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Chapter 1

Introduction

E-commerce web sites enjoy huge popularity. Virtually every type of good is
traded online: books and electronic devices are ordered from Amazon1, used
items are traded on eBay2 and, more recently, services such as translation and
web design jobs are offered at service auction sites, such as Elance3. Almost
every e-commerce site employs a so-called reputation mechanism. Reputation
mechanisms collect ratings from market participants and make them publicly
available. These ratings then allow other market participants to make better-
informed choices.

1.1 Reputation Mechanisms

It is instructive to distinguish between different kinds of reputation mechanisms
in accordance with the problems they address. Those that are employed by
online opinion forums such as Amazon Reviews or Ciao4 are built to elimi-
nate asymmetric information while those at online auction sites are primarily
intended to induce cooperation and trust between market participants. For a
general overview of research on reputation mechanisms, see the excellent survey
of Dellarocas [2006].

1.1.1 Adverse Selection

The dynamics entailed in markets with asymmetric information were first stud-
ied by Akerlof in his seminal paper “The Market for Lemons” [1970]. He presents
the example of a market for used cars with two types of cars: cars of bad quality

1www.amazon.com
2www.ebay.com
3www.elance.com
4www.ciao.com
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(which in America are called “lemons”) and cars of good quality. The seller of
a car knows whether his5 car is a lemon or not while potential buyers can only
estimate the average quality of all cars taken together. A buyer’s valuation for
a car, however, depends on its quality. As she cannot observe the quality of a
specific car, all cars look the same to her and choosing one at random gives her
average quality in expectation. Consequently, she refuses to pay more than the
price that corresponds to average quality. The sellers anticipate this reasoning
and while sellers that own a lemon would happily agree, those with a good car
would run a loss selling it at the average price which is why they withdraw from
the market. The buyers on their part anticipate the withdrawal of the good
sellers and—now confronted with the reduced set of cars—lower the price they
are willing to pay. Due to the hidden quality of the cars, all but the cars of
worst quality are driven out of the market. This effect is called adverse selection
and it is present in all markets where a product’s type, i. e. its inherent quality,
is unknown to the customer before the purchase. The objective of a reputation
mechanism in this setting is to reveal the inherent quality of the products to
future customers.

1.1.2 Moral Hazard

The primary objective of reputation mechanisms at online auction sites, such
as eBay, is different. Instead of providing information about the products that
have been traded, the goal is to disseminate information about the trustworthi-
ness of the market participants. The usual procedure at eBay is that the buyer
of an auction transfers the payment to the seller before the latter sends the
good. Once the seller has received the payment, however, he has an incentive to
either not send the good at all or in a quality that is lower than the one he had
advertised. The assumption is that for goods of low value, the probability of le-
gal action is sufficiently small as the costs that are entailed for the buyer exceed
the good’s value. Anticipating this, the buyer would not send the money in the
first place, so that no trade takes place. The problem that eBay’s reputation
mechanism addresses is therefore one of opportunistic behavior. The technical
term for this type of market failure is moral hazard and the objective of a rep-
utation mechanism situated in these settings is therefore to induce cooperation
and trust between market participants. Since future buyers resort to the seller’s
public feedback history, seller cooperation is achieved through the threat that
non-cooperative behavior is sanctioned.

The central distinction between settings with pure adverse selection and
settings with pure moral hazard is the type of seller behavior: in settings with

5We refer to sellers and buyers as male and female, respectively.
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pure adverse selection, sellers differ in their abilities. That is, some sellers are
of higher quality than others. In settings with pure moral hazard, all sellers
are equally able but are tempted to exert an effort that is below their abilities
because it involves smaller costs.

1.1.3 Mixed Settings

In addition to settings with pure adverse selection and pure moral hazard, many
reputation mechanisms are situated in settings where both are present simulta-
neously. An example for such a reputation mechanism is the one employed by
Elance. Elance may be regarded as the equivalent of eBay for services: potential
customers can post a project and providers can place their bids on finishing it.
Note that in contrast to eBay, Elance employs a reverse auction, i. e. the sellers
are bidding. Another difference to eBay is that the buyers are not deemed to
take the lowest offer but can consider both the posted bid and the published
feedback about the seller. Consider the example of a web designer who offers
his service via Elance. Clearly, different web designers have different abilities
as virtually everybody with an Internet connection can open up an account
and offer his services. Yet while unskilled web designers can only produce low
quality, skilled web designers may choose between high and low quality and the
production of low quality involves less time and money than the production
of high quality. The objective of the reputation mechanism in mixed settings,
such as Elance, is therefore both to reveal the seller’s abilities and to induce
cooperative behavior.

1.2 Truthful Feedback

A common feature of almost all reputation mechanisms in e-commerce envi-
ronments is the dependency on honest buyer feedback. Most mechanisms in
the literature simply assume that feedback is reported honestly. However, as
the outcomes are private information of the agents, this assumption is rather
strong. From a game-theoretic point of view, there are two issues in particular:
the first is the agents’ motivation to participate at all. The feedback procedure
requires the user to register an account, to log in and to fill out forms describing
the experiences. While this is time consuming and thus costly, the reported
information benefits other customers but not the posting agent herself, so that
standard economic theory predicts an under-provision of feedback. The second
difficulty is honesty. External interests, i. e. biases towards dishonest report-
ing, come from a variety of motivations. Imagine, for example, two companies
competing for the same group of customers. Either company has an incentive
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to badmouth its competitor, to praise its own products or to pay the rating
agents to do so. Another potential reason for biased reports are externalities,
i. e. an agent’s utility for a good changes if other agents consume it as well.
An example for a good with positive externalities is a voice-over-IP service for
which an agent’s utility is higher the more other agents she can call with it.
The agent could therefore be tempted to report a quality level that is higher
than the perceived quality in order to lure more agents into using the service.
The analogous holds true for settings with negative externalities, such as a web
service that evenly divides its bandwidth among its users. A particularly com-
mon issue at online auction sites with bi-directional feedback, where both the
seller and the buyer can rate the transaction, is retaliatory feedback. Empiri-
cal data of eBay’s pre-2008 reputation mechanism suggests that sellers waited
until the buyers had posted their feedback and matched it thereafter. That
is, sellers posted the same rating they had received from the buyers and, in
particular, retaliated against negative feedback [Resnick and Zeckhauser, 2002;
Bolton et al., 2009]. The truthful elicitation of reputation feedback is thus
crucial to incorporate into the design of a reputation mechanism.

For a product rating environment with pure adverse selection, there is a
method to elicit truthful feedback due to Miller, Resnick and Zeckhauser [2005]

(henceforth, MRZ). Their so-called “peer prediction method” pays a buyer for
her feedback depending on the feedback that was given about the same product
by another buyer. The intuition behind this method is that the quality experi-
ences of two buyers that have bought the same product should be “essentially”
identical. Differences in experiences may occur but can be captured in a noise
parameter. Take a digital camera bought via Amazon as an example: while dif-
ferent customers may experience different quality due to noise in the production
process or due to different opinions on what constitutes a “good” camera, all
buyers receive the identical model. We elaborate on this method in Section 2.2.

The only work we are aware of that is addressing the elicitation of truthful
feedback in moral hazard environments is that of Jurca and Faltings [2007b].
The mechanism they propose, however, is only applicable to settings where the
buyer and the seller frequently interact with one another. It does not extend to
the usual e-commerce setup, at online auctions for example, in which a buyer is
interacting with a specific seller only once.

1.3 Contributions

The largest part of the literature studies moral hazard reputation mechanisms
under the assumption that they are given honest feedback. The authors then
usually study how to improve seller cooperation. For example, Dellarocas [2005]
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studies the optimal length of published feedback history with regard to seller
cooperation.

In this thesis, we take the complementary view and assume that we are given
such a reputation mechanism that induces some degree of seller cooperation un-
der the assumption that feedback is honest. Using this reputation mechanism,
we then study whether truthful feedback can be elicited. That is, we are using
the reputation mechanism as a “black box” and investigate whether one can
design a feedback mechanism for it. More specifically, we study whether the
aforementioned “peer prediction method” can be modified for this purpose. It
is important to note that in settings with moral hazard, the problem of inducing
seller cooperation and that of truthful feedback elicitation can be viewed largely
in isolation. In theory, it is thus perfectly possible that a setting allows for a rep-
utation mechanism that induces full cooperation with assumed honest feedback
while it is impossible to design a feedback mechanism for this setting, and vice
versa. Please note that when the words reputation mechanism and feedback
mechanism can be confused, we sometimes refer to the latter as a “feedback
plug-in” indicating that it builds on an external reputation mechanism.

We show that in a pure moral hazard setting, there is no peer based feedback
mechanism that elicits truthful feedback. For a mixed setting, however, we
retrieve a positive result and construct a feedback mechanism that can be used
as a plug-in by reputation mechanisms. Furthermore, the plug-in can be used
for pure moral hazard settings with “cheating types”, i. e. sellers who do not
value the published feedback high enough so that they find it optimal to always
cheat. Note that the mixed setting is a strict mixed setting, i. e. there needs to
be adverse selection to escape the mentioned impossibility result. We also give
a first result with regard to the elimination of non-truthful equilibria that are
unavoidable in purely peer based feedback mechanisms. That is, we exemplify
a method for a simple example setting with perfect monitoring to construct a
payment scheme that is guaranteed to induce truthfulness once a single buyer
is truthful.

Our experimental findings show that both computational complexity and
expected budget are feasible in practice. Even for large signal sets with 30
signals, our feedback plug-in can be computed in less than 250 milliseconds.

1.4 Outline

The remainder of the thesis is organized as follows. In Chapter 2, we introduce
the pure adverse selection setting which models the situation in online opinion
forums such as Amazon Reviews. We furthermore elaborate on MRZ’s feedback
mechanism for this setting as well as its budget-optimal formulation as a Linear
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Program which is due to Jurca and Faltings [2006]. In Chapter 3 we analyze
the strategic implications of online auction settings with pure moral hazard
and distinguish them from those at opinion forums. We prove that the pure
adverse selection mechanism cannot be applied to these online auction sites and
discuss possible escapes from this impossibility. In Chapter 4 we introduce a
setting that combines the characteristics of the pure adverse selection setting
from Chapter 2 with those of the pure moral hazard setting from Chapter 3. We
retrieve a positive result and show how to construct a “feedback plug-in” that
induces a truthful perfect Bayesian equilibrium. We experimentally evaluate
this “feedback plug-in” in Chapter 5. In Chapter 6 we exemplify a method to
construct a payment scheme that is guaranteed to induce truthfulness once a
single buyer is truthful. Finally, we conclude with a brief summary of this thesis
and an outlook on future research in Chapter 7.
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Chapter 2

Pure Adverse Selection

Akerlof’s lemon market that we introduced in Chapter 1 is similar, though
not identical, to the setting we are faced with in online opinion forums, such
as Amazon Reviews. The main difference is that in Akerlof’s setting, every
buyer experiences a different product while the feedback reports at opinion
forums are written about identical products, such as the same digital camera.
Nevertheless, adverse selection is present in the opinion forum setting as well:
if buyers cannot distinguish between the quality levels of different products, a
buyer’s willingness to pay is independent of the quality which again drives out
all products of higher value. A number of remedies for this situation have been
developed. For example, the seller can give out a “money back guarantee” that
allows the buyer to experience the product without the risk of losing her money.
Another method is to leave it to a trusted third party to thoroughly test the
product and provide information about its quality. In this chapter, we take yet
another approach and resolve pure adverse selection through the publication
of previous buyers’ experiences. More specifically, we will ask the buyers of a
product to report their perceived quality and present a mechanism that induces
them to be honest.

The remainder of this chapter is organized as follows: in Section 2.1 we de-
scribe the pure adverse selection setting as studied by MRZ. In Section 2.2 we
present their reputation mechanism for this setting, which is based on the com-
parison of two quality reports. While MRZ pay the reporting agents according
to a strictly proper scoring rule, we also introduce the Linear Program formula-
tion of the mechanism which is due to Jurca and Faltings [2006]. In Section 2.3
we give a small example motivated by the setting at Amazon Reviews and in
Section 2.4 we conclude this chapter with a discussion on other application areas
of the mechanism.
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2.1 The Setting

A group of agents experiences the same product or service. Its quality (hence-
forth its type) is drawn out of a finite set of possible types:

Θ = {θ1, ... , θ|Θ|} (2.1)

Once determined by “nature”, a product’s type is fixed. All agents share a
common prior belief Pr(θ) that the product is of type θ with

∑
θ∈Θ

Pr(θ) = 1 (2.2)

while Pr(θ) > 0 for all θ ∈ Θ. Please note that the type of a product is never
revealed.

The quality observations by the agents are noisy, so that after experiencing the
product, a buying agent does not know with certainty the product’s actual type.
Instead, she privately receives a signal drawn out of a set of signals:

S = {s1, ... , sM}. (2.3)

Let si denote the signal received by agent i and let

f(sm| θ) = Pr(si = sm| θ) (2.4)

be the probability that agent i receives the signal sm ∈ S if the product is of
type θ ∈ Θ. The signal observations again constitute a probability distribution,
i. e. for all θ ∈ Θ we have:

M∑
m=1

f(sm| θ) = 1. (2.5)

We assume that different types generate different conditional signal distributions
and that all f(sm| θ) are common knowledge.

We allow the mechanism (henceforth, the center) to pay agents for their
feedback. For example, electronic market sites could give away rebates on future
sales. However, payments do not have to be monetary as long as the agents
associate utility with them. In particular, we assume that utilities are linear in
payments. Please see Section 2.4 for examples with non-monetary payments.

Let Ci be the costs reflecting agent i’s time and effort required for the rating
process and let ∆i(sj , sh) be the external benefit agent i could gain by falsely
announcing signal sh instead of signal sj (the one actually received). As men-
tioned in the introduction of this thesis, these benefits can come from a variety
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Agent
i buys

product

Agent i
receives
quality
signal
si = sj

Agent i
reports

signal ai
j

to center

Center
computes
payment
τ(ai

j , a
r(i)
k )

Figure 2.1: The reporting procedure for a single agent i in the pure adverse selection
setting.

of backgrounds such as badmouthing competitors. We assume upper bounds

C = max
i
Ci (2.6)

and

∆(sj , sh) = max
i

∆i(sj , sh) (2.7)

on the participation costs and external lying benefits, respectively. This way the
center does not require knowledge on an individual agent’s preferences. Note
that by definition ∆(sm, sm) = 0 for all sm ∈ S.

2.2 The Peer Prediction Method

The problem we are facing is difficult because the type, i. e. the “ground truth”
is never revealed. That makes the setting different to prediction markets, for
example, where a publicly observable event eventually materializes [e. g., Pen-
nock and Sami, 2007; Wolfers and Zitzewitz, 2004]. However, we can use the
report of one agent and compare it to that of another agent.

At the core of the reputation mechanism by MRZ is a so-called payment
scheme that determines a payment to the reporting agent depending on her sig-
nal report and the signal report by another agent, called the reference reporter.
Before we elucidate on the construction of the payment scheme, we describe
the general procedure (compare Figure 2.1): first, an agent buys a product and
receives a quality signal. Thereafter, the center asks the agent for feedback
regarding the quality signal she received. As this is private information of the
agent, there are three alternatives:

• the agent can choose to report the signal she actually received,

• she can lie, i. e. report some other signal sh 6= si,

• or she can choose not to report at all.
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Agent 1
receives
signal
s1 = sj

Agent 1
reports

signal a1
j

to center

Agent 2
receives
signal
s2 = sk

Agent 2
reports

signal a2
k

Center
computes
payments
τ1(a1

j , a
2
k)

and
τ2(a2

k, a
1
j )

Figure 2.2: The procedure of the pure adverse selection reporting game.

For the moment, we assume that the agent has incentives to report a signal
and let

ai = (ai1, . . . , a
i
M ) (2.8)

be the reporting strategy of agent i, such that she reports signal aij ∈ S if she
received sj . The honest strategy, i. e. always reporting the signal received, is:

ā = (s1, . . . , sM ). (2.9)

As becomes clear from the definition of the agent strategies, we assume they
are independent of the product. That is, an agent can lie about the quality
signal she perceived but she cannot announce reports for products she has not
bought. This assumption is reasonable if the reputation mechanism is located
at an intermediary, such as a booking site. Here, agents cannot claim to have
experienced a product that in fact they have not since the center knows from
the booking data which product was bought by whom.

After the agent has reported a signal to the center, it is compared to the
report of her reference reporter r(i). Let si = sj and sr(i) = sk be the signals
received by agent i and r(i). For her report, she receives a payment

τ(aij , a
r(i)
k ) (2.10)

that depends on both her own report aij and the report of her reference reporter
a
r(i)
k . The central idea of comparing two signal reports is that knowing the

signal received by agent i should tell you something about the signal received
by her reference reporter. This assumption is called stochastic relevance [Miller
et al., 2006].

Definition 1. Random variable si is stochastically relevant for random variable
sr(i) if and only if the distribution of sr(i) conditional on si is different for all
different realizations of si.

That is, si is stochastically relevant for sr(i) if and only if for any two distinct

10



Reporting
Game

Publication
of reported

signals

Bayesian
update of

type beliefs

Figure 2.3: The overall procedure of the pure adverse selection setting.

realizations of si, call them sj and sh, there exists at least one realization of
sr(i), call it sk, such that

Pr(sk|sj) 6= Pr(sk|sh). (2.11)

MRZ prove that combinations of Pr(θ) and f(·|·) that fail stochastic relevance
have Lebesgue measure 0 [2005]. This means that small belief perturbations
make stochastically irrelevant belief combinations stochastically relevant again.
For the remainder of this chapter, we therefore assume that stochastic relevance
holds.

The point in time at which the reported signals can be published depends
on the rule that is used to choose an agent’s reference reporter. MRZ discuss
several rules and their advantages but we constrain ourselves to the basic rule
which collects feedback from 2 subsequent agents, rates them against each other
and then publishes the two reports. For the game between the next two agents,
the type beliefs are computed via Bayesian updating (Equation 2.14 on p. 12).
See Figure 2.3 for the overall procedure.

2.2.1 Belief Computations

Let again sk and sj denote the signals received by r(i) and agent i, respectively.
The probability that r(i) received sk given i received sj is denoted by:

g(sk| sj) = Pr(sr(i) = sk| si = sj). (2.12)

We transform Equation 2.12 until we are left with values that are given with the
setting. The first step is to expand the conditional probability into a summation:

g(sk| sj) =
∑
θ∈Θ

f(sk| θ) · Pr(θ| si = sj). (2.13)

Applying Bayes’ Theorem to the second part of the summation in Equation 2.13
yields:

11



Pr(θ| si = sj) =
f(sj | θ) · Pr(θ)
Pr(si = sj)

. (2.14)

The denominator of Equation 2.14 is the prior signal probability which can be
computed with Equation 2.15:

Pr(si = sj) =
∑
θ∈Θ

f(sj | θ) · Pr(θ). (2.15)

With these, we have all necessary calculations to compute g(sk| sj) for all
sk, sj ∈ S. We can therefore now turn to the design of the payment scheme.

2.2.2 Proper Scoring Rule Formulation

The payment scheme is an M×M matrix that is used to determine the payment
to an agent depending on the signal announcements by her and her reference
agent. As before, let sj and sk denote the signal received by agent i and agent
r(i), respectively, and let τ(aij , a

r(i)
k ) denote the payment agent i receives if she

announces aij and her reference reporter announces ar(i)k . We build the payment
scheme with the assumption that r(i) honestly reports her signal, i. e.

a
r(i)
k = sk (2.16)

and show how to find payments for agent i that make honest reporting her best
response to the honest report by her reference agent. As the game is symmetric,
honest reporting then becomes a best response to honest reporting which makes
it a Nash Equilibrium. The expected payment to agent i given her received
signal and given an honest report by r(i) is:

E(aij , sj) =
M∑
k=1

g(sk| sj) · τ(aij , a
r(i)
k ). (2.17)

The idea is that once agent i received a signal herself, she can update her
probabilistic belief of r(i)’s signal using Equation 2.12 on p. 11.

The question now is how to elicit the agent’s updated posterior belief and
MRZ employ so-called proper scoring rules which can be used to truthfully
elicit beliefs or forecasts from agents about the likelihood of mutually exclusive
events [e. g., Savage, 1971; Cooke, 1991; Winkler et al., 1996]. Once an event
materializes (“happens”), its outcome is publicly observed and the agent receives
a numerical score or payment that depends on her announced forecast. Scoring
rules that are strictly proper are chosen such that the agent maximizes her
expected score if and only if she honestly announces her distributional belief.
The two following definitions formalize this.

12



Definition 2. A scoring rule is a function R : P × X → R that assigns a
numerical score to each pair (p, x), where p is a probability distribution and x

is the event that eventually materializes.

Definition 3. A scoring rule is said to be proper if an agent is maximizing her
expected score by truthfully announcing her belief p ∈ P and strictly proper if
the truthful announcement is the only announcement maximizing her expected
score.

MRZ apply strictly proper scoring rules to our reputation feedback setting.
The event that agent i shall forecast is the signal received by her reference
agent. Take a look at the space of updated posterior distributions: agent i re-
ceives exactly one out of M signals so that there are only M possible posterior
distributions, g(·| sj), all of which the center can compute with the setting’s
common knowledge data. So if we have a proper scoring rule R(·, ·) that truth-
fully elicits probabilistic beliefs, we can ask the agent to choose one out of these
M possible posterior beliefs through the reporting of her signal. Note that, for
the moment, we assume that there are no external benefits from lying.

Lemma 1. R(p, x) = log2(px) is a strictly proper scoring rule where px is the
probability that was announced for the event that actually materializes.

See the work by Savage [1971] for a more detailed discussion of proper scoring
rules including a proof for Lemma 1. Note that we could use any strictly proper
scoring rule to construct the payment scheme and use the logarithmic rule solely
for its notational simplicity.

Proposition 2. If we assign the payments according to

τ(aij , a
r(i)
k ) = log2(g(ar(i)k |a

i
j)), (2.18)

honest reporting is a strict Nash Equilibrium in the simultaneous reporting game
with no external benefits from lying.

Proof. What needs to be shown is that honest reporting by agent i is the sole
best response to an honest report by r(i), and vice versa. Given an honest report
by agent r(i), the expected payment is given by Equation 2.17 that—together
with the strictly proper log scoring rule—is uniquely maximized by agent i’s
honest belief. It is thus the single best response to report the signal she received
as the scoring rule is then applied to the updated posterior distribution. Due
to the game’s symmetry, this also holds for scoring agent r(i).

What remains to be shown is how to incorporate the external benefits from
lying as well as the participation constraints. As we assumed utilities that
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are linear in payments, linear transformations of the payments do not change
the strategic properties of the reporting game. That is, we may apply affine
transformations. How to proceed is described in the proof of Lemma 3 on p. 17.

2.2.3 Linear Program Formulation

Jurca and Faltings (henceforth JF) [2006] study a setting that is essentially the
same as that of MRZ. The mechanism they propose also applies peer prediction,
i. e. the use of reference reporters to score agents, but instead of using proper
scoring rules, they formulate the payment scheme as a Linear Program (LP).
The technique of formulating a mechanism design problem as an optimization
problem is called Automated Mechanism Design [Conitzer and Sandholm, 2002;
Sandholm, 2003].

The Linear Program formulation has several advantages over the formula-
tion with proper scoring rules: first, the mechanism designer can focus on the
formulation of the problem rather than implementing the solution. This lowers
the probability of programming mistakes and allows for the convenient formu-
lation of certain properties. In our setting, one can observe this, for example,
when it comes to the formulation of the external benefits from lying for which
the formulation is much more natural in the LP than it is for the proper scoring
rules. An advantage with regard to the actual result is that the optimization
problem implements the budget-optimal mechanism for a given problem.

The constraints of the LP can be divided into two groups. The first group
consists of the honesty constraints which require that the honest signal an-
nouncement by agent i is the single best response to an honest report by r(i).
For every possible signal observation si = sj ∈ S, there exist M − 1 dishonest
announcements aij 6= āj . Given that the reference report is honest, we want the
expected payment of an honest announcement by agent i to be larger than the
expected payment of any other announcement. More accurately, incorporat-
ing external lying incentives, we want it to be larger by a margin greater than
∆(sj , sh):

M∑
k=1

g(sk| sj) · τ(sj , sk)−
M∑
k=1

g(sk| sj) · τ(sh, sk) > ∆(sj , sh)

∀sj , sh ∈ S, sj 6= sh

(2.19)
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and, in a more compact notation:

M∑
k=1

g(sk| sj) (τ(sj , sk)− τ(sh, sk)) > ∆(sj , sh).

∀sj , sh ∈ S, sj 6= sh

(2.20)

The second group consists of the participation constraints, also called individual
rationality (IR) constraints [e. g., Parkes, 2001, p. 34f]. A rational agent will
only give feedback if she is remunerated with at least as much as the rating
process costs her. Note that in order to avoid indifference between participation
and absence we demand that, at the time of her participation decision, the
agent receives an expected payment that is higher than C. From a strategic
point of view, there are three possible times at which an agent could decide
about her participation: the first is before she knows her signal. The expected
payment at that stage is the a priori or ex ante payment which is why this
type of IR constraint is called ex ante individual rationality. For our setting,
however, this is not sufficient as the agents decide whether to participate only
after they have experienced the product, i. e. after they received their signal.
Therefore, participation needs to be better than non-participation given any of
the M possible signal observations. This type of IR constraint is called interim
individual rationality:

M∑
k=1

g(sk| sj) · τ(sj , sk) > C, ∀sj ∈ S. (2.21)

For reasons of completeness, let us mention the third type which is called ex post
individual rationality and is applicable in settings where agents can withdraw
from the mechanism once they have learned its decision. The Vickrey auction
[1961], for example, satisfies ex post IR.

As mentioned earlier, the objective of the center is to minimize its required
budget. Please note that technically we can only achieve a very good approxi-
mation of the required budget as we have strict inequalities in our constraints.
The budget B is the expected payment given a certain signal weighted with the
signal’s prior probability:

B =
M∑
j=1

Pr(sj)

(
M∑
k=1

g(sk| sj) · τ(sj , sk)

)
. (2.22)

Note that given a feasible assignment, it is sufficient to solely regard the expected
payment of the honest equilibrium since this is what the agents should play given
the honesty constraints. An alternative way to come up with the same objective
function is to apply basic probability theory: the probability that τ(sj , sk) is
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paid is Pr(sj ∩ sk) which is also the factor τ(sj , sk) is weighted with, so that
one obtains:

B′ =
M∑
j=1

M∑
k=1

Pr(sj ∩ sk) · τ(sj , sk). (2.23)

From probability theory, we know that:

Pr(sj ∩ sk) = Pr(sk| sj) · Pr(sj). (2.24)

Inserting this into Equation 2.23, then yields:

B′ =
M∑
j=1

M∑
k=1

Pr(sk| sj) · Pr(sj) · τ(sj , sk)

=
M∑
j=1

Pr(sj)

(
M∑
k=1

g(sk| sj) · τ(sj , sk)

)
= B.

(2.25)

Together with the assumption that there is no possibility to withdraw credit
from the agents, so that all payments are non-negative, the summarized payment
scheme formulated as an LP in standard form is LP 1. Note that we have to add
a small ε > 0 to the right side of both the honesty and participation constraints
as the definition for Linear Programs does not include strict inequalities.

LP 1.

min B =
M∑
j=1

Pr(sj)

(
M∑
k=1

g(sk| sj) · τ(sj , sk)

)

s. t.

M∑
k=1

g(sk| sj) (τ(sj , sk)− τ(sh, sk)) ≥ ∆(sj , sh) + ε

∀sj , sh ∈ S, sj 6= sh

M∑
k=1

g(sk| sj) · τ(sj , sk) ≥ C + ε ∀sj ∈ S

τ(sj , sk) ≥ 0; ∀sj , sk ∈ S

It is clear that LP 1 is bounded as all factors in the objective function are
non-negative. To show that it is also feasible, we give a revised result from
our earlier work [Witkowski, 2008] and begin with a lemma that reduces the
feasibility of LP 1 to that of the following feasibility program (FP). Note that
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an FP is an LP without objective function. FP 1 consists of the left side of the
honesty constraints with the external benefits from lying set to 0:

FP 1.

M∑
k=1

g(sk| sj) · τ(sj , sk)−
M∑
k=1

g(sk| sj) · τ(sh, sk) ≥ ε

∀sj , sh ∈ S, sj 6= sh

Lemma 3. Feasibility of FP 1 implies feasibility of LP 1.

Proof. We proceed by transforming a feasible solution of FP 1 into a feasible
solution of LP 1 and begin with incorporating ∆(sj , sh). Let ε′ denote the max-
imal of all possible ε which corresponds to FP 1’s “honesty margin”. Note that
taking the maximal ε is not necessary but makes it easier to follow the reason-
ing. As expected utility is invariant to affine transformations, we can multiply
τ(·, ·) with a constant factor γ without changing the incentive properties. Let
∆′ = maxj,h ∆(sj , sh) denote the maximal external lying benefit. Then we can
choose γ = ∆′

ε′ , so that after multiplying τ(·, ·) with γ, the resulting feasibility
program incorporates all external lying benefits.

If the minimal τ(sj , sk) is negative, let τ ′ denote its absolute value, i. e. it
becomes positive, and 0 otherwise. Incorporating participation costs C and
ensuring that all τ(sj , sk) are positive is done through the addition of τ ′ +C +
ε with ε > 0 to all τ(sj , sk). As mentioned, expected utility is invariant to
affine transformations, so that adding a constant does not change the agents’
incentives.

Proposition 4. LP 1 is feasible.

Proof. By Lemma 3 it is sufficient to restrict the feasibility analysis to FP 1.
Observe that the two summations in FP 1 are the expected payments to agent
i given she reports the honest signal sj and given she reports some other signal
sh, respectively. If we choose τ(·, ·) according to a strictly proper scoring rule,
her expected payment is maximized through her choice for the honest signal’s
posterior distribution. Stochastic relevance implies that every possible signal
observation si yields a different posterior distribution with regard to sr(i), so
that choosing the honest signal’s posterior distribution is strictly better than
any other possible posterior distribution.

The payment scheme together with the rater choice rule we use induces a
temporal order of extensive games with imperfect information. However, the
fact that no agent knows the reported signal of her reference reporter make
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them equivalent to 2-player strategic games which we call “reporting games”
and for which the following proposition holds.

Proposition 5. Reporting honestly is a Nash equilibrium in every reporting
game induced by an update of the type beliefs.

If LP 1 is feasible and bounded, the proof follows immediately from the design
of the payment scheme.

Jurca and Faltings present numerous extensions to this base model. They
show how to further lower the budget by using multiple reports and a filtering
technique for reports that are false with high probability (while still paying
these reports) [2006]. In order to incorporate prior beliefs that are slightly
different from the center’s, they built a mechanism robust to small changes
in these beliefs [2007c]. An insightful presentation of the expressive abilities
entailed in the LP formulation is the work on colluding agents and Sybil attacks,
i. e. one agent controlling several accounts [2007a]. In our earlier work [2008;
2009] we show how to incorporate temporal changes of the product’s type.

2.3 Example: Amazon

Consider the example of a digital camera bought from Amazon. Let there be
two types of cameras, a good type G and a bad type B. Potential customers
share a prior belief Pr(θ = G) = 0.7 that the camera is of the good type.
After purchase, the customers make pictures and play around with the camera
through which they make a noisy observations of its type. Note that the source
for this noise can either be due to stochastic variance in the production process
as well as an uncertainty on the customer’s side, e. g. a misunderstanding of
the camera’s manual that results in overexposed pictures. Let there thus be
two signals, namely a high signal h and a low signal l. The belief that a good
camera is followed by a high signal is f(h|G) = 0.75 whereas the belief that
a bad camera is followed by a high signal is f(h|B) = 0.15. We assume that
falsely announcing a high signal is costlier than falsely announcing a low signal:
0.6 = ∆(l, h) > ∆(h, l) = 0.3. The idea behind this assumption is that after
purchase, a customer does not want to admit having bought a bad camera, so
that the threshold for biases in this direction are higher. The participation costs
are set to C = 0.5.

The center now collects the signal reports of two buyers. In order to score
these reports against one another, it needs to compute the reference reporter’s
signal posterior belief g(·| ·). For the respective equations, we refer to Sec-
tion 2.2.1.
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Pr(si = h) = f(h|G) · Pr(θ = G) + f(h|B) · Pr(θ = B)

= 0.75 · 0.7 + 0.15 · 0.3

= 0.57

Pr(si = l) = 1 − Pr(si = h)

= 0.43

Bayes’ Theorem gives us the probabilities for types conditional on signals:

Pr(θ = G|si = h) =
f(h|G) · Pr(θ = G)

Pr(si = h)

=
0.75 · 0.7

0.57
' 0.92

Pr(θ = B|si = h) = 1 − Pr(θ = G|si = h)

' 0.08

Pr(θ = G|si = l) =
f(l|G) · Pr(θ = G)

Pr(si = l)

=
0.25 · 0.7

0.43
' 0.41

Pr(θ = B|si = l) = 1 − Pr(θ = G|si = l)

' 0.59

Eventually, we can calculate the probability of a rater r(i) receiving a certain
signal conditional on the signal rater i received. Note that we give higher pre-
cision values in brackets:

g(h| l) = Pr(sr(i) = h|si = l)

= f(h|G) · Pr(θ = G|si = l) + f(h|B) · Pr(θ = B|si = l)
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τ(l, l) τ(l, h) τ(h, l) τ(h, h)
min 0.26 0.17 0.17 0.4
s. t. 0.6 0.4 -0.6 -0.4 ≥ 0.6 + ε

-0.3 -0.7 0.3 0.7 ≥ 0.3 + ε
0.6 0.4 ≥ 0.5 + ε

0.3 0.7 ≥ 0.5 + ε
≥ 0 ≥ 0 ≥ 0 ≥ 0

Figure 2.4: The Linear Program that is used to compute the payment scheme for the
Amazon example.

Agent i

r(i)
l h

l 1.75 0
h 0 1.17

Payment Scheme

Figure 2.5: The payment scheme for the Amazon example.

' 0.75 · 0.41 + 0.15 · 0.59

' 0.4 (0.39418605)

g(l| l) = Pr(sr(i) = l|si = l)

= 1 − g(h| l)

' 0.6 (0.60581395)

g(h|h) = Pr(sr(i) = h|si = h)

= f(h|G) · Pr(θ = G|si = h) + f(h|B) · Pr(θ = B|si = h)

' 0.75 · 0.92 + 0.15 · 0.08

' 0.7 (0.70263158)

g(l|h) = Pr(sr(i) = l|si = h)

= 1 − g(h|h)

' 0.3 (0.29736842)

The payment scheme is depicted in Figure 2.5. The expected budget which
equals the a priori expected payment to an agent is 0.92.
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2.4 Discussion

Signaling reputation mechanisms are used for settings with different hidden
abilities which would otherwise result in adverse selection as described earlier.
Related settings are those with asymmetric information without the charac-
teristic that this information are quality levels and corresponding prices. For
example, there exist services that ask users to post positions of radar speed
checks1. Obviously, position data has nothing to with the quality level of a
product but the basic requirements regarding the feedback mechanism are the
same. As with reputation mechanisms, users need to be motivated to post the
information they learned and it could potentially be elicited by the same tech-
niques. A similar service could elicit and display information about traffic jams,
possibly in combination with GPS devices that are already built into cars and
mobile phones. Yet another example are so-called “games with a purpose” [von
Ahn and Dabbish, 2008]. Arguably the most popular of these, the ESP game,
was designed to label the vast amount of images that are found on the web
[von Ahn and Dabbish, 2004]. To achieve this, it randomly matches two players
and displays the same image to both of them. The players are then asked to
write down keywords that describe the image’s content. When they agree on a
keyword, they receive points and another image is displayed. The ESP game is
interesting to our research as it shows that humans can be motivated by a non-
monetary point system. At the same time, though, current experiences with
the ESP game emphasize the importance of carefully built incentive schemes as
players often agree on popular words, such as colors. For a game-theoretic anal-
ysis of the ESP game, see the work by Jain and Parkes [2008]. In order to elicit
more informative labels, revised rules could weigh the points as to how likely
a certain word is a priori using the same techniques as the MRZ mechanism
[Weber et al., 2008].

1www.radalert.de
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Chapter 3

Pure Moral Hazard

The term moral hazard is widely used in the economics literature with exam-
ples arising in development economics, finance and all kinds of principal agent
models. According to The New Palgrave Dictionary of Economics [Kotowitz,
2008, our emphasis],

Moral hazard may be defined as actions of economic agents in max-
imizing their own utility to the detriment of others, in situations
where they do not bear the full consequences [. . . ] of their actions
due to uncertainty and incomplete information or restricted con-
tracts which prevent the assignment of full damages.

In the context of reputation mechanisms, moral hazard is mostly though not
exclusively used in the spirit of limited contract enforcement [e. g., Dellarocas,
2006; Bolton and Ockenfels, 2006]. In order to distinguish between the two
meanings, we begin with an example for moral hazard as it is introduced by
many microeconomics text books with the specific example taken from Varian
[2006]. Please note that we use the term imperfect information instead of incom-
plete information as the situation corresponds to a game with imperfect rather
than incomplete information. Subsequently, we elucidate on the standard type
of online auction site and eBay with the latter arguably being the most stressed
example for moral hazard in a reputation context.

To illustrate the kind of moral hazard which is due to imperfect information,
take the example of an insurance against bicycle theft. In contrast to a situation
with adverse selection, we assume that all bicycle owners live in areas with
identical probabilities of theft. That is, in contrast to the previous chapter
there are no differences in types. Instead, the probability of theft depends on
the effort or care that is exerted by the owner of the bicycle. For example, he
can choose to leave his bicycle unlocked or to use a light lock instead of a more
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expensive solid lock. This choice or action clearly influences the likelihood of
theft. The reasoning is that if the owner of the bicycle has an insurance that
covers for the loss, he will not purchase a solid lock since he has to pay for the
lock while the costs of theft are borne by the insurance company. It is important
to note that this problem is one of imperfect information: if the owner’s exerted
effort could be observed by the insurance company, the latter could condition
their premiums on the degree of risk that is taken and thereby induce the bicycle
owner to exert the optimal, i. e. efficient, effort. This is why moral hazard is
sometimes also referred to as hidden action.

In the context of reputation mechanisms, the prime example for moral hazard
are online auction sites, such as eBay [e. g., Dellarocas, 2005, p. 6]. In order to
discuss the difference to the bicycle theft example, we first give the standard
procedure at these sites (excluding the reputation mechanism):

1. The seller has a good that he wants to sell (e. g., a book).

2. He describes the quality of the good and posts it on the auction site.

3. The site determines the buyer by some kind of auction.

4. The buyer transfers the money to the seller.

5. After reception of the payment, the seller sends the good to the buyer.

The crucial part is that the buyer pays for the good before the seller sends
it. To illustrate the moral hazard problem, we can apply backward induction:
the last step in the procedure is the seller deciding whether to send the good
or not. At that point, however, he already received the payment, so that he
is strictly better off not sending it independent of the buyer’s action. In step
4, the buyer makes her decision whether to transfer the money to the seller.
Anticipating that the seller will withhold the good no matter how she decides,
it is only reasonable for her to keep the money for herself so that no trade
takes place. Note that both buyer and seller can fully observe the action of the
other player and, still, the market fails. That is, in contrast to the bike theft
example, the problem is not one of hidden action. Rather, the problem is one of
hidden intention. Nevertheless, some researchers view certain aspects of eBay’s
procedure as hidden action. For example, the seller may send the good but
delay the sending which negatively influences the date of arrival and hence the
utility of the buyer. However, as the sending date is given on the package, it is
revealed to the buyer at the time of arrival. Therefore, the action is observed
ex-post and could be (and often is) put into the good’s description, such as “will
be sent within three working days upon receipt of payment”. We furthermore
believe that the uncertainty about the duration of money transfer is negligible.
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If the buyer and the seller are known to repeatedly interact with one another,
cooperation can arise due to the threat of future punishment through the other
party, so that in these settings no feedback is required [e. g., Fudenberg and
Tirole, 1991, p. 192]. Unfortunately, this situation is not given in most electronic
markets. Instead, most buyers interact with a specific seller only once and the
information regarding the outcome of these games is private knowledge of the
participating agents. This chapter is therefore devoted to the exploration of
the mechanism design space of truthful feedback elicitation. The remainder of
this chapter is organized as follows. We begin with a formal description of the
setting at eBay-like online auctions in Section 3.1. In Section 3.2 we give the
definition of the peer-based Feedback Game that is played between the seller
and two buyers. In Section 3.3 we then show that it is not possible to create a
payment scheme similar to that of Chapter 2. In Section 3.4 we conclude with
a discussion of potential remedies for this impossibility result.

3.1 The Setting

The setting is that of a prototypical online auction with the procedure given
earlier. We make the usual assumption for moral hazard mechanisms that the
seller is a long-lived player that meets a sequence of short-lived buyers, i. e.
buyers who are interested in the seller’s product for only one round and then
depart. For the feedback game, we leave out the seller’s quality announcement at
step 2 and assume an honest description. It is important to note that this is not
a simplification of the problem for the following reason: the good’s description
together with the promise of sending it (possibly within a certain time) is the
contract. If—given the assumption of an honest description—we can solve the
feedback part so that every buyer honestly reports whether this contract was
fulfilled, the seller has no incentive to lie. Announcing a quality level that is
lower than the actual product’s would result in a lower profit while announcing
a quality that is too high would breach the contract, so that he could as well
keep the good for himself, i. e. not send it at all. Therefore, if we can solve
the feedback part, we also ensure an honest product description. When the
product’s description is online, potential buyers bid in an auction to receive it.
The highest bidder wins and has to pay the amount of the second-highest bid.
It is well-known that it is a weakly-dominant strategy for every buyer to bid
according to her valuation [e. g., Nisan, 2007].

We restrict our analysis to binary settings with regard to both seller actions
and observed signals. That is, the feedback procedure for a single seller-buyer
transaction consists of the seller’s choice whether to cooperate or cheat, the
buyer’s binary signal observation and her subsequent signal report. Please note
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that the negative result of Section 3.3 readily extends to the general case.

To denote the seller action for buyer i, we use the notation

ei ∈ {coop, cheat}. (3.1)

Note that in contrast to Chapter 2, every seller has the same abilities to offer
good service (i. e. to cooperate) with cooperation being costlier than cheating:

c(coop) > c(cheat). (3.2)

Let si denote the signal received by buyer i.

si ∈ {s1, s2} (3.3)

Please note that for reasons of clarity, we write low (l) and high (h) signals
instead of s1 and s2 whenever possible. The seller action influences buyer i’s
signal in that cooperation makes it more probable that the signal is high. Nev-
ertheless, it is perfectly possible that cooperation results in a negative signal.
For example, the seller may send the good as described, i. e. he cooperates, but
the package is lost in the mail. It is important to notice that the seller cannot
observe the outcome of his actions, e. g., whether the package was lost. The
probability that buyer i receives a high signal given the respective seller action
is:

f(h| ei) = Pr(si = h| ei), ei = coop, cheat (3.4)

Note that while for the eBay example a high outcome is reasonable only given
cooperation, the model is more expressive in that it allows settings in which
cheating can be followed by a high outcome. These signal emissions constitute
a probability distribution, so that

f(h| ei) + f(l| ei) = 1, ei = coop, cheat (3.5)

We assume that f(h| ·) is common knowledge and identical for all buyers.

The buyers have valuations

vi(si) (3.6)

for the two possible signals. We only assume that a high signal is strictly
preferred to a low signal, that is

vi(si = h) > v(si = l). (3.7)
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e2 for

buyer 2

Buyer 2
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signal
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Buyer 2
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a2

k ∈
{l, h}

Figure 3.1: The procedure of the pure moral hazard Feedback Game between the seller
and the first two buyers.

As in Chapter 2, a payment scheme shall incorporate external benefits from
lying. Let ∆i(sj , sh) be the external benefit buyer i could gain by falsely an-
nouncing signal sh instead of signal sj , the one actually received. We assume
an upper bound

∆(sj , sh) = max
i

∆i(sj , sh) (3.8)

on the individual external lying benefits. Note that by definition ∆(sm, sm) = 0
for all sm ∈ S. Let Ci be the costs reflecting buyer i’s time and effort required
for the rating process. Similar to the lying benefits, we assume an upper bound

C = max
i
Ci. (3.9)

3.2 The Feedback Game

Similar to the MRZ mechanism in Chapter 2, we want to rate the reports of
two buyers against one another. Who is rated against whom depends on the
reference reporter choice rule. We simply rate the first two buyers against each
other, compute the payments and continue with the third and the fourth buyer.
The first game that is played is therefore the three player game between the first
two buyers and the seller. That is, we compare the first buyer’s announcement
to that of the second buyer and vice versa. Different from the seller’s actions
that are given with the setting, the buyers’ actions are only introduced by the
feedback procedure: let ai = (ai1, a

i
2) be the reporting strategy of buyer i, such

that she reports signal aij ∈ {l, h} if she received sj . The honest strategy is
then ā = (l, h), i. e. always reporting the signal received. See Figure 3.1 for the
depicted procedure.
The utility function of the seller consists of three parts: the payment he receives
for his service, the costs that are associated with his actions and the valuation of
the buyers’ signal announcements that are to be published. As mentioned in the
introduction, the objective is to design a “feedback plug-in” that can be used by
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Figure 3.2: Complete game tree for the Feedback Game between the first two buyers
and the seller. Note that buyer 2 has actions l and h at both of her information sets.
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reputation mechanisms that otherwise would simply assume honest feedback.
With regard to the seller’s behavior we thus make a crucial assumption: given
the center could directly observe the signals (which corresponds to the assump-
tion of honest feedback made by most reputation mechanisms), the center could
compute the seller’s optimal mixed strategy profile p(ei). While at first sight this
may seem like a rather strong assumption, it simply means that we can compute
how the publication of transaction outcomes influences the seller actions. This
is done in many reputation mechanism papers where the objective is usually
to induce the seller to cooperate as much as possible. Dellarocas, for example,
studies how the length of published history influences seller cooperation in a
setting similar to ours [2005]. That is, we are taking the complementary view to
the usual literature and assume that we are given a reputation mechanism that
induces some degree of seller cooperation and which gives us the seller’s mixed
strategy profile that he would play under the assumption that feedback is honest.

The utility function of buyer i also consists of three parts: the price she
has paid for the seller’s service, the valuation of the received signal vi(si) and
the payment associated with her announcement and the announcement of her
reference reporter τ i(ai, ar(i)). As the price is already determined in the auc-
tion, it is independent of the Feedback Game’s outcome for all players and we
can ignore it. Figure 3.2 shows the game tree’s structure of this three player
extensive game with imperfect information.

3.3 Necessary Conditions for Truthfulness

In order to have a unifying concept for truthfulness, we include the seller in
the definition. We are aware that there are other concepts such as faithfulness
that capture both information revelation and robustness to rational manipula-
tion [Shneidman and Parkes, 2004]. When the monitoring of the outcomes is
imperfect, however, it is not generally possible to achieve full seller coopera-
tion, and thus robustness to rational manipulation, even if feedback is truthful.
The seller may cheat occasionally because a bad signal does not immediately
reveal his opportunistic nature. It is again important to distinguish between
the objectives of the reputation mechanism and the feedback mechanism, re-
spectively: the reputation mechanism that we are given induces some degree of
seller cooperation if feedback is truthful. Depending on the actual setting and
in particular the level of noise in the setting, it may be possible to achieve only
partial cooperation. The objective of the feedback mechanism is to provide the
reputation mechanism with truthful buyer feedback that the latter can use to
induce as much seller cooperation as possible. That is, it could well be that the
reputation mechanism induces only partial cooperation given truthful feedback
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while the feedback mechanism induces 100% truthful buyer feedback given this
reputation mechanism. Since faithfulness would imply that the seller is fully co-
operative in equilibrium, it is not better-suited for our purpose and we include
the seller in the definition of truthfulness for the remainder of this thesis.

Definition 4 (Truthfulness). An equilibrium is truthful if and only if the seller
plays according to p(ei) and both buyers report their signal outcomes honestly.

In extensive games, such as the Feedback Game, Nash equilibrium is no
longer a sufficient concept due to incredible threats or promises. For extensive
games with perfect information, subgame perfect equilibrium is widely accepted.
An equilibrium concept that generalizes subgame perfection to games with im-
perfect information is perfect Bayesian equilibrium which we apply in the mixed
setting of Chapter 4. At this point, however, it is sufficient to note that for every
reasonable equilibrium of an extensive game the best response condition must
hold. The way forward is therefore to take out a player, fix the truthful strate-
gies of the remaining players and search for payments that make it in the best
interest of the left-out player to be truthful as well. Proposition 6 shows that
this is impossible.

Proposition 6. There is no payment scheme for the Feedback Game that makes
truthfulness a best response to truthful play by all other players.

Proof. The proof is by contradiction. Assume there is a payment scheme that
makes truthful play a best response to truthful play by all other players. Then,
given truthful play by both the seller and buyer 1, there are payments that make
honest reporting by the second buyer a best response. The expected payment
for buyer 2 is computed by Equation 3.10. Please note that we abbreviate
E(a2

j = sh|s2 = sj) with E(s2
h|s2 = sj).

E(s2
h|s2 = sj) = v2(sj)

+
[
p(e1 = coop) · f(l| coop)

+ p(e1 = cheat) · f(l| cheat)
]
τ2(sh, l)

+
[
p(e1 = coop) · f(h| coop)

+ p(e1 = cheat) · f(h| cheat)
]
τ2(sh, h)

(3.10)

The report of buyer 2 is honest if and only if given a negative signal, she
reports l while given a positive signal she reports h. Honestly reporting a
negative signal is a best response if given a negative signal the expected utility
for reporting l is at least as high as the expected utility for reporting h. The
analogous must hold true for the honest reporting of a positive signal. Her
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utility depends on the payment for her report and the external benefits she may
receive as captured by ∆(·, ·). The honesty constraints that must hold are thus:

E(l2|s2 = l)− E(h2|s2 = l) ≥ ∆(l, h) (3.11)

E(h2|s2 = h)− E(l2|s2 = h) ≥ ∆(h, l) (3.12)

If ∆(l, h) > 0 and ∆(h, l) > 0, necessary conditions for Equation 3.11 and
Equation 3.12 are given by Equation 3.13 and 3.14, respectively. Note that
these require strict inequalities:

E(l2|s2 = l) = v2(l)

+
[
p(e1 = coop) · f(l| coop)

+ p(e1 = cheat) · f(l| cheat)
]
τ2(l, l)

+
[
p(e1 = coop) · f(h| coop)

+ p(e1 = cheat) · f(h| cheat)
]
τ2(l, h)

> v2(l)

+
[
p(e1 = coop) · f(l| coop)

+ p(e1 = cheat) · f(l| cheat)
]
τ2(h, l)

+
[
p(e1 = coop) · f(h| coop)

+ p(e1 = cheat) · f(h| cheat)
]
τ2(h, h)

= E(h2|s2 = l)

(3.13)

E(h2|s2 = h) = v2(h)

+
[
p(e1 = coop) · f(h| coop)

+ p(e1 = cheat) · f(h| cheat)
]
τ2(h, h)

+
[
p(e1 = coop) · f(l| coop)

+ p(e1 = cheat) · f(l| cheat)
]
τ2(h, l)

> v2(h)

+
[
p(e1 = coop) · f(h| coop)

+ p(e1 = cheat) · f(h| cheat)
]
τ2(l, h)

+
[
p(e1 = coop) · f(l| coop)

+ p(e1 = cheat) · f(l| cheat
)
] τ2(l, l)

= E(l2|s2 = h)

(3.14)
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Put together, Equation 3.13 and Equation 3.14 imply that

[
p(coop1) · f(l| coop) + p(cheat1) · f(l| cheat)] τ2(l, l)

+
[
p(coop1) · f(h| coop) + p(cheat1) · f(h| cheat)

]
τ2(l, h)

>
[
p(coop1) · f(l| coop) + p(cheat1) · f(l| cheat)

]
τ2(h, l)

+
[
p(coop1) · f(h| coop) + p(cheat1) · f(h| cheat)

]
τ2(h, h)

>
[
p(coop1) · f(h| coop) + p(cheat1) · f(h| cheat)

]
τ2(l, h)

+
[
p(coop1) · f(l| coop) + p(cheat1) · f(l| cheat)

]
τ2(l, l).

Please observe that the first two lines are identical to the left side of Equa-
tion 3.13. Line 3 and 4 are identical to the right side of Equation 3.13 and
the left side of Equation 3.14. Lines 5 and 6 are identical to the right side of
Equation 3.14 and the left side of Equation 3.13. This is a contradiction as we
have strict inequalities.

Corollary 7. There is no payment scheme that makes truthfulness a perfect
Bayesian equilibrium in the Feedback Game.

3.4 Discussion

The intuition of this chapter’s negative result is that, in equilibrium, the seller’s
strategy would be known a priori by both buyers so that the signal observation
of buyer i does not lead to a belief update regarding the signal received by buyer
r(i). Without a posterior belief update, however, the two signal observations
cannot be stochastically relevant for each other and buyer i’s utility maximiza-
tion cannot depend on the signal she received. It is for the same reason that
we cannot do better with a change of procedure such that the announcement
of a buyer is scored against the announcement of the seller: because there is
no uncertainty about the seller’s equilibrium behavior, the buyer’s optimal an-
nouncement is known a priori, i. e. before a buyer knows her signal. Since there
are positive results for similar settings in contract theory [Laffont and Marti-
mort, 2001, pp. 298–302], however, there is reason to believe that matching the
announcement of the seller against that of a single buyer can lead to truthful
payment schemes if—after exerting his effort—the seller observes the outcome
of his action.

For a pure moral hazard setting similar to ours, Dellarocas [2005] finds that
full seller cooperation cannot be achieved when monitoring is imperfect. A
remedy from the impossibility result from Section 3.3 could thus be to incor-
porate a Stackelberg (“commitment”) type in the Feedback Game’s definition.
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That is, one could assume that there is a small probability that the seller is
of a type that always plays cooperation. Since the normal (“strategic”) type
plays cooperation with a lower probability, the two seller types are distinguish-
able and the two signal observations should become stochastically relevant.
Please note that the introduction of commitment types fits well in the standard
game-theoretic literature on reputation building [Milgrom and Roberts, 1982;
Kreps and Wilson, 1982a]. Alternatively, if there is a small prior probability
that the seller is of a “cheating” type, truthful feedback elicitation becomes a
special case of the next chapter’s setting for which we retrieve a positive result.
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Chapter 4

A Mixed Setting

Before we elucidate on the setting of this chapter, let us briefly summarize what
we know about the mechanism design space of peer-based feedback elicitation:
MRZ have shown that honest feedback mechanisms are feasible if different buy-
ers’ experiences are essentially identical, i. e. differences in the two buyers’ per-
ceptions are only due to stochastic noise. In Chapter 3 we have shown that a
purely strategic connection between the two signal observations does not allow
a truthful payment scheme. A natural next step is thus to study whether it
is possible to elicit truthful feedback in a setting where the buyers’ signals are
partly stochastic while also controlled by a strategic seller.

Consider, for example, an Internet booking site for the delivery of groceries.
After giving both the list of groceries and a postal code to the booking site, it
displays all available delivery services together with their respective prices. In
addition to price, however, the services differ in their quality, i. e. their respective
speed of delivery. Therefore, a reputation mechanism is located at the booking
site that—next to the price—displays the expected duration of delivery. A
customer may then choose a service depending on how she values price to speed.
The speed of delivery is influenced both by the services’ inherent abilities and
their actions. For example, services differ in the number of cars they own, i. e. in
their type, but a service may also delay its delivery until it has a certain number
of orders in the same neighborhood. That is, the services are not required to
deliver at their highest possible speed. We assume that the number of users
that are shopping via the booking site is small relative to the services’ total
number of customers, so that the impact of the booking site’s customers on the
services’ behavior is negligible. We furthermore assume that a service’s inherent
ability does not change over time. The latter, however, can be incorporated as
described in our earlier work [Witkowski, 2009].

Without a reputation mechanism, the expected quality is the same for all
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sellers and a buyer would thus choose the cheapest seller. If the sellers were un-
able to choose a quality level below their abilities, the result would be one of pure
adverse selection: good sellers are pushed out of the market since good quality
is costlier to produce. Moral hazard is introduced since sellers can choose to de-
liver a quality level below their abilities with lower quality levels corresponding
to lower delivery costs. The result of this market situation without a repu-
tation mechanism would therefore be a competition of all seller types for the
lowest quality level. A particularly interesting situation arises if one assumes
that higher seller types are more efficient in producing the worst quality level
than sellers of lower type. In that case, sellers of the highest type produce at
the worst possible quality level. Thus, by introducing moral hazard to a setting
with pure adverse selection, the result can be the drive-out of all but the best
sellers. This is the opposite of adverse selection. (However, as with adverse
selection, it is still the worst quality that is produced).

The remainder of this chapter is organized as follows. In Section 4.1, we
introduce the mixed setting and formalize the Feedback Game. Section 4.2 is
devoted to the “feedback plug-in” for reputation mechanisms: in Section 4.2.1,
we briefly compare sequential equilibrium (SE) with perfect Bayesian equilib-
rium (PBE) and emphasize why the easier to compute PBE is sufficient in our
setting. In Section 4.2.2 we show how to compute the required signal posteriors
and in Section 4.2.3 we eventually set up the payment scheme. Section 4.3 pro-
vides a detailed example for a different kind of auction than the one analyzed in
Chapter 3. In Section 4.4 we conclude the chapter with a brief discussion of the
particular difficulties reputation mechanisms are faced with in mixed settings
as compared to either of the pure settings.

4.1 The Feedback Game

The Feedback Game is an extensive game with both incomplete and imperfect
information. For readers unfamiliar with these concepts, we recommend the
textbook by Osborne and Rubinstein [1994]. As in Chapter 3, the set of players
is

N = {seller, 1, 2} (4.1)

which denotes the seller, the first and the second buyer. Please note that, when
it cannot be confused with a signal, we sometimes use the letter “s” to denote
the seller. Figure 4.1 depicts the complete procedure of a single game. The
Feedback Game begins with a move by “nature” that chooses the seller’s type
θ from a finite set of types
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Seller
plays
q1

Buyer 1
receives
signal
s1 = sj

Buyer 1
reports
signal
a1
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plays
q2

Buyer 2
receives
signal
s2 = sk

Buyer 2
reports
signal
a2

k

Center
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putes
pay-

ments
τ i(·, ·)

Figure 4.1: The procedure of the mixed setting Feedback Game between the seller and
the first two buyers.

Θ = {θ1, . . . , θT } (4.2)

with T = |Θ| ≥ 2. Note that this move by “nature” is not an actual move but
used to model the buyers’ beliefs regarding the seller’s type. That is, all agents
share a common prior belief Pr(θt) that the seller is of type θt with

T∑
t=1

Pr(θt) = 1 (4.3)

while Pr(θt) > 0 for all θt ∈ Θ. Once determined, the seller learns his own type
which stays fixed for the remainder of the game. After the Feedback Game,
the type beliefs are updated and used as prior beliefs for the game between the
seller, the third and the fourth buyer.

In contrast to the pure adverse selection setting of MRZ, all sellers but
those of type θ1 are players in the actual sense. That is, there is an action
set associated with the seller which corresponds to the quality levels he can
produce. Different seller types have different quality levels to choose from and
the number of quality levels corresponds to the “number” of the type: let θt
denote the t-th lowest seller type and let qi denote the quality level the seller
plays for buyer i. A seller with type θt has t different quality levels to choose
from, namely every quality level up to and including the one that corresponds
to his type, i. e.

qi ∈ {q1, . . . , qt}. (4.4)

We assume perfect recall, i. e. the seller never forgets what he has played earlier
in the game. As in Chapter 3, the buyers do not observe qi directly but some
noisy signal si. The signal depends on the quality that was produced and
different quality levels yield different signal distributions. As before, the signals
are drawn out of a set of signals:
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S = {s1, ... , sM}. (4.5)

Let si denote the signal received by buyer i and let

f(sm| ql) = Pr(si = sm| qi = ql) (4.6)

be the probability that buyer i receives the signal sm ∈ S given that the played
quality level is qi = ql. These signal emissions constitute a probability distribu-
tion:

M∑
m=1

f(sm| ql) = 1 (4.7)

for all l ∈ {1, . . . , T}. We assume that f(·| ·) is common knowledge.
Buyers are all of the same type. Analogously to Chapter 3, their actions corre-
spond to possible signal reports. Let

ai = (ai1, . . . , a
i
M ) (4.8)

be the reporting strategy of buyer i, such that she reports signal aij ∈ {s1, . . . , sM}
if she received sj . The honest strategy is

ā = (s1, . . . , sM ), (4.9)

i. e. always reporting the signal received. The complete game tree of a small
example (excluding utilities) is depicted on p. 46.
As in Chapter 3, the utility of a seller, Us, depends on three parts. The first is
the negative utility associated with the quality levels that he produces:

−cθ(q1)− cθ(q2). (4.10)

The costs for the seller’s actions can be different for different seller types. Fur-
thermore, we assume that the higher the quality level, the higher the costs. For
the feedback mechanism, however, we do not need to know these costs explic-
itly. The second part is the valuation for the given feedback due to the impact
a publication has on future buyers’ willingness to pay

vs(a1
j , a

2
k| r). (4.11)

Note that the seller’s valuation for the same reported signals can be different
for a different publication history. We use variable r instead of h to prevent
confusion with high signals.
The third part is the payment that the seller receives for his service. With
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regard to seller utility, we make the analogous assumption to that of Chapter 3:
given the center could directly observe the signals, it could compute the seller’s
optimal, i. e. truthful, strategy

pt(qi) (4.12)

for each seller type θt. We assume that when the seller plays according to this
strategy, the prior probability for every signal is positive, i. e.

Pr(si = sj) > 0 (4.13)

for all sj ∈ S, i = 1, 2. We furthermore assume that at least two seller types
differ in their optimal strategies. Note that both assumptions are usually met
in real-world applications. The utility of a buyer is defined as in Chapter 3
and consists of the negative utility of the price that she paid for the good, the
valuation for the signal she perceived

vi(si) (4.14)

and the payment that depends on both her own signal announcement and that
of the other buyer

τ i(ai, ar(i)). (4.15)

As before, the price for the service is independent of the game’s outcome, so
that we can ignore it here.

As in the preceding chapters, the payment scheme shall incorporate external
benefits from lying with ∆i(sj , sh) denoting the external benefit buyer i could
gain by falsely announcing signal sh instead of the honest signal sj . We assume
an upper bound

∆(sj , sh) = max
i

∆i(sj , sh) (4.16)

on the individual external lying benefits with ∆(sm, sm) = 0 for all sm ∈ S.
Furthermore, let Ci be the costs reflecting buyer i’s time and effort required for
the rating process. Similar to the lying benefits, we assume an upper bound on
the individual participation costs and obtain:

C = max
i
Ci. (4.17)

Once both reports are elicited, they can be published. The type beliefs of
the next Feedback Game are then computed using Bayesian updating (compare
Figure 4.2). Note that it is unproblematic to publish more than the two most
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Figure 4.2: The overall procedure of the mixed setting.

recent signals. This is crucial as the optimal length of the publication history
in settings with both adverse selection and moral hazard is an open research
question [Dellarocas, 2006, p. 20]. We come back to this topic in Section 4.4.

4.2 A “Feedback Plug-in”

The first step in constructing a payment scheme that allows for a truthful equi-
librium is to decide on a suitable equilibrium concept. Perfect Bayesian equilib-
rium is a reasonable choice as it generalizes subgame perfection to games with
incomplete information. In Section 4.2.2 we show how to compute a buyer’s
posterior belief about her reference reporter’s signal that is required to compute
the buyer’s expected utility which we then use to formulate the payment scheme
in Section 4.2.3.

4.2.1 Perfect Bayesian Equilibrium

Intuitively an assessment is a perfect Bayesian equilibrium if the strategies are
rational given the beliefs and the beliefs are updated by Bayes’ law whenever
possible.

Definition 5. A perfect Bayesian equilibrium is a strategy profile β∗ and a
belief system µ∗ such that

1. At information sets reached with positive probability when β∗ is played,
beliefs are formed according to β∗ and Bayes’ law (when necessary). At
information sets that are reached with probability zero when β∗ is played,
beliefs may be arbitrary.

2. At every information set Ii player i’s strategy maximizes his/her payoff,
given the actions of all the other players β∗−i and player i’s beliefs.

Combinations (β′, µ′) of a strategy profile β′ and a belief system µ′ are called
an assessment.

40



If, in equilibrium, there were information sets that are not reached, sequential
equilibrium would reasonably restrict beliefs on these information sets [Kreps
and Wilson, 1982b]. Since Pr(si = sj) > 0 for all sj ∈ S and both buyers,
all information sets that belong to buyers are reached with positive probability
given truthful play. That means, no buyer is ever “surprised” by an information
set due to another player’s tremble, i. e. a deviation from truthful play. Every
observation a buyer makes will thus be interpreted as the result of truthful play
and will therefore not lead to a deviation of her truthful strategies. Note that
this is not a feature of the game as much as a feature of the truthful strategies.
That is, there can be other (non-truthful) assessments in the Feedback Game
where some of the buyers’ information sets are not reached. The seller does
not make observations other than his type and, technically, the information set
that precedes his choice regarding q2. The “second group” of his information
sets, however, solely depends on his earlier choice q1 and having an individual
(behavioral) strategy for each of these is therefore not reasonable. In fact, from
an informational point of view, the two seller actions, q1 and q2, could be merged
into a single action which is placed directly after the initial move by “nature”
(he has the same information when choosing q1 and q2). The fact that the set
of sequential equilibria can change by such a coalescing of moves is a drawback
of the sequential equilibrium concept rather than the result of a change in the
strategic environment [Osborne and Rubinstein, 1994, pp. 207f, 226f].

4.2.2 Belief Computations

The best response conditions are trivially met for the seller who, given truthful
play by the buyers, is truthful by definition. This is different for the buyers and
we proceed by fixing truthful play for the seller and buyer r(i) to determine the
constraints that necessarily have to be met for buyer i. For the pure adverse
selection setting of Chapter 2, MRZ prove that combinations of Pr(θ) and
f(·|·) that fail stochastic relevance (Definition 1) have Lebesgue measure 0 (see
Discussion on p. 10). We conjecture that the analogous statement holds for
our model. That is, due to the assumption that at least two seller types differ
in their optimal strategies, those combinations of Pr(θt), pt(qi) and f(·|·) that
fail stochastic relevance are stochastically relevant after a slight perturbation of
beliefs. In the following, we thus assume stochastic relevance holds.

Let sr(i) = sk and si = sj denote the signals received by buyer r(i) and buyer
i, respectively. The probability that buyer r(i) received sk given i received sj

is defined as:

gi(sk| sj) = Pr(sr(i) = sk| si = sj). (4.18)
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After receiving her signal, buyer i’s expected utility is then given by Equa-
tion 4.19 (we slightly abuse the notation and incorporate both the external
lying benefits ∆(·, ·) and the participation costs C only in the LP):

E(aij = sh|si = sj) = vi(sj) +
M∑
k=1

gi(sk| sj) τ i(sh, sk). (4.19)

We can compute gi(sk| sj) with Equation 4.20:

gi(sk| sj) =
T∑
l=1

f(sk|ql) · Pr(qr(i) = ql|si = sj). (4.20)

The probability of a specific quality level played for buyer r(i) given the signal
perceived by buyer i is obtained by Equation 4.21:

Pr(qr(i) = ql|si = sj) =
Pr(si = sj |qr(i) = ql) · Pr(qr(i) = ql)

Pr(si = sj)
. (4.21)

The prior signal probability for buyer i is:

Pr(si = sj) =
T∑
l=1

f(sj |ql) · Pr(qi = ql). (4.22)

The prior probability for a specific quality level played for buyer i that is required
for Equations 4.21, 4.22 and 4.25 can be computed with Equation 4.23:

Pr(qi = ql) =
T∑
t=1

pt(qi = ql) · Pr(θt). (4.23)

For Equation 4.21, we require Pr(si = sj |qr(i) = ql). At first sight, it may seem
that the probability of the quality level for buyer r(i) is independent of the other
buyer’s signal. This is not true, however, since the materialized qr(i) tells us
something about the seller’s type which again influences buyer i’s signal:

Pr(si = sj |qr(i) = ql) =
T∑
t=1

Pr(si = sj |θt) · Pr(θt|qr(i) = ql). (4.24)

Computing the type probability knowing the quality level for a certain buyer is
a simple Bayesian update:

Pr(θt|qr(i) = ql) =
pt(q3−1 = ql) · Pr(θt)

Pr(qr(i) = ql)
. (4.25)

Equation 4.26 shows how to obtain the probability for a signal knowing the
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seller’s type.

Pr(si = sj |θt) =
T∑
l=1

f(sj |ql) · pt(qi = ql) (4.26)

Finally, the Bayesian update for the type beliefs are computed with Equa-
tion 4.27 (compare Figure 4.2 on p. 40):

Pr(θt|si = sj) =
Pr(si = sj |θt) · Pr(θt)

Pr(si = sj)
. (4.27)

4.2.3 The Payment Scheme

Of course a buyer will only announce her signal honestly if that maximizes her
expected utility. As in Section 2.2.3, we search for τ i(·, ·) as the solution to a
Linear Program with minimized budget. For each of buyer i’s possible signal
observation si = sj , there are M − 1 dishonest announcements aij 6= āj . Given
truthful play by both the seller and buyer r(i), we want the expected payment
of an honest announcement by buyer i to be larger than the expected utility of
any other announcement including the external lying incentives ∆(sj , sh). Note
that buyer i’s signal valuation vi(sj) appears on both sides of the inequality so
that it can be canceled out (compare Equation 4.19):

M∑
k=1

gi(sk| sj) · τ i(sj , sk)−
M∑
k=1

gi(sk| sj) · τ i(sh, sk) > ∆(sj , sh)

∀sj , sh ∈ S, sj 6= sh, i ∈ {1, 2}

(4.28)

Besides honesty, there is the problem of under-provision of feedback. A buyer
will participate in the rating system if and only if she is remunerated with at
least as much as the rating process costs her. As the buyer’s decision whether
to participate in the rating is taken after receiving her signal, interim individual
rationality is appropriate (compare Section 2.2.3):

M∑
k=1

gi(sk| sj) · τ i(sj , sk) > C ∀sj ∈ S, i ∈ {1, 2} (4.29)

The expected budget the center needs to pay the buyers for their reports is the
sum of expected payments to buyer 1 and buyer 2. As we have seen, Equa-
tion 4.19 gives us the expected payment to buyer i given that the perceived
signal was si = sj . By weighting the expected payment with the respective
prior signal probability from Equation 4.22, we can then formulate the expected
budget. Together with the assumption that there is no possibility to withdraw
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credit from the buyers (so that all payments are non-negative), the LP for buyer
i is:

LP 2.

min B =
M∑
j=1

Pr(si = sj)

(
M∑
k=1

gi(sk| sj) · τ i(sj , sk)

)

s. t.

M∑
k=1

gi(sk| sj)
(
τ i(sj , sk)− τ i(sh, sk)

)
≥ ∆(sj , sh) + ε

∀sj , sh ∈ S, sj 6= sh

M∑
k=1

gi(sk| sj) · τ i(sj , sk) ≥ C + ε ∀sj ∈ S

τ i(sj , sk) ≥ 0 ∀sj , sk ∈ S

Proposition 8. Truthfulness is a perfect Bayesian equilibrium of the Feedback
Game.

If LP 2 is feasible, Proposition 8 follows directly from the formulation of the
payment scheme and the definition of the seller utilities. Assuming stochastic
relevance, the proof of LP 2’s feasibility is analogous to that of Proposition 4
on p. 17.

4.3 Example: Elance

Freelance auction sites such as Elance1 or RentACoder2 are real-world examples
for settings with both adverse selection and moral hazard. One may regard them
as the equivalent of eBay for services: a potential customer posts a project and
providers (henceforth: sellers) bid on finishing it. Note that in contrast to eBay,
these portals employ a reverse auction, i. e. the sellers are bidding for projects
posted by potential buyers. Another difference to eBay is that the buyers are
not deemed to take the best offer but consider both the bid and the published
transaction outcomes of the seller. As these transaction outcomes are private
information of the respective customers this is where the “feedback plug-in”
comes into play.

Consider the example of a web designer who offers his service via Elance.
Clearly, different web designers have different abilities as virtually everybody
with an Internet connection can open up an account and offer his services. Yet
while the worst web designers do a low quality job no matter what they do,

1www.elance.com
2www.rentacoder.com
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skilled web designers may choose to produce a quality level that is below their
abilities. Obviously, the production of low quality levels involves less time and
money than the production of high quality. As the buyers are no web design
experts, however (which is why they bought the designer’s service in the first
place), they observe the job’s actual quality with noise. Note that there are
customers in the population that only require a low quality job. For example,
some customers may find it sufficient to receive a very simple website with
contact data.

Let there be two types of web designers, a bad type θ1 and a good type θ2

for which we write B and G, respectively. The common knowledge prior beliefs
are Pr(θ = B) = 0.3 and Pr(θ = G) = 0.7. A good designer’s actions are
denoted b and g which corresponds to q1 and q2. Let there be two signals, l and
h, and let f(h|b) = 0.1 and f(h|g) = 0.8 be the conditional signal probabilities.
Please note that for reasons of clarity, we write low (l) and high (h) signals
instead of s1 and s2. If the center could observe every of the designer’s signal
outcomes and publish it accordingly, the good type would usually produce good
quality. Occasionally, however, he would do a “sloppy” job which, in case of
a bad signal outcome, will be indistinguishable from an occasional bad signal
following good quality play. Let the good designer play bad in 5% of his jobs,
i. e. p2(qi = g) = 0.95 for all buyers i. The extensive game form of the respective
Feedback Game is depicted in Figure 4.3 on p. 46.

Elance employs a reputation mechanism with bi-directional feedback. As
mentioned earlier, these systems are vulnerable to retaliatory feedback so that
we choose 0.8 = ∆(l, h) > ∆(h, l) = 0.2. That is, we demand that it is more
expensive to falsely announce a high signal than it is to falsely announce a low
signal. The costs of participation are set to C = 0.5.

As the probability for good play is the same for both buyers, it is sufficient
to regard gi(·| ·) for buyer i = 1 and set τ2(·, ·) = τ1(·, ·). Note that different
from the pure adverse selection scheme in Chapter 2, there are a number of
possibilities with regard to the sequential order of computations. We therefore
always refer to the respective equation from Section 4.2.2 with number and page.

We begin with the computation of the a priori quality level beliefs (Equa-
tion 4.23 on p. 42). As bad designers play b with probability 1 and good designers
almost always play g, the prior quality beliefs are not far away from the prior
type beliefs:

Pr(qi = b) = pB(qi = b) · Pr(θ = B) + pG(qi = b) · Pr(θ = G)

= 1 · 0.3 + 0.05 · 0.7
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Figure 4.3: The complete game tree for the two-type example from Section 4.3. Note
that the identifiers for the announcement of buyer 2 are left out due to lack of space.
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' 0.34

Pr(qi = g) = 1 − Pr(qi = b)

' 0.66

These quality beliefs are required to compute the prior signal beliefs (Equa-
tion 4.22 on p. 42):

Pr(si = l) = f(l|b) · Pr(qi = b) + f(l|g) · Pr(qi = g)

' 0.9 · 0.34 + 0.2 · 0.66

' 0.44

Pr(si = h) = 1 − Pr(si = l)

' 0.56

Another “atomic” computation is that of a signal conditional on a web designer’s
type (Equation 4.26 on p. 43). Since the bad designer can only play b, the signal
probability conditional on bad type equals the signal probability conditional on
bad quality level:

Pr(si = l|θ = B) = f(l|b) · pB(qi = b) + f(l|g) · pB(qi = g)

= 0.9 · 1 + 0.2 · 0

= 0.9

Pr(si = h|θ = B) = 1 − Pr(si = l|θ = B)

= 0.1

Pr(si = l|θ = G) = f(l|b) · pG(qi = b) + f(l|g) · pG(qi = g)

= 0.9 · 0.05 + 0.2 · 0.95

' 0.24

Pr(si = h|θ = G) = 1 − Pr(si = l|θ = G)
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' 0.76

For the type beliefs conditional on a quality level (Equation 4.25 on p. 42), there
is a similar situation as good quality cannot stem from a bad web designer. Note
that it is perfectly possible that buyers perceive a high signal nonetheless.

Pr(θ = B|qr(i) = b) =
pB(qr(i) = b) · Pr(θ = B)

Pr(qr(i) = b)

' 1 · 0.3
0.34

' 0.88

Pr(θ = G|qr(i) = b) = 1 − Pr(θ = B|qr(i) = b)

' 0.12

Pr(θ = B|qr(i) = g) =
pB(qr(i) = g) · Pr(θ = B)

Pr(qr(i) = g)
= 0

Pr(θ = G|qr(i) = g) = 1 − Pr(θ = B|qr(i) = g)

= 1

The probability for a signal conditional on the other buyer’s quality level is
computed with Equation 4.24 on p. 42. Please note that although our example
is symmetric with regard to the buyers, we cannot simply use buyer i’s quality
level because knowing the other buyer’s quality level only yields information
via the designer’s type while knowing buyer i’s quality level would influence her
signal directly.

Pr(si = l|qr(i) = b) = Pr(si = l|θ = B) · Pr(θ = B|qr(i) = b)

+Pr(si = l|θ = G) · Pr(θ = G|qr(i) = b)

' 0.9 · 0.88 + 0.24 · 0.12

' 0.82

Pr(si = h|qr(i) = b) = 1 − Pr(si = l|qr(i) = b)
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' 0.18

Pr(si = l|qr(i) = g) = Pr(si = l|θ = B) · Pr(θ = B|qr(i) = g)

+Pr(si = l|θ = G) · Pr(θ = G|qr(i) = g)

' 0.9 · 0 + 0.24 · 1

' 0.24

Pr(si = h|qr(i) = g) = 1 − Pr(si = l|qr(i) = g)

' 0.76

Before we can eventually compute gi(·| ·), we have to calculate buyer r(i)’s
posterior quality distribution given buyer i’s signal (Equation 4.21 on p. 42).
Since the good designer plays bad quality with the same probability for either
buyer and because it is a prior belief, we can set Pr(qr(i)) = Pr(qi):

Pr(qr(i) = b|si = l) =
Pr(si = l|qr(i) = b) · Pr(qr(i) = b)

Pr(si = l)

' 0.82 · 0.34
0.44

' 0.63

Pr(qr(i) = g|si = l) = 1 − Pr(qr(i) = b|si = l)

' 0.37

Pr(qr(i) = b|si = h) =
Pr(si = h|qr(i) = b) · Pr(qr(i) = b)

Pr(si = h)

' 0.18 · 0.34
0.56

' 0.11

Pr(qr(i) = g|si = h) = 1 − Pr(qr(i) = b|si = h)

' 0.89

Eventually, we can compute buyer i’s signal posterior belief regarding buyer
r(i)’s signal (Equation 4.20 on p. 42) which are required for LP 2. Due to
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τ i(l, l) τ i(l, h) τ i(h, l) τ i(h, h)
min 0.28 0.15 0.15 0.41
s. t. 0.64 0.36 -0.64 -0.36 ≥ 0.8 + ε

-0.28 -0.72 0.28 0.72 ≥ 0.2 + ε
0.64 0.36 ≥ 0.5 + ε

0.28 0.72 ≥ 0.5 + ε
≥ 0 ≥ 0 ≥ 0 ≥ 0

Figure 4.4: The Linear Program that is used to compute the payment scheme for the
Elance example.

rounding, these values differ slightly from the actual values which is why we
give more exact values in brackets:

gi(l| l) = Pr(sr(i) = l|si = l)

= f(l|b) · Pr(qr(i) = b|si = l) + f(l|g) · Pr(qr(i) = g|si = l)

' 0.9 · 0.63 + 0.2 · 0.37

' 0.64 (0.6482336)

gi(h| l) = Pr(sr(i) = h|si = l)

= 1 − g(l| l)

' 0.36 (0.3517664)

gi(l|h) = Pr(sr(i) = l|si = h)

= f(l|b) · Pr(qr(i) = b|si = h) + f(l|g) · Pr(qr(i) = g|si = h)

' 0.9 · 0.11 + 0.2 · 0.89

' 0.28 (0.27027851)

gi(h|h) = Pr(sr(i) = h|si = h)

= 1 − g(l|h)

' 0.72 (0.72972149)

The resulting Linear Program formulation and the payment scheme are depicted
in Figure 4.4 and Figure 4.5, respectively. The expected budget for a single
buyer which equals the a priori expected payment is 0.87.
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Payment Scheme

Figure 4.5: The payment scheme with C = 0.5, ∆(h, l) = 0.8 and ∆(l, h) = 0.2.

4.4 Discussion

In our model, both types and signals are discrete. In settings where they cor-
respond to intervals this may lead to a situation in which moral hazard plays a
role within each quality interval. Sellers are led to produce at a quality close to
the bottom of the interval since this involves lower costs than, for example, in
the middle of it. Two solutions are worth considering: first, one could investi-
gate continuous formulations of the mechanism or, second, one could use a finer
discretization resulting in more types. In the latter situation the effect of sellers
being pushed to the bottom of the respective interval becomes less harmful as
with more types, the intervals become smaller.

While the focus of this thesis is on truthful feedback, it is important to note
that mixed settings with noisy observations are challenging even if honest feed-
back is not an issue. As mentioned earlier, the reputation mechanism has to
fulfill two roles at the same time: first, it shall signal the inherent abilities of
the sellers to future buyers and, second, it shall sanction sellers that do not co-
operate. The usual approach is to publish previous transaction outcomes. One
of the design issues is whether the center should publish the entire history of
transaction outcomes or only part of it. If k is the number of recent outcomes
that are published, it is not clear how k should be chosen. For pure adverse
selection settings, a larger k is always preferred since it reveals more information
of the seller’s type. Pure sanctioning mechanisms with imperfect monitoring,
however, cannot sustain cooperation if k is too large. The intuition is that in
perfect monitoring settings, a single play of the cheating action reveals the seller
as a “strategic” type, i. e. a player who is not committed to cooperative play.
When monitoring is imperfect, however, cooperative play can result in negative
observations so that a single play of the cheating action does not immediately
reveal the seller’s strategic nature. Cripps, Mailath and Samuelson [2004] show
that if the buyers observe the entire history of past transaction outcomes, every
rational seller cooperates in the beginning to establish a good reputation only
to exploit it thereafter through occasional cheating. This eventually reveals his
strategic type and drives him out of the market. It is therefore the objective of
a pure moral hazard reputation mechanism to adjust the length of the publica-
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tion record such that a seller can build a reputation but does not have enough
transactions to exploit it. To study this trade-off between the signaling and the
sanctioning role of reputation mechanisms in mixed settings is an open question
for future research.
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Chapter 5

Experimental Evaluation

In this chapter, we describe our experimental results that suggest that the “feed-
back plug-in” of Chapter 4 is feasible for real-world reputation mechanisms.
More specifically, the results for both computational complexity and the ex-
pected budget are promising. In addition to practicality considerations, the
experiments give us a better understanding of the dynamics that govern peer-
based feedback elicitation.

The chapter is organized as follows: in Section 5.1 we motivate a measure-
ment for the degree of seller cooperation that is present in a setting which is
important because we are interested in how cooperation influences the required
budget. In Section 5.2 we describe the experimental setup. In Section 5.3
we evaluate the running time for the computation of a single buyer’s payment
scheme and show that even for large signal sets, the computational complexity is
not a limiting factor for application. Section 5.4 is devoted to the behavior of the
expected budget with a particular focus on the influence of seller cooperation.

5.1 Definition of Cooperation Value

A crucial parameter of the setting are the optimal seller strategies pt(qi). Clearly,
these externally given strategies determine the degree of seller cooperation of a
specific setting. For example, if pt(qi = qt) = 1 for all θt, there is full seller co-
operation in the setting. In order to evaluate how the expected budget changes
with regard to the seller’s cooperation, we therefore have to define a measure-
ment for this. It is important to note that the pt(qi) are given to us by the
external reputation mechanism. We are interested in the cooperation value
that is present in a population of sellers. We denote this value with

η. (5.1)
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We begin with the definition of the cooperation value of a single seller type θt
for a single buyer i and denote this value with

ηit. (5.2)

For t ≥ 2, we have a number of requirements on ηit:

1. We want it to be normalized to 1, i. e. a fully cooperative seller should
have a cooperation value of 1.

2. A seller of type θt should have a cooperation value of 1 if he plays his
highest possible action with probability 1, i. e. pt(qi = qt) = 1.

3. For a seller of type θ2, the cooperation value should equal the probability
for playing his “good” quality level.

Note that the lowest seller type θ1 is left out of the definition as he is a com-
mitment type, i. e. not a player in the actual sense, and should therefore not
influence the cooperation value. Requirements 1 and 2 induce the nice prop-
erty that ηit = 1 coincides with the seller behavior in the pure adverse selection
setting from Chapter 2. Requirement 3 is motivated by the interpretation of
the two type mixed setting as a pure moral hazard setting with cheating types
(compare Section 3.4).

A definition that incorporates all of these requirements is the one that puts
equal distances in between two “neighboring” seller actions. Using this rule, the
quality actions of a θ4 seller, for example, have the weights 0, 1

3 , 2
3 and 1 (in

increasing order). For a seller of type θt, t ≥ 2, and buyer i we obtain:

ηit =
t∑
l=1

l − 1
t− 1

pt(qi = ql). (5.3)

Our approach for the seller population is to weigh the cooperation value of a
single seller type with the prior probability that it occurs. Since θ1 is left out
of the computation of η, we have to normalize the prior type beliefs as given in
Equation 5.4. For reasons of clarity, we do not introduce another variable but
denote the normalized type priors with Pr−1(θ), so that for all t ≥ 2:

Pr−1(θt) =
Pr(θt)

1− Pr(θ1)
(5.4)

For the seller population and a single buyer we thus have:
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ηi =
T∑
t=2

Pr−1(θt) · ηit

=
T∑
t=2

Pr−1(θt) ·

(
t∑
l=2

l − 1
t− 1

pt(qi = ql)

)
.

(5.5)

The setting includes two buyers with possibly different cooperation values, so
that we weigh these two cooperation values using the arithmetic mean of the
respective ηi:

η =
η1 + η2

2
. (5.6)

In Appendix A we explain our algorithm to compute random values for pt(qi)
given η.

5.2 Experimental Setup

We consider settings in which every type corresponds to a signal, i. e. M = T .
The default value for the size of the signal set is M = 5. The conditional signal
observations are chosen in the same way as by Jurca and Faltings [e. g., Jurca
and Faltings, 2006]:

f(sm|ql) =

1− ε m = l

ε/(M − 1) m 6= l
(5.7)

Clearly, higher values of ε correspond to more noise in the buyers’ observations.
The default value for this noise parameter is ε = 0.1. The prior type beliefs are
uniformly distributed and all external lying benefits ∆(sj , sh), h 6= j, are set to
0.8. The buyers’ costs of participation are set to C = 0.5.

The default value for seller cooperation is η = 0.95. Please see Appendix A for
a detailed description of the seller strategies’ construction given η. We average
over 500 randomly generated settings.

5.3 Running Time

It is well known that the computational complexity of solving Linear Programs is
polynomial. The Simplex method, however, which has exponential worst-case
behavior, is frequently more efficient than guaranteed polynomial algorithms
such as interior point methods [e. g., Schrijver, 1998]. In order to determine
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M time (in ms)
2 1.58
4 2.20
6 3.28
8 5.44

10 9.00

M time (in ms)
12 14.20
14 21.66
16 32.70
18 47.42
20 65.14

M time (in ms)
22 87.89
24 114.50
26 149.84
28 189.17
30 239.05

Table 5.1: Average CPU time for the computation of the payment scheme with differ-
ent values for the size of the signal set M .

whether the feedback plug-in from Chapter 4 is feasible for real-world applica-
tion, we empirically evaluate it on a customary computer with a 1.6 GHz CPU.
We use a small program written in Python1 to compute the beliefs and solve
the LP with lpsolve2. Table 5.1 depicts the running time for the computation
of a single payment scheme depending on the size of the signal set. Observe
that the size of the LP’s matrix is independent of the size of the type set T .
Considering the low numbers even for large signal sets, we firmly believe that
computational complexity is not a limiting factor for application.

5.4 Expected Budget

An important characteristic of the computed solution is its expected budget.
See Figure 5.1 for the behavior of the expected budget for different values of
noise in the buyers’ observations. At first sight, the figure may suggest that
the required budget becomes lower with larger signal sets. To see why this is
misleading take a look at the procedure we use to compute the conditional signal
probabilities (Equation 5.7):

f(sm|ql) =

1− ε m = l

ε/(M − 1) m 6= l
(5.8)

For a constant ε and a growing signal set size M , the amount of noise that
is assigned to signal sm with m 6= l becomes smaller. While the procedure is
sufficient to compare the expected budget for a constant signal set size, it is
inadequate for experiments that study the budget behavior with regard to M .
Nevertheless, Figure 5.1 also shows that the expected budget is independent of
the size of the signal set for perfect monitoring, i. e. ε = 0, and we conjecture that
this holds true for a more sophisticated procedure that adequately generalizes
a certain noise level.

1www.python.org
2lpsolve.sourceforge.net
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Figure 5.1: The expected budget depending on the size of the signal set M and for
different values of noise. We averaged over 200 instantiations. Please note that due
to the random generation of type beliefs and seller strategies, the expected budget
slightly variates even for ε = 0.

5.4.1 Dependent on Seller Cooperation

Figure 5.2 depicts the expected budget over the entire space of seller cooperation
and different noise levels. Higher seller cooperation is generally cheaper for the
feedback mechanism which is good for the mechanism designer because it means
that there is no conflict of interest between the external reputation mechanism
and the feedback plug-in: both want the seller to cooperate as much as possible.
To understand why cooperation values close to 0 lead to an extraordinary large
budget, consider the extreme case of 0 seller cooperation: η = 0. The only
possible configuration for this situation is that all seller types play their lowest
actions q1. For this case, however, the two buyers’ signal observations cannot
be stochastically relevant for each other because the buyers’ posterior signal
distributions are known a priori. Put differently, every seller plays q1, so that
buyer i cannot infer any information about the seller’s type once she received
her signal. The posterior type beliefs, however, are the information that leads
buyer i to update her signal posteriors. Now if η is close to 0, the two signal
observations are stochastically relevant again but the signal posteriors are close
to each other. That is, gi(·| sj) is similar to gi(·| sh) for two possible signal
observations si = sj and si = sh. The budget becomes large for close posterior
beliefs because the honesty constraints require that the expected payment for
the honest signal announcement is larger by ∆(·, ·). As the expected payment

57



 0

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

E
xp

ec
te

d 
bu

dg
et

η

ε = 0.05
ε = 0.1  
ε = 0.2  

Figure 5.2: Expected budget depending on seller cooperation for different values of
noise in the observations.

is composed of τ i(·, ·) and the signal posteriors, the former must be larger the
closer the latter to lift expected payment over ∆(·, ·).

Note that the high variance around η = 0.5 is due to the way we choose
the seller strategy for a given type (compare Appendix A). For η = 0.5, the
seller strategies that are computed for a single seller type are equally distributed
over all ql which again makes the seller types difficult to separate and results
in signal posteriors gi(·|sj) that are close to each other and therefore costly
to separate. For values of η that are larger than 0.6, however, there are no
outliers any more. Note that cooperation values as low as 0.6 are unlikely to
be an issue in real-world applications. To see why, consider the moral hazard
interpretation of the mixed setting with two types, i. e. the “normal” type and
the “cheating” type (compare Discussion in Section 3.4). A cooperation value of
0.6 means that the normal type plays his cooperating action with a probability
of only 60% and cheats otherwise. In Figure 5.3 we have therefore plotted the
feedback mechanism’s behavior for values between 0.9 and 1 which we expect
to be the relevant interval. Observe that even for η = 0.9 and a high noise level
of ε = 0.2, the required budget is less than 30% larger than in a setting with
full cooperation.
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Figure 5.3: Relevant part of the plot for the expected budget depending on seller
cooperation. The expected budget is normalized to 1 which is the expected budget of
the full cooperation setting.

5.4.2 Depending on Noise

While studying the influence of seller cooperation in isolation provides some
insights, in practice it will be coupled with the noise in the observations. For
a pure moral hazard setting, Dellarocas finds that the level of cooperation that
can be achieved by a reputation mechanism is bounded away from the optimum
with the degree of noise in perception [2005]. We conjecture that the same holds
true for mixed settings and therefore link the seller’s cooperation with the noise
in the buyers’ perception. More specifically, we set η = 1−ε. While we are aware
that the exact relation between noisy observations and seller cooperation can
be different, we believe that it gives us a more realistic view on the feedback
mechanism’s behavior in practice. See Figure 5.4 for a plot of this scenario.
Observe that the expected budget rises smoothly for low noise values.
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Chapter 6

Multiple Equilibria

In our earlier work [2009] we have shown how, in a pure adverse selection setting
that generalizes that of Chapter 2, honest reporting can be made the unique
equilibrium of every induced reporting game if the center has the possibility for
a single signal acquisition. Unfortunately, non-truthful equilibria are essentially
unavoidable in purely peer-based feedback elicitation [Jurca and Faltings, 2005],
i. e. if the signal acquisition on behalf of the center is not possible.

In the presence of multiple equilibria, agents have to coordinate on one of
these. Schelling [1960] argued that, abstracted away from the strategic definition
of the game, there can be so-called “focal points”. That is, certain equilibria
are more likely to be chosen because they appear special or relevant. For the
reporting game in Chapter 2, for example, this can be asserted for the honest
equilibrium. However, the results of Chapter 4 can be regarded as being some-
what weaker than those of Chapter 2: through the introduction of the seller
as a strategic player, the best response conditions no longer demand that given
one buyer is honest, the other one is honest as well. We want to know whether
it is possible to achieve this for the mixed setting of Chapter 4 as well. That is,
the objective could be informally stated as: “if one buyer is truthful, both the
other buyer and the seller should be truthful”. In the following, we exemplify
how this objective could be reached. The remainder of this section uses a sim-
ple example with only two types and perfect private monitoring to construct a
payment scheme that fulfills the objective.

Say there are two types B and G. The seller’s actions are q1 = b and q2 = g.
The respective costs are denoted cG(g) = c2(q2), cG(b) = c2(q1) and cB(b) =
c1(q1). The buyers’ actions are reporting high h and a low l quality, respectively.
A buyer’s report is truthful if and only if she announces l after reception of b
and h after reception of g. The prior type beliefs are Pr(θ = B) = 0.3 and
Pr(θ = G) = 0.7. ∆(h, l) = ∆(l, h) = 0.1 and C = 1.
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6.1 Efficiency Conditions

The assumption regarding the seller valuations are the same as in Chapter 4.
That is, given the center could directly observe the transaction outcomes, all
sellers would play their optimal actions pt(qi). As monitoring is perfect, we
assume that pG(qi = g) = 1, i. e. the seller finds it optimal to play his high-
est action given truthful feedback was not an issue. Furthermore, we neglect
the discount factor for this simple example and, in particular, assume that
vs(l, h|r) = vs(h, l|r). Since in our example, only the good type G has an actual
choice, the following holds by assumption (we assume the seller is strictly better
off playing his high action given truthful feedback):

−2c2(g) + vs(h, h|r) > −c2(b)− c2(g) + vs(l, h|r)

−2c2(g) + vs(h, h|r) > −2c2(b) + vs(l, l|r)
(6.1)

Equation 6.1 can be simplified to:

vs(h, h|r)− vs(l, h|r) > c2(g)− c2(b)

vs(h, h|r)− vs(l, l|r) > 2 (c2(g)− c2(b))
(6.2)

6.2 Reducing the Game Tree

In contrast to Chapter 4, we do not go forward by assuming that all other players
are truthful, fix their strategies and construct payments that make truthfulness
by the left-out player a best response. Instead, we assume truthfulness by only
one buyer and construct payments that induce truthfulness by the two left-out
players. Note that the constraints of LP 2 (p. 44) have to hold nonetheless.
LP 2 demands that for both buyers i:

τ i(h, h)− τ i(l, h) ≥ 0.1 + ε

τ i(l, l)− τ i(h, l) ≥ 0.1 + ε

τ i(l, l) ≥ 1 + ε

τ i(h, h) ≥ 1 + ε

(6.3)

Without limitation of generality, we take the first buyer to report honestly and
reduce the game tree accordingly. See Figure 6.1 for the reduced game tree that
results if buyer 1 is committed to honest play .
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Figure 6.1: Reduced game tree for the simple example with perfect monitoring.

6.2.1 Buyer 2 received a b

We begin with the rational considerations of the second buyer when she received
a b. We denote the beliefs at this information set with α, α′ and α′′ = 1−α−α′.
From the observation of a b alone, buyer 2 does not know for sure whether the
seller is of type B—and could not play anything else—or of type G—and decided
to play his low action. What she knows, however, is that a priori the seller is
of type B with probability Pr(θ = B) = 0.3. As she received a b, 0.3 became a
lower bound on her belief that the seller is of type B:

α = Pr(θ = B|b) ≥ 0.3. (6.4)

We want that buyer 2 announces an l given she received a b what she will do if
her expected payment for an l announcement is strictly larger than announcing
h. The expected utility for l and h is:
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E(l2| b2) = v2(b) + ατ2(l, l) + α′τ2(l, l) + (1− α− α′)τ2(l, h)

= v2(b) + (α+ α′)︸ ︷︷ ︸
x

τ2(l, l) + (1− α− α′)︸ ︷︷ ︸
y

τ2(l, h)

= v2(b) + xτ2(l, l) + yτ2(l, h)

(6.5)

and

E(h2| b2) = v2(b) + ατ2(h, l) + α′τ2(h, l) + (1− α− α′)τ2(h, h)

= v2(b) + (α+ α′)︸ ︷︷ ︸
x

τ2(h, l) + (1− α− α′)︸ ︷︷ ︸
y

τ2(h, h)

= v2(b) + xτ2(h, l) + yτ2(h, h)

(6.6)

We can now set E(l2| b2)− E(h2| b2) ≥ ∆(l, h) + ε:

E(l2| b2)− E(h2| b2) ≥ 0.1 + ε

⇔

xτ2(l, l) + yτ2(l, h)− xτ2(h, l)− yτ2(h, h) ≥ 0.1 + ε

⇔

x(τ2(l, l)− τ2(h, l))− y(τ2(h, h)− τ2(l, h)) ≥ 0.1 + ε

⇔

x︸︷︷︸
≥Pr(θ=B)=0.3

(
τ2(l, l)− τ2(h, l)

)︸ ︷︷ ︸
>0

− y︸︷︷︸
≤1−Pr(θ=B)=0.7

(
τ2(h, h)− τ2(l, h)

)︸ ︷︷ ︸
>0

≥ 0.1 + ε

(6.7)

Therefore, if we can ensure that Equation 6.8 holds, every b is honestly an-
nounced.

0.3 τ2(l, l)− 0.3 τ2(h, l)− 0.7 τ2(h, h) + 0.7 τ2(l, h) ≥ 0.1 + ε (6.8)

Observe that we are very pessimistic in our estimation. Equation 6.8 ensures an
honest announcement of b even in those cases in which sellers of the good type
played g with probability 1 for the first buyer followed by a b with probability
1. One can possibly improve on these bounds.

64



6.2.2 Buyer 2 received a g

We can now further prune the game tree such that there is only one information
set left for buyer 2, namely the one when she receives a g (compare Figure 6.2).
In contrast to the situation where buyer 2 received a b, she can now be certain
that the seller is of type G. However, this also means that we cannot use the
prior type beliefs as lower bounds. The way forward is thus a different one than
in the b case. Instead of reasoning over buyer 2, we show that if the seller played
g for the second buyer, it is only reasonable to assert that he did play g for the
first buyer, as well. In order to show this, we slightly abuse the notation and
denote a2(h|g) the probability, i. e. behavioral strategy, that buyer 2 announces
a high signal given she received a g. Furthermore, to denote that the seller plays
b and g for the first and second buyer, respectively, we simply concatenate the
two letters. In order to be part of a perfect Bayesian equilibrium, playing bg

must be at least as good for the seller as playing gb. Otherwise, bg cannot be
sequentially rational. We begin by writing down the respective seller utilities for
these two actions. Note that, as before, we denote the players with a superscript.
The expected utility for the seller given he plays gb is:

Us(gb) = −c2(b)− c2(b) + vs(l, h|r) (6.9)

For the seller’s utility when he plays bg, we need to incorporate the behavioral
strategy of buyer 2:

Us(bg) =a2(h|g) · (−c2(b)− c2(g) + vs(l, h|r))

+ (1− a2(h|g)) · (−c2(b)− c2(g) + vs(l, l|r))

=− c2(b)− c2(g) + vs(l, l|r)

+ a2(h|g) · c2(b) + a2(h|g) · c2(g)− a2(h|g) · vs(l, l|r)

− a2(h|g) · c2(b)− a2(h|g) · c2(g) + a2(h|g) · vs(l, h|r)

=− c2(b)− c2(g) + vs(l, l|r) + a2(h|g) · vs(l, h|r)− a2(h|g) · vs(l, l|r)
(6.10)

We can then formulate the set of buyer 2’s behavioral strategies under which
bg is at least as good as gb:
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Figure 6.2: Further reduced game tree for the simple example with perfect monitoring.

Us(bg) ≥ Us(gb)

⇔

−c2(b)− c2(g) + vs(l, l|r)

+a2(h|g) · vs(l, h|r)

−a2(h|g) · vs(l, l|r) ≥ −c2(b)− c2(g) + vs(l, h|r)

⇔

vs(l, l|r) + a2(h|g) · vs(l, h|r)− a2(h|g) · vs(l, l|r) ≥ vs(l, h|r)

⇔

a2(h|g) · (vs(l, h|r)− vs(l, l|r)) ≥ vs(l, h|r)− vs(l, l|r)

⇔

a2(h|g) = 1

(6.11)

This means that from the seller’s point of view playing bg is only as good as
playing gb if buyer 2 reports honestly with probability 1. Then, however, playing
gg is strictly better by assumption as this is the case where both buyers are
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Buyer 2

Buyer 1
l h

l 1 0
h 0 1

Payment scheme from Chapter 4

Buyer 2

Buyer 1
l h

l 1 0.71
h 0 1

Robust payment scheme

Figure 6.3: The payment schemes from Chapters 4 and 6, respectively, for the perfect
monitoring example setting.

honest. Receiving a g, buyer 2 can thus infer that the seller played gg, so that
she maximizes her utility by honestly announcing h (given τ2(h, h)− τ2(l, h) ≥
∆(h, l) + ε which is required from the old scheme). Thus, we have ensured that
in this reduced tree, the only reasonable equilibrium is the truthful equilibrium.

6.3 Results

The entire LP for this small example game is thus:

LP 3.

min B = 0.3 τ2(l, l) + 0.7 τ2(h, h)

s. t. 0.3 τ2(l, l)− 0.3 τ2(h, l)− 0.7 τ2(h, h) + 0.7 τ2(l, h) ≥ 0.1 + ε

τ2(h, h)− τ2(l, h) ≥ 0.1 + ε

τ2(l, l)− τ2(h, l) ≥ 0.1 + ε

τ2(l, l) ≥ 1 + ε

τ2(h, h) ≥ 1 + ε

τ i(sj , sk) ≥ 0 ∀sj , sk ∈ S

The resulting payment scheme together with the payment scheme of Chap-
ter 4 is depicted in Figure 6.3. The expected budget is 1 for both the payment
scheme from this section and the scheme from Chapter 4. It is clear that the
identical budgets are due to perfect monitoring as the τ2(l, h) case never occurs
in equilibrium. In fact, it can be interpreted as a credible threat to the seller
which ensures that it never happens. When there is noise in the setting, these
threats obviously implicate higher costs.

Clearly, there is still a lot to do here. First, one needs to study whether the
exemplified procedure extends to general settings with noise in perception and
sellers that are not fully cooperative. A first result that we have left out due
to time constraints is that a similar procedure can be found for settings with
noise while we still assume a fully cooperative seller. For the future, we plan to
construct a robust payment scheme for the general setting from Chapter 4.
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Chapter 7

Conclusion and Outlook

Reputation mechanisms offer an effective way to prevent market failure in online
economies. Through the publication of past experiences regarding the quality of
products or the trustworthiness of market participants, they enable prospective
customers to make better-informed choices. The economic value of these pub-
lished experiences, however, raises questions regarding the trustworthiness of
the mechanisms themselves. While existing systems assume that the privately
monitored experiences are honestly reported, there is evidence from both game
theory and empirical studies that the agents’ reports are biased.

Recently, Miller, Resnick and Zeckhauser [2005] have shown that the truthful
elicitation of feedback is possible for reputation mechanisms that address pure
adverse selection, such as Amazon Reviews. Their “peer-prediction method”
compares an agent’s quality announcement with that of another agent, called
the agent’s reference reporter. As both agents experienced the same product,
there exists a payment scheme that pays the agent depending on how well her
announcement “predicts the announcement of her reference reporter”.

In this thesis we studied whether the peer-prediction framework can be mod-
ified such that it elicits truthful feedback in the presence of moral hazard, i. e.
if the seller chooses his actions strategically. For a pure moral hazard setting,
motivated by the one at eBay, we find that there is no peer-based feedback mech-
anism that makes honest reporting a best response to truthful play by all other
players. For a combined setting, with both adverse selection and moral hazard,
we retrieve a positive result and construct a “feedback plug-in” that can be
integrated into reputation mechanisms that are situated in mixed settings. Our
experimental findings strongly suggest that it is feasible for practical application
regarding both computational complexity and expected budget. Furthermore,
we exemplify a procedure that can be used to eliminate non-truthful equilibria
that are unavoidable in peer based feedback mechanisms.
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Other than the setting-specific aspects that we have already mentioned in
the discussion sections of the respective chapters, we plan to study whether the
sellers in the mixed setting can be paid directly dependent on feedback. So far,
we have made two crucial assumptions: we are given an external reputation
mechanism that induces sellers to be truthful as long as feedback is guaranteed
to be honest and sellers are long-lived. While the latter is the usual assumption
for moral hazard mechanisms, it clearly is a simplification of reality. At online
auction sites, for example, not every seller can be considered sufficiently long-
lived to be incentivized by future gains or losses due solely to the publication of
past outcomes. This is further emphasized in the presence of cheap pseudonyms,
i. e. if sellers can create new accounts once they have ruined their reputation. We
are interested in whether one can drop these assumptions if the center acts as
a trusted third party not only for feedback payments but also for the payment
from the buyer to the seller of a transaction. Dellarocas [2003] showed that
this is feasible under a number of rather strong assumptions with regard to
the determination of prices and the assumption that feedback is honest. In the
future, we want to study whether we can use our feedback plug-in to create a
fully incentivized payment framework.
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Appendix A

Construction of Random

Seller Strategies

To construct meaningful random values for pt(qi) given the value for seller co-
operation η is not trivial. We begin with the explanation how we choose each
ηit given η and, thereafter, we show how to construct the seller strategies for a
single seller type given ηit. We use the same seller strategies for both buyers,
i. e. ηi = η, as it is not reasonable that a seller’s strategy changes considerably
from one buyer to the other. Note that it is nonetheless perfectly possible that
the two quality levels that are played differ.

We begin to explain our procedure to determine all ηt given the overall
cooperation value η. The only procedure that is independent of the prior type
probabilities is to assign ηt = η for all θt. This procedure, albeit correct, involves
no randomness, so that we use a different algorithm that we briefly sketch in
the following:

1. Set up a temporary variable “temp” that contains T − 1 random values
all of which are between η and 1.

2. Compute the cooperation value that would be implemented if “temp”
were the distribution of ηt, taking into account the scaled type belief
Pr−1(θ). Let us denote this implemented cooperation value with “coop
value”. Observe that “coop value” must be larger than η (it equals η if
all values in “temp” are η).

3. Divide η by “coop value” and multiply the temporary variable “temp”
with this fraction.

The resulting values for ηt are all between 0 and 1 and implement the coopera-
tion value of the overall setting η. That is, they abide to Equation 5.5 on p. 55
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which we give in the buyer-symmetric version, i. e. ηi = η3−i:

η =
T∑
t=2

Pr−1(θt) · ηt. (A.1)

With a rule for finding ηt given η and Pr−1(θ), we can turn to the problem
of finding the seller strategies pt(qi = ql) given ηt. The näıve approach is to
assign the total value of ηt to the highest possible action, which is weighed with
1, and assign 1− ηt to the lowest action which is weighed with 0. If we use this
assignment rule, however, it seems we loose too much of the game’s structure
since the probability of all other quality actions, in between the lowest and the
highest, are set to 0. Finding assignments with full support is non-trivial and
we search for suitable seller strategies with a small LP. For a given ηt and seller
type θt, we invoke LP 4:

LP 4.

max u

s. t. pt(qi = ql) ≥ u l = 1, . . . , t
t∑
l=1

pt(qi = ql) = 1

t∑
l=2

l − 1
t− 1

pt(qi = ql) = ηt

The LP ensures that a strategy with full support is chosen whenever it is pos-
sible, i. e. if ηt 6= 0 and ηt 6= 1. The solution for θ4 and η4 = 0.8, for example,
is

pt(qi) =


0.1
0.1
0.1
0.7


Note that finding this type of solution without an LP becomes difficult when ηt
is very small so that pt(qi = q1) becomes the largest value.
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Appendix B

Zusammenfassung

Reputationsmechanismen bieten eine effiziente Methode zur Verhinderung von
Marktversagen auf elektronischen Marktplätzen. Durch die Veröffentlichung
von Erfahrugen vorhergehender Kunden mit Produkten oder anderen Markt-
teilnehmern, ermöglichen sie besser informierte Kaufentscheidungen und damit
effizientere Marktgleichgewichte. Der Einfluss und damit ökonomische Wert
dieser veröffentlichten Erfahrungen wirft jedoch Fragen bezüglich der Glaub-
würdigkeit der Mechanismen selbst auf. Existierende Systeme nehmen an, dass
die privaten Erfahrungen der Agenten ehrlich abgegeben werden. Diese An-
nahme steht im Gegensatz zu Erkenntnissen aus der Spieltheorie sowie em-
pirischen Untersuchungen, die nahelegen, dass das von den Agenten abgegebene
Feedback unehrlich beziehungweise verzerrt ist.

Miller, Resnick und Zeckhauser [2005] konnten zeigen, dass es für Reputa-
tionsmechanismen, welche ausschließlich negative Auslese bekämpfen (wie bei-
spielsweise die Produktbewertungen bei Amazon), möglich ist, einen Feedback-
Mechanismus zu entwerfen, der rationale Agenten dazu bringt ehrliche Bewer-
tungen abzugeben. Ihre Methode basiert auf dem Vergleich der Bewertungen
zweier Agenten und einer Bezahlung, die davon abhängt wie gut eine Bewertung
die Bewertung des anderen Agent “stochastisch erklärt”.

In bezug auf die spieltheoretische Komplexität sind Märkte mit ausschließlich
negativer Auslese verhältnismäßig einfach, da der Verkäufer in diesem Fall als
Spieler mit nur einer Aktion modelliert werden kann. In dieser Arbeit haben
wir untersucht, ob sich ein ähnlicher Mechanismus für solche Reputationsme-
chanismen entwerfen lässt, die in Märkten mit moralischer Versuchung (“moral
hazard”) eingesetzt werden. Diese Art von Marktversagen tritt auf wenn der
Verkäufer ein “echter” Spieler ist, also strategische Entscheidungen trifft, wobei
es einen Interessenskonflikt zwischen dem Verkäufer und dem Kunden gibt.
Durch ein von uns auf Basis der Situation bei eBay aufgestelltes Modell mit
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ausschließlich moralischer Versuchung, konnten wir zeigen, dass es keinen einzig
auf den Vergleich von Aussagen basierenden Feedback-Mechanismus gibt. Für
ein Marktmodell mit sowohl negativer Auslese als auch moralischer Versuchung
erzielen wir hingegen ein positives Resultat und entwickeln ein auf Linearer
Programmierung basierendes “Feedback Plug-in”, das in bestehende Reputa-
tionsmechanismen eingebunden werden kann. Darüber hin aus zeigen unsere
experimentellen Ergebnisse, dass dieses Plug-in auch bezüglich Laufzeit und
erwartetem Budget realisierbar ist.

74



Bibliography

[Akerlof, 1970] George A. Akerlof. The Market for ’Lemons’: Quality Uncer-
tainty and the Market Mechanism. The Quarterly Journal of Economics,
84(3):488–500, 1970.

[Bolton and Ockenfels, 2006] Gary Bolton and Axel Ockenfels. The Limits of
Trust in Economic Transactions – Investigations of Perfect Reputation Sys-
tems. Working Paper 33, University of Cologne, 2006.

[Bolton et al., 2009] Gary Bolton, Ben Greiner, and Axel Ockenfels. Engineer-
ing Trust – Reciprocity in the Production of Reputation Information. Working
Paper 42, University of Cologne, 2009.

[Conitzer and Sandholm, 2002] Vincent Conitzer and Tuomas Sandholm. Com-
plexity of Mechanism Design. In Proceedings of the 18th Conference on Un-
certainty in Artificial Intelligence (UAI 02), 2002.

[Cooke, 1991] Roger M. Cooke. Experts in Uncertainty. Oxford University
Press, 1991.

[Cripps et al., 2004] Martin W. Cripps, George J. Mailath, and Larry Samuel-
son. Imperfect Monitoring and Impermanent Reputations. Econometrica,
72(2):407–432, 2004.

[Dellarocas, 2003] Chrysanthos Dellarocas. Efficiency through Feedback-
contingent Fees and Rewards in Auction Marketplaces with Adverse Selection
and Moral Hazard. In Proceedings of the 4th ACM Conference on Electronic
Commerce (EC 03), pages 11–18, 2003.

[Dellarocas, 2005] Chrysanthos Dellarocas. Reputation Mechanism Design in
Online Trading Environments with Pure Moral Hazard. Information Systems
Research, 16(2):209–230, 2005.

[Dellarocas, 2006] Chrysanthos Dellarocas. Reputation Mechanisms. In Terry
Hendershott, editor, Handbook on Information Systems and Economics. El-
sevier Publishing, 2006.

75



[Fudenberg and Tirole, 1991] Drew Fudenberg and Jean Tirole. Game Theory.
MIT Press, 1991.

[Jain and Parkes, 2008] Shaili Jain and David C. Parkes. A Game-Theoretic
Analysis of Games with a Purpose. In Proceedings of the 4th International
Workshop on Internet and Network Economics (WINE 08), 2008.

[Jurca and Faltings, 2005] Radu Jurca and Boi Faltings. Enforcing Truthful
Strategies in Incentive Compatible Reputation Mechanisms. In Proceedings of
the 1st International Workshop on Internet and Network Economics (WINE
05), 2005.

[Jurca and Faltings, 2006] Radu Jurca and Boi Faltings. Minimum Payments
that Reward Honest Reputation Feedback. In Proceedings of the 7th ACM
Conference on Electronic Commerce (EC 06), pages 190–199, 2006.

[Jurca and Faltings, 2007a] Radu Jurca and Boi Faltings. Collusion-resistant,
Incentive-compatible Feedback Payments. In Proceedings of the 8th ACM
Conference on Electronic Commerce (EC 07), pages 200–209, 2007.

[Jurca and Faltings, 2007b] Radu Jurca and Boi Faltings. Obtaining Reliable
Feedback for Sanctioning Reputation Mechanisms. Journal of Artificial In-
telligence Research (JAIR), 29:391–419, 2007.

[Jurca and Faltings, 2007c] Radu Jurca and Boi Faltings. Robust Incentive-
Compatible Feedback Payments. In Trust, Reputation and Security: Theories
and Practice, volume 4452 of LNAI, pages 204–218. Springer-Verlag, 2007.

[Kotowitz, 2008] Yehuda Kotowitz. Moral Hazard. In Steven N. Durlauf and
Lawrence E. Blume, editors, The New Palgrave Dictionary of Economics.
Palgrave Macmillan, second edition, 2008.

[Kreps and Wilson, 1982a] David M. Kreps and Robert Wilson. Reputation and
Imperfect Information. Journal of Economic Theory, 27(2):253–279, 1982.

[Kreps and Wilson, 1982b] David M. Kreps and Robert Wilson. Sequential
Equilibria. Econometrica, 50(4):863–894, 1982.

[Laffont and Martimort, 2001] Jean-Jacques Laffont and David Martimort. The
Theory of Incentives. Princeton University Press, 2001.

[Milgrom and Roberts, 1982] Paul Milgrom and John Roberts. Predation, Rep-
utation and Entry Deterrence. Journal of Economic Theory, 27(2):280–312,
1982.

76



[Miller et al., 2005] Nolan Miller, Paul Resnick, and Richard Zeckhauser. Elic-
iting Informative Feedback: The Peer-Prediction Method. Management Sci-
ence, 51(9):1359–1373, 2005.

[Miller et al., 2006] Nolan H. Miller, John W. Pratt, Richard J. Zeckhauser, and
Scott Johnson. Mechanism design with multidimensional, continuous types
and interdependent valuations. Journal of Economic Theory, 136(1):476–496,
2006.

[Nisan, 2007] Noam Nisan. Introduction to Mechanism Design (for Computer
Scientists). In Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V.
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