(a)) of
partial assignments to V' called preconditions and effects, re-
spectively. Each action a € A has a non-negative cost C(a).

An action a is applicable in a state s iff pre(a) C s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by s[a]; by s[{(a1,...,ar)] we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions a1, . . ., ay starting at state s. Such an action
sequence is a plan if G C sg[{aq,...,ax)], and the cost
of the plan is ¥¥_,C(a;). In cost-optimal planning, we are
interested in finding a plan with a minimal cost.

Let IT = (V, A, so, G) be a planning task, ¢ be a propo-
sitional logic formula over facts F', 7 = (a1, ..., a)) be an
action sequence applicable in sg, and 0 < ¢ < k. Following
the terminology of Hoffmann et al., we say that ¢ is true at
time ¢ in 7 iff so[[{(a1,...,a;)] E ¢, ¢ is first added at time
¢ in 7 iff ¢ is true in 7 at time ¢, but not at any time j < ¢,
and ¢ is a landmark of 11 iff in each plan for II, it is true at
some time.

In addition to knowing landmarks, it is also useful to
know in which order they should be achieved on the way
to the goal. Hoffmann ef al. define different types of po-
tentially useful orderings. In particular, landmark ¢ is said
to be greedy-necessarily ordered before landmark v iff, for
each action sequence applicable in s, if ® is first added in
7 at time ¢, then ¢ is true in 7 at time ¢ — 1.

Porteous et al. show that deciding if just a single fact is
a landmark, as well as deciding an ordering between two
fact landmarks, are PSPACE-complete problems. There-

fore, practical methods for finding landmarks are either
incomplete or unsound. In what follows we assume ac-
cess to a sound such procedure; in particular, we combine
the landmarks from the RHW landmark generation method
(Richter and Westphal 2010) and the 2™ landmark genera-
tion method (Keyder, Richter, and Helmert 2010).

In what follows we assume that a planning task II is sim-
ply given to us with a landmark structure (L, Ord), where
L is a set of II’s landmarks, and Ord is a set of typed order-
ings over L, containing, in particular, the greedy-necessary
ordering over L.

Admissible Landmark Heuristics

Deriving heuristic estimates from landmarks has been pro-
posed by Richter et al. (2010) who estimate the goal distance
of a state s, reached via a sequence of actions 7 from the
initial state, by the number of landmarks L(s,) yet to be
achieved from s onwards. Specifically, if the search starts
with the landmark structure (L, Ord), then

L(s,m) = (L \ Accepted(s, 7)) U RegAgain(s,7) (1)

where Accepted(s,7) C L and ReqAgain(s,m) C
Accepted(s,) are the sets of accepted and required again
landmarks, respectively. A landmark is accepted if it is made
true at some time along 7. An accepted landmark is required
again if (i) it does not hold in s, and (ii) it is ordered greedy-
necessarily before some landmark which is not accepted, or
is a goal.

The estimate | L(s, 7)| is not a proper heuristic in the usual
sense, but rather path-dependent; it is a function of both an
evaluated state s, and a path from sg to s. However, | L(s, 7)|
can still be used like a state-dependent heuristic in best-
first search. In particular, combined with some other help-
ful techniques, it has been successfully used by the LAMA
planner at the Sequential Satisficing Track of the IPC-2008
competition.

Action Cost Sharing by Landmarks

It is not hard to verify that the estimate |L(s,7)| is not ad-
missible. For instance, in a Blocksworld task, let L(s,) =
{crane-empty, on(A,B)}. While |L(s,)| = 2, it is possible
a single action stack(A,B) reaches the goal from s. However,
below we show that the gap between the estimate |L(s,)|
and admissibility is not that hard to close.

Considering the landmarks through the actions that can
possibly achieve them, let cost(¢) be a cost assigned to each
landmark ¢, and cost(a, ¢) be a cost “assigned” by the ac-
tion a to ¢. Suppose also that these (all non-negative) costs

satisfy
Vaec A: Z cost(a,) < C(a)
¢€L(als,m))
Vo € L(s,m): cost(¢p) < min cost(a,d)
a€ach(¢|s,m)
where each action subset ach(¢|s,7) C A (in particular)
contains all the actions that can possibly be used to directly

achieve landmark ¢ along a goal-achieving suffix of 7, and,
reversely, L(a|s,m) = {¢ | ¢ € L(s,m),a € ach(¢|s,m)}.

Informally, Eq. 2 enforces partitioning of each action cost
among the landmarks this action can possibly establish, and
verifies that the cost of each landmark ¢ is no greater than
the minimum cost assigned to ¢ by its possible achievers.

In our planner, we use the (initial-state dependent and
efficiently computable) set of “possible”, and its subset of
“first-time possible”, achievers of ¢ (Porteous and Cress-
well 2002) to estimate the achievers of simple or disjunc-
tive landmarks (the achievers of a disjunctive landmark ¢
can be simply estimated by the set of all actions achieving
some element of ¢). The possible achievers of a conjunctive
landmark ¢ are estimated as the actions which achieve (at
least) one of the conjuncts, without deleting any of the other
conjuncts, and the first-time possible achievers of a conjunc-
tive landmark ¢ are estimated as the subset of the possible
achievers that do not have ¢ as a landmark for achieving
their preconditions.

If ¢ & Accepted(s,), then we set ach(¢|s, 7) to the first-
time possible achievers of ¢, and otherwise to the possible
achievers of ¢. In any event, action cost sharing is all we
need to derive from L(s,7) an admissible estimate of the
goal distance.

Proposition 1 Given a set of action-to-landmark and land-
mark costs satisfying Eq. 2, hr(s,m) = cost(L(s, 7)) =
2 per(s,m) cost(®) is an admissible estimate of the goal dis-
tance h*(s).

Proof sketch: Let P = (ay,as,...,a,) be any plan from
s to the goal. Let im(a) = {¢|¢ € eff(a) N L(s,7)} be
the set of landmarks that are achieved by action a. Then
U;_, Im(a;) is the set of landmarks that are achieved by P.
By the definition of landmarks, P must achieve all the land-
marks in L(s, 7), and therefore L(s, 7) C |J;_, Im(a;), and
cost(L(s,m)) < cost(J;_, Im(a;)). It is easy to see that
cost(J:_, Im(a;)) < >i_, cost(lm(a;)), because some
landmarks could potentially be counted twice in the right-
hand side expression (i.e. achieved by two or more actions).
From the requirements on landmark costs we have that
cost(Im(a;)) < C(a;), and therefore Y _._, cost(Im(a;)) <

>i_1C(a;). If we combine all of this we get
hr(s,m) = cost(L(s,m)) < cost(U;i_;Im(a;)) <
iy cost(im(a;)) < 35;_, Clai) = C(P) =

Proposition 1 leaves the choice of the actual action-cost
partitioning open. The most straightforward choice here is
probably uniform cost sharing in which each action parti-
tions its costs equally among all the landmarks it can pos-
sibly achieve, that is, cost(a,¢) = C(a)/|L(a|s,7)|. The
advantage of such a uniform cost sharing is the efficiency
of its computation. However, the induced action-cost parti-
tion can be sub-optimal. For instance, consider a planning
task with a landmark set {p1, ..., pk, ¢} such that the only
possible achiever of each p; is a unit-cost action a; with
eff(a;) = {pi, q}. For 1 < i < k, the uniform cost sharing
assigns here cost(a;, p;) = cost(a;,q) = 0.5, which gives
cost(p;) = cost(q) = 0.5, and thus hr,(s,7) = k/2 + 0.5.
In contrast, the optimal cost sharing would assign, for all

1 <i <k, cost(a;,p;) = 1 and cost(a;,q) = 0, implying
cost(p;) = 1, cost(q) = 0, and thus hp (s, 7) = k.

The good news, however, is that such an optimal
cost sharing can be computed in poly-time by compiling
Eq. 2 into strictly linear constraints, and solving the lin-
ear program induced by these constraints and the objec-
tive max) e s - cost(¢). In addition, this cost sharing
scheme alleviates an annoying shortcoming of ad hoc (e.g.,
uniform) cost sharing schemes, and satisfies monotonicity
along the inclusion relation of the landmark sets L(s,T).
It is not hard to verify that, for any two sets of landmarks
L and L’ such that L. C L', the LP-based cost sharing en-
sures cost(L') > cost(L) by the very virtue of being op-
timal, and thus yields at least as informative heuristic es-
timate with L’ as with L. This property is appealing as
it allows separating landmark discovery and landmark ex-
ploitation without any loss of accuracy, leaving the phase of
discovery with the simple principle of “more landmarks can
never hurt”. In contrast, the simple yet ad hoc uniform cost
sharing cannot guarantee such monotonicity. For instance,
the uniform cost sharing in the example above but without
landmark ¢ yields hy (s, 7) = k, while with ¢ it results in
hr(s,m)=k/2+40.5.

Action Landmarks

The LP-based “admissibilization” of the landmark sets
L(s,) is optimal, but this, of course, only when the land-
mark costs are estimated with respect to solely Eq. 2. Any
additional information about landmarks may help improv-
ing the accuracy of the estimate. One type of such informa-
tion corresponds to action landmarks (Zhu and Givan 2004;
Vidal and Geffner 2006). Similarly to landmarks over facts,
an action a is an action landmark of a planning task II iff it
is taken along every plan for II.

Although it is possible to discover action landmarks in
a pre-processing phase (a sufficient and efficiently testable
condition for a being an action landmark is that a relaxed
planning task without a is not solvable), The BJOLP plan-
ner discovers action landmarks dynamically during uniform
cost-partitioning as follows: whenever |ach(¢|s,)| = 1
(that is, there is only one achiever of ¢), then that single
achiever, which we denote a, is an action landmark. Since a
must be used to achieve ¢, it makes no sense to divide its cost
between other landmarks it might possibly achieve. There-
fore we assign the full cost of a to ¢ (that is, cost(a, ¢) =
C(a)), and assign 0 cost from a to its other effects (that is,
cost(a,¢’) = 0 for ¢ # ¢ € L(a|s,m)). This allows us
to improve upon “naive” uniform cost-partitioning. We call
the heuristic resulting from the use of action landmarks A, 4.
Clearly hr 4 is still admissible.

We remark that this dynamic action landmark discovery
was not implemented originally in Karpas and Domshlak
(2009), but was added later in Keyder, Richter, and Helmert
(2010).

From Path to Multi-Path Dependence

Let us now return to the definition of the path-dependent set
L(s,n) in Eq. 1. Both LAMA’s heuristic |L(s, 7)|, and the

admissible heuristics hz, and hr, 4, exploit information pro-
vided by the path 7 to better estimate the goal distance from
s. Suppose now that we are given a set of paths from sg to
s; such a set of paths can in particular be discovered anyway
by any systematic, forward-search procedure. Proposition 2
shows that such a set of paths can be much more informative
than any of its individual components.

Proposition 2 Let I1 be a planning task with a landmark set
L, s be a state of 11, ‘P be a set of paths from sg to s, and 7,
be a goal achieving path from s. Then for each path ™ € P,
mq achieves all landmarks in L \ Accepted(s,).

The proof is straightforward: Assume a landmark ¢ is
achieved by a path m € P but not by a path 7’ € P. The
latter implies that all the extensions of 7’ should still achieve
¢, and the extensions of 7’ are exactly the extensions of 7.

Proposition 2 immediately leads to multi-path dependent
versions of hy, and hr, 4. Given a set of landmarks L, and a
set of paths P from s to s, let

L(s,P) = (L \ (Accepted(s, P)) U ReqAgain(s,P) (3)
where Accepted(s,?) = [)..pAccepted(s,7), and
ReqAgain(s, P) C Accepted(s, P) is specified as before by
s and the greedy-necessary orderings over L. Given that,
the multi-path dependent versions of hy, and hp 4 straight-
forwardly reflect their path-dependent counterparts, by re-
placing L(s,) with L(s, P).

The improvement in accuracy in switching to multi-path
landmark heuristics can be substantial. For instance, if we
have access to two paths to s, each suggesting that half of the
landmarks have been achieved, yet they entirely disagree on
the identity of the achieved landmarks, then the estimate of
the (still admissible) multi-path dependent heuristic might
be twice as high as this of the path-dependent heuristic.

Finally, utilizing multi-path dependent estimates for opti-
mal search requires adapting the standard A* search proce-
dure. In fact, a slight adaptation of A* is desirable even in
case of such path-dependent heuristics. Designed for state-
dependent estimates, A* computes h(s) for each state s only
when s is first generated. This will still guarantee optimal-
ity with path-dependent estimates as well, yet, if 7 and 7’
are the current path and a newly discovered path from s to
s, respectively, then we may have h(s,n’) > h(s,). That
is, a newly discovered path may better inform us about the
goal distance from s. We can slightly modify A* to compute
the heuristic value each time a new path to a state is dis-
covered, and utilize the highest estimate discovered so far.
This, of course, preserves search admissibility, and poten-
tially reduces the number of expanded nodes. Note that this
does not contradict “optimal efficiency” of the basic A* as
the latter holds only for monotonic, state-dependent heuris-
tics (Dechter and Pearl 1985).

The modification of A* for multi-path dependent heuris-
tics is very much similar in spirit. Each time a new path
to state s is discovered, it is stored in the list of such paths
P(s), and s’s heuristic value is marked as “dirty”. Of course,
storing all paths to s is generally infeasible, and the algo-
rithm is usable only in cases where the relevant informa-
tion carried by P(s) can be captured and stored compactly.

In fact, the adaptation of A* to path-dependent heuristics as
above constitutes such a special case of all the relevant in-
formation of a set of paths being the maximal value of the
heuristic estimates induced by them individually. Nicely, the
multi-path dependent landmark heuristics hy, and hy 4 also
constitute a usable special case as above. In our variant of
A*, referred later as LM-A™, we associate each state s with
the landmark set L(s, P(s)) as in Eq. 3. When a new path
7 to s is discovered (and extends P(s)), the landmarks are
incrementally updated to L(s, P(s) U{7}) by exploiting the
monotonicity of the intersection set operator.

When a state s is removed from the open list for expan-
sion, before actually performing the expansion, LM-A™ first
checks whether the s’s heuristic is marked as “dirty” (which
happens when new paths to s have been discovered between
the time s was inserted into the open list, and the time it
is remove from the open list). If s’s h-value is dirty, we
reevaluate h(s) (using the new information), and if the new
heuristic value is higher than the previous heuristic value,
we reinsert s into the open list with the new h-value. Note
that both the old and new h-values are admissible, and so
if the new h-value is lower (which could happen when us-
ing uniform cost-partitioning), admissibility is maintained.
If the s is not “dirty”, or if the newly computed h-value is
not higher than the old value, then s is expanded as usual.
LM-A™ is described in pseudo-code in Figure 1.

Implementation

We have implemented hr, hpa and LM-A™ on top of the
Fast Downward planning system. The BJOLP planner
uses LM-A* with the hp 4 heuristic (using uniform cost-
partitioning and the new dynamic action-landmark discov-
ery).

As mentioned before, the landmarks we use for BJOLP
are obtained by combining the landmarks discovered by the
RHW method (Richter and Westphal 2010) and the A™ land-
marks (Keyder, Richter, and Helmert 2010) with m = 1.
First the entire landmarks graph is generated by each of
these discovery methods. Then, the landmarks and order-
ings are merged, and dominated (in the sense of logical
implication) landmarks are discarded. For example, if one
method discovers landmark ¢ and the other discovers land-
mark ¢ V ¢, then ¢ V ¢’ will be discarded (along with all
its orderings). Dominated orderings are also eliminated by
logical implication (remember that every greedy-necessary
ordering is a natural ordering, but not vice versa).

Finally, this version of BJOLP uses a much more effi-
cient implementation of the way landmark information for
each state is stored. While previous versions used a set (of
the C++ standard template libraries) to store, for each state,
the set of accepted landmarks, BJOLP uses a boolean vec-
tor, which uses one bit per landmark. This speeds BJOLP
up considerably over previous versions and dramatically re-
duces its memory footprint.

LM-A*

1. Put the start node s on a list called OPEN of unexpanded
nodes. Assign g(s) =0.

2. If OPEN is empty, exit with failure; no solution exists.

hed

Remove from OPEN a node n at which f=g+h is mini-
mum. Break ties in favor of low A (although ties can be
broken arbitrarily, as long as goal nodes are favored).

4. If n is a goal node, exit successfully with the solution ob-
tained by tracing back the path along the pointers from n
to s (pointers are assigned in steps 7 and 8).

5. If n is marked as dirty, calculate h(n). Else, goto step 7.

6. Compare the newly computed h(n) with that previously
assigned to n. If the new value is greater, substitute it for
the old, update f(n), move n back to OPEN, and goto step
2.

7. Place n on a list called CLOSED to be used for expanded
nodes, and expand node n, generating all its successors
with pointers back to n.

8. For every successor n’ of n:

(a) Store the current path to n’ (through n).

(b) Calculate g(n’) = g(n) + C(a), where a is the action
leading from n to n'.

(c) Calculate h(n’).

(d) If ’ is neither in OPEN nor in CLOSED, then add it to
OPEN. Assign the newly computed g(n’) and h(n') to
node n’.

(e) If n/ already resides in OPEN or CLOSED:

i. Store the new path to n’ and mark n’ as dirty.

ii. Compare the newly computed g(n’) with that previ-
ously assigned to n’. If the new value is lower, substi-
tute it for the old (n’ now points back to n instead of to

its predecessor), and update f(n’). Move the match-
ing node n’ back to OPEN if it resided in CLOSED.

9. Go to step 2.

Figure 1: Pseudo-code of LM-A*

References
Béckstrom, C., and Nebel, B. 1995. Complexity results for
SAS™ planning. Comp. Intell. 11(4):625-655.

Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505-536.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. 173:503-535.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. 22:215-278.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728-1733.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335-340.

Porteous, J., and Cresswell, S. 2002. Extending landmarks

analysis to reason about resources and repetition. In PLAN-
SIG.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
ECP.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127-1717.

Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. 170(3):298-335.

Zhu, L., and Givan, R. 2004. Heuristic planning via
roadmap deduction. In IPC-4, 64—66.

