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Chapter 1

Introduction

Today, when people talk about robot automatization, they mostly refer to
some kind of machine which works on the basis of deterministic programs.
The robot may understand a certain set of deterministic commands which
it can perform in a very simple domain. Take, for example, a construction
robot in a car factory which has to weld parts of the car body. It must
perform a distinct and very restricted task. For every car body arriving at
the station of the robot, it is exactly the same. The robot does not have to
care about its surroundings, which remain unchanged. It can be controlled
by a deterministic program which is triggered by an event like the arrival of
the next car body. There is little need for artificial intelligence. This robot,
although it seems to do certain things in an intelligent fashion, is just a plain
and simple machine, comparable in its usage to a lawn mower.

In this thesis, we will discuss an approach to make a robot more intelli-
gent. This may sound impressive and even futuristic to some, but it should
be clear that the goal cannot be to create a near-human being as in science
fiction. This thesis will definitely not pave the way to our very own Sonny1.
Our goal is to lay the foundation for a robot which can perform multiple
tasks that are not hard-wired, a robot which can adapt to its surroundings
(at least to a certain level).

It is a typical household: a married couple, two kids, a boy and a girl, a
dog, maybe a cat and a hamster for the little daughter. Both the man and
the woman are working hard to feed the kids and the hamster. One has to
go shopping for groceries almost every day. And every day, there is the same
problem: who will empty the shopping basket? The parents are much too
exhausted and just want to get some rest, the boy is playing soccer with his
friends, and the little girl cannot reach the top shelves anyway. This is where

1Sonny is the name of the first robot which has the freedom to break the three basic
rules of robotics in the movie adaption of Isaac Asimov’s “I, Robot”
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an intelligent robot could take over. It could empty the shopping basket, put
everything where it belongs, the perishable goods into the fridge, the cereals
onto the top shelf (that which the little girl cannot reach), and the ice-cream
into the freezer.

Solving this rather complex problem involves a lot of subtasks like ana-
lyzing the surroundings of the robot, classification of the items, determining
of the order in which to put them away, finding free surfaces, moving through
the kitchen without crashing into things, or actually grasping the items and
putting them away.

In this thesis, we will be concerned with one of these subtasks, namely
the grasping of items. The question we would like to answer in a situation
like the above is: “In which pose does the robot have to grasp an object
in order to put it in a different place without colliding with other objects?”
We will present a new approach based on AI planning techniques that differs
from the approaches previously examined. A reduced exemplar based on the
“kitchen domain” mentioned above will be used to prove the feasibility of
our approach.

The main focus in this thesis will be on the implementation of the required
extensions to classical AI planning techniques. In chapter 2, we will present
the basics of these techniques, describe our main problem, and discuss related
work. Chapters 3 and 4 will then deal with the extensions and provide the
basis for discussion of the actual problem in chapter 5.

Finally, we will present some experimental results in chapter 6, before
making some concluding remarks and discussing ideas for further research in
chapter 7.
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Chapter 2

Problem Description and
Related Work

In this chapter, we will give a short overview of planning in robotics, and
provide a motivation for as well as a more formal definition of the problem
we are dealing with in this thesis. Finally, we will present related work and
outline in what way other approaches differ from ours.

2.1 Planning in Robotics

In general, there are four main research fields concerned with planning in
the context of robotics. Path and motion planning, navigation planning, and
manipulation planning.

Path planning refers to the purely geometrical task of finding a collision-
free path for a robot among static obstacles. Motion planning elaborates on
this by introducing the element of time, thus also handling the dynamics of
the robot like acceleration and speed. The goal of motion planning is to find
a control trajectory along the path. Motion and path planning are without
doubt two of the most researched planning problems in robotics [Kavraki,
1999; Latombe, 1999; Barraquand and Latombe, 1991]. In particular, the in-
troduction of probabilistic roadmap techniques by Kavraki et al. [Kavraki et
al., 1994] provided the foundation for some of the most successful approaches.
Motion and path planning can be regarded as fairly mature today.

Motion planning is often used, too, as a subtask in higher level robotic
planning problems such as navigation planning. Navigation planning involves
perception handling through sensor input as well as self-localization in a
constantly updated world model.
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The main task in manipulation planning is to manipulate movable objects
among obstacles. A robot moves towards an object, grasps it, and then
transports this object to a different location.

The most common approach to manipulation planning is to create a ma-
nipulation graph which connects valid free grasp positions. The idea of a
manipulation graph was introduced by Alami et al. [Alami et al., 1990].
They define the set FC of all possible robot and object configurations that
are free, i.e. in which no two bodies (robot, object, or obstacle) collide. Then
P ⊂ FC is defined as the set of valid object configurations, i.e. those which
comply with the physical principles valid in the domain (e.g. an object is not
allowed to float in mid-air). Also, G ⊂ FC is defined as the set of configu-
rations in which robot and object are aligned in a way that allows the robot
to grasp the object. A transfer-path is a path in FC on which the robot
moves one object, while a transit-path denotes a path in FC along which the
configurations of all objects except the robot’s are static.

The set of manipulation graph nodes, then, is made up of the connected
components of P ∩G1. In case of a discrete number of placements and grasps,
this set is finite. Otherwise, one has to select a subset representing the
actual graph nodes which, for instance, by using a probability distribution.
There are two types of edges: transfer and transit edges. Two nodes are
connected by a transfer (transit) edge if a transit-path (transfer-path) exists
between two configurations of the associated connected components. Solving
the manipulation planning task then consists of building the manipulation
graph and finding in it a path from the initial to a goal configuration.

This approach, however, has one disadvantage.
Imagine a box of water bottles which need to be put away into the kitchen

cabinet. Being in the box, the bottles can only be grasped at the top. So a
robot presented with this task would hold a bottle at the top after having
taken it from the box. The shelf in the cabinet may just provide enough
space to fit in the bottle, with little space left above it. So the robot would
not be able to place the bottle into the cabinet using the current grasp pose.
It would have to put the bottle down (or use a second hand if it has one)
and use another grasp pose to put the bottle on the shelf.

The manipulation graph does not explicitely include the notion of re-
grasping an object in order to change the grasp pose. Thus, in order to allow
as free a handling of the grasp poses as possible, we will follow a different
approach here.

1The conneced components can be computed using the Collins decomposition. For
further reading, we refer to [Latombe, 1991, Chapter 11].
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2.2 Introducting: Action-Planning

In this thesis, we will approach the problem of manipulation planning based
on classical domain-independent action planning techniques which allow the
usage of general-purpose planning languages (such as PDDL [McDermott and
others, 1998]) and planning systems. Domain-independent planning seeks
to exploit commonalities to all forms of planning by relying on abstract,
general models of actions. The state of the world is described by a finite
set of state variables. Actions modify the values of these variables. In the
most basic form of action-planning, the state variables are logical symbols
and an action a is defined as as a tuple a = (pre(a), add(a), del(a)) where the
preconditions pre(a), the “add-list” add(a), and the “delete-list” del(a) are
sets of variables. The action can be applied if the current state S fulfills all
preconditions pre(a) (pre(a) ⊂ S). The effect of the action, then, is defined
as apply(S, a) = S ∩add(a) \ del(a). In chapter 4, we will give a more formal
definition of an action planning task.

The input of a domain-independent planner is the domain specification
and knowledge about the specific task. Several planning languages have
been developed to provide a formalism for domain and problem-task spec-
ifications. Two of the most important are ADL, the Action Definition
Language [Pednault, 1989] and its successor PDDL (see [McDermott and oth-
ers, 1998] and chapter 3) which has become the de facto standard language
for describing planning domains. Both languages are based on the STRIPS
style of actions [Fikes and Nilsson, 1971]. UCPOP [Penberthy and Weld,
1992] was the first planner to fully support ADL and was followed by sev-
eral planning systems which mostly supported the ADL extensions through
PDDL [Dean and Boddy, 1988; Chapman, 1987; Peot and Smith, 1992;
Hoffmann and Nebel, 2001].

Using domain-independent planning in combination with manipulation
planning, we can encode the grasp poses directly into the problem. Thus,
in our interpretation of the problem, the action of grasping an object also
involves choosing an appropriate grasp pose. In the context of this thesis we
will regard the collision-free motion between grasping and putting down the
object as an atomic action.

We use a simplified robot hand which is simply a long bar grasping objects
by touching their surface. In other words, our hand is a kind of magnetic
robot gripper. This simplification does not change the original problem of
the grasp poses while leaving aside things like opening and closing the hand
or the question if an object is too big for the hand. All these details we will
not consider here.

Let us define our specialized version of manipulation planning formally.
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Definition 2.1 (Planning Task) A simplified manipulation planning task
is a tuple

T = (B,M, I,G)

where B is the set of static objects, M is the set of movable objects, and the
initial state I and the goal state G are sets of mappings M 7→ B specifying
which movable object is placed on top of which static object.

We define two operators grab and putdown. An operator o has three
parameters: the object to be manipulated m(o), the static object involved
b(o), and the grasp pose used p(o). The state resulting from the application
of an operator o to a state s is denoted by result(o, s). A valid solving plan
is thus defined as follows.

Definition 2.2 (Plan) A plan solving a planning task T = (B,M, I,G) is
a sequence of grab and putdown operators

P = (g0, p0, g1, p1, . . . , gn, pn)

such that result(pn, result(gn, . . . result(p0, result(g0, I)) . . . )) = G and ∀i ∈
[0, n] : p(gi) = p(pi) and gi and pi can be executed collision-free.

In order to handle this specialized version of manipulation planning, we
need to encode the following information into our domain:

1. The robot gripper: We need to know if it holds an object and if so in
what pose.

2. Geometric objects in the three dimensional space R3: We need to en-
code information about the shape and dimensions of objects.

3. The relative position of two objects: We need to be able to express if an
object sits on top of another. It is not necessary to know the absolute
position of every object in the domain as we do not handle motion of
the robot between them.

4. Collision detection between objects: We need to determine if certain
grasp poses are usable in combination with certain objects.

Including the information necessary for three dimensional collision de-
tection into the domain could be done by introducing numerical variables
denoting the coordinates of points of triangles. Triangles could then belong
to objects through the usage of a predicate like is_part_of. It is obvious
though that this encoding would result in a very big domain description
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(action putdown

(parameters c - movable s - base p - pose)

(preconditions

(forall st - triangle

(imply is_part_of(st,s)

(forall t - triangle

(imply is_part_of(t,c)

(and

(p1_y(t) > p1_y(st))

(p2_y(t) > p1_y(st))

(p3_y(t) > p1_y(st))

(p1_y(t) > p2_y(st))

(p2_y(t) > p2_y(st))

(p3_y(t) > p2_y(st))

(p1_y(t) > p3_y(st))

(p2_y(t) > p3_y(st))

(p3_y(t) > p3_y(st))

)

)

)

)

)

)

)

Figure 2.1: Encoding collision detection directly into the domain

which would not be solvable with current planning systems in reasonable
time. Just testing if one object is located above another would be a difficult
task as the excerpt from a PDDL action template in figure 2.1 shows.

With this already quite complex precondition we would not even be close
to solving the collision detection problem. We would have to check a lot
more constraints of this kind to “implement” full collision detection into the
domain description and would probably end up with an encoding which is
not only very large but also very slow.

This means that just using plain action planning cannot be the answer
for a complex domain like this. We need a way of simplifying the domain
while preserving the quality of the resulting plan.
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Figure 2.2: Architecture of Planning with external modules

2.3 Decomposing the Problem

The idea of the approach we will present here is to keep all geometrical
information out of the planning domain to simplify a complex problem to a
symbolic representable subset. In this subset of the problem, a question like
Is there a collision-free way to move from point a to point b? is represented
by a single symbol whose logical value is determined by an external instance.
This external instance can have an arbitrary complexity, which is hidden
from the planning system. So whenever the planning system accesses the
logical value of this symbol, it actually invokes the external instance.

Thus we decompose the work that is to be done into two main parts:
The sometimes expensive constraint checking and effect calculation based on
the full domain knowledge including geometric information on the one hand,
and the purely symbolic planning process on the other. The domain as seen
by the planning system is reduced in complexity while not necessarily losing
accuracy at the same time. We call these external instances modules. Figure
2.2 shows how an external module provides a “black box” for the planning
system in order to generate certain facts in the course of the planning process.
The external module has full access to all aspects of the domain while the
planning system only has to deal with a simplified version of it.

To realize the concept of external modules as described above we need
“procedural attachments” in our planning language. Procedural attachments
refer to possibly complex code associated with an entity in the domain.
Whenever the entity is used, an attached procedure is called to evaluate
its status. In the context of action planning, these procedures are attached
to logical symbols as mentioned above.
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Figure 2.3: Example configuration

This leads us to the two main goals of this thesis: extending the PDDL
to support procedural attachments and implementing a reference planning
system to support these extensions. Thus, we create a solid foundation for
the action planning approach to manipulation planning.

Throughout this thesis, we will use one very simple example problem
configuration consisting of four objects: a box, a table (which is nothing
more than a thick plate), and a shelf (which is in fact a rotated box), as well
as a little cube serving as the movable object. Figure 2.3 shows this simple
setup.

2.4 Related Work

Most research in manipulation planning deals with the creation of the ma-
nipulation graph and extraction of a manipulation path from it [Alami et al.,
1995; Siméon et al., 2004; Nielsen and Kavraki, 2000; Koga and Latombe,
1994; Amato and Wu, 1996].

There have already been approaches to extract complexity from domain-
independent planning problems. With their hybrid planning system STAN4
[Fox and Long, 2001], Fox and Long try to identify automatically subprob-
lems from a domain which are better solved with specialized algorithms. In
particular, they extract path planning subtasks from the domain description
based on information gathered by the automated domain analysis tool TIM
[Fox and Long, 1998]. The domain is then abstracted from these subprob-
lems and solved seperately by a forward planner which uses an estimation
of the path planning subtasks in its heuristic. The path planning problems

14



are then reintegrated once an action has been chosen for addition into the
resulting plan.

Srivastava [Srivastava, 2000] proposes a decoupling of resource reason-
ing and planning task. His approach, implemented in the RealPlan plan-
ning system, is to identify resources in a planning task and then to create
a partially-ordered solution plan for the resource-abstracted variant of the
planning task which ignores resource usages, i.e. treats resources as if they
were always available. From this plan, a number of constraints is derived,
most of which are based on resource spans provided by the plan. A resource
span defines a pair of actions which occupy and release a certain resource
(For example, in the case of a transport robot, the actions of loading and
unloading would form a resource span.). To each span belongs a set of vari-
ables defining, among other things, the resources used and the level of the
action in the final plan. These yield constraints on the ordering of actions
and on the resource usage. These contrainsts2 form a CSP3 which is solved
with a standard CSP solver. In the final step, the resource-abstracted plan
and the policies derived from the CSP problem are combined in a solution
plan.

On the one hand, the automatic separation of subproblems in STAN4 and
RealPlan is more general than ours since they automatically determine sub-
problems. On the other hand, however, our approach using external modules
allows the specification of arbitrary additional information not restricted to a
specialized subproblem such as path planning. This is because the extraction
of subproblems is done in the design phase of the domain.

Procedural attachments have already been developed for search engines.
In [Jónsson, 1996], Jónsson formally defines a framework, which, based on
general definitions, defines how search engines and procedures interface.

Procedural attachments in combination with planning languages have
also been mentioned. In [Golden, 2003], Golden introduces the DPADL4

planning language. It is designed explicitly for Data Processing; actions
are not allowed to change the world except by creating new objects (in-
put/output design). DPADL is an object oriented planning language which
supports procedural attachments through the embedding of Java code into
constraints and action effects. Although with some minor changes, DPADL
might also be used for general purpose planning domains, and already sup-

2For the sake of simplicity we do not discuss all constraints which are used in the actual
RealPlan algorithm.

3CSP – Constraint Satisfaction Problem: A CSP consists of a finite set of variables,
each with a finite range of possible values, and a set of constraints. A solution to a CSP
is an assignment of all variables satisfying the contraints.

4DPADL – Data Processing Action Description Language
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ports the extensions we need in its present form, it is only implemented by the
IMAGEbot system which only acts in one specialized domain. What we need
is not only a general purpose planning language but also a non-specialized
planner supporting it.
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Chapter 3

PDDL/M - Procedural
Attachments in PDDL

PDDL, the Planning Domain Definition Language, first published in [Mc-
Dermott and others, 1998] is the de facto standard language for describing
planning domains.

In this context, planning is the task of transferring a certain initial state
into a goal state using a fixed set of actions.

A PDDL definition consists of two parts: the domain and the problem-
task definitions. The domain definition provides the predicates used to de-
scribe the facts that form a state of the domain, and the actions which alter
these facts, thus changing the state. The problem-task definition basically
contains the initial and goal states. PDDL is derived from STRIPS [Fikes
and Nilsson, 1971] which in its basic form only allows a state description
consisting of simple logical facts as described in section 2.2. Actions only set
or negate these facts. PDDL, however, extends beyond STRIPS by adding
quantified conditions and conditional effects forming the ADL [Pednault,
1989] action definitions. In addition to that, PDDL provides many more fea-
tures, one of which is of interest in the current context namely that numerical
state variables can be used in addition to symbolic facts.

It is important for the understanding of the following to have a ba-
sic knowledge of PDDL. We refer to [McDermott and others, 1998] and
[Edelkamp and Hoffmann, 2003] for a detailed introduction to PDDL.

In this chapter, we describe an extension to PDDL 2.2 , which allows the
usage of procedural attachments (called external modules in the following) to
provide the planner with additional information during the planning process.
These modules are intended to be independent from the planning system but
tightly coupled with the problem definition. This means that in PDDL/M a
planning problem does not only consist of the domain and task specifications
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but also defines an arbitrary number of external modules. These modules
are implemented separately from the planner but can be loaded dynamically
and accessed through a well-defined API1.

It is not sufficient for the module to only know everything about the
domain in general. It must also know about the current planning situation.
If, for example, we would like to put down a bottle on a table, we need to
know which objects are already on the table. This might be represented
symbolically in the domain by the use of a predicate like ontop(table, bottle).
The module in some way should be able to access all ontop instances in the
current planning situation in order to make a useful decision. Otherwise,
we would have to encode all necessary information into the parameters of
the action. This would create inconveniently big action definitions while the
information accessible to the module would still be restricted in complexity
by the fixed number of parameters. What we need, then, is a planner interface
to be used by the PDDL/M modules to obtain information about the current
planning situation from the planning system.

The extension described here consists of two main parts. In section 3.2,
we describe the syntax changes to the PDDL, and in section 3.3, we introduce
the plug-in API used to implement the external modules. First, however, we
will give a quick overview of the module structure in section 3.1.

Section 3.4 deals with implementation. We will present a support library
which can be used to implement support for external modules in planners.

3.1 External Modules

As mentioned above, the general idea of an external module is to provide
procedural attachments in PDDL. An external module is a piece of software
which can be accessed by the planner during the planning process to answer
certain queries like constraint checking. One can think of a module as a
plug-in for PDDL/M planning systems.

Every module implements the method init which can be used by the
planning system to initialize the module for first usage. A typical task for
the initialization would be to load a configuration file. The parameter of
this method is an array of options. We will explain this in detail later on.
In addition to the init method, every module implements a method specific
to its type (the types of modules will be defined in section 3.2.1) which is
invoked by the planner to answer a query from this module.

1Application Programming Interface
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To support PDDL/M modules, a planning system needs to implement a
callback method which provides access to the current planning state for the
modules. In section 3.3, we will define the layout of this API in detail.

3.2 Syntax

PDDL/M introduces the idea of external modules into classical PDDL. To
achieve this, we introduce new syntax in the domain and problem-task def-
initions. In this section, we will describe this new syntax. See appendix A
for a complete description of the new syntax in BNF.

We introduce here a new requirement to be used in domains which depend
on external modules as described below: module. See Figure 3.1 for an
example.

(:requirements :strips :typing :module)

Figure 3.1: Example: Usage of the module requirement

When using the module requirement a new section: modules is allowed
in the domain specification. In the modules section, the modules actually
used in the domain are specified. It consists of several module specifications.
Each of them consist of three mandatory parts:

1. A unique identifier to reference the module anywhere in the domain or,
as we shall see in the problem-task definition.

2. The type of module. Currently, two types of modules are defined, as
described in section 3.2.1.

3. The binary which implements the external module. This may be an
absolute path to the specific dynamically loadable library file or sim-
ply the name of a library, thus leaving resolution of the name to the
dynamic linker.

Moreover, an arbitrary number of parameters may be specified after the
module identifier. These parameters may include variables in the same man-
ner as for a predicate definition in classical PDDL, which will be instantiated
in an action. In case of the effect module, this is the place to specify the
function symbols defining the numerical variables modified by this module
(see section 3.2.1 for details). See Figure 3.2 for an example of the definition
of two modules module1 and module2.
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(:modules

(module1 ?var1 ?var2 conditionchecker @modulelib)

(module2 ?var1 ?var2 function1() effect @modulelib)

)

Figure 3.2: Syntax of the modules section

In this example, the domain uses two external modules, one of the type
conditionchecker and one of the type effect, both to be loaded from the
library modulelib. The modules will be referred to as module1 and module2.
Both modules have two parameters, and the effect module module2 changes
the value of the function symbol function1.

3.2.1 Module Types

As mentioned above, every external module used in a PDDL/M domain has
a type which determines its usage in the domain. PDDL/M introduces two
different module types: the Condition Checker and the Effect module. We
will now describe these module types in greater detail.

Condition Checker

A Condition Checker module provides a new type of contraint to be used in
an action precondition in case the domain description itself does not provide
enough information to handle the condition symbolically.

For a Condition Checker module to be used in an action, it needs to be
specified just like a classical precondition. The only difference is that the
module identifier enclosed in square brackets replaces the predicate name, so
that the planner knows it is dealing with a module condition rather than a
classical (symbolical or numerical) one.

Figure 3.3 shows an example of a Condition Checker module in a do-
main description. The module puthelper is used to determine if a certain
combination of parameters is suitable for the action putdown or not.

Effect

An Effect module provides a new means of modifying the values of numeri-
cal state variables via an action effect. The Effect module only modifies the
values of numerical functions and not those of symbolic facts. This limita-
tion can easily be resolved if modification of symbolic facts using an external

20



(:modules

(puthelper

?o - object

?p - place

conditionchecker

@libputhelper)

)

(:action putdown

:parameters ( ?o - object

?p - place

:precondition ( ([puthelper] ?o ?p) )

[...]

Figure 3.3: Example: Usage of the Condition Checker module

PDDL/M module should ever prove desireable. However using module con-
ditions in an action effect would produce the same effect.

The syntax of the Effect module follows that of a classical symbolic effect
except that the module identifier enclosed in square brackets replaces the
predicate name. As the functions whose values are modified by the module
effect are fixed and have already been specified in the module definition, they
are omitted here.

Figure 3.4 shows an example of an effect module with two parameters o
and p which modifies the values of two numerical functions a and b.

3.2.2 Module Options

Each module can be provided with a set of initial options via the PDDL
problem-task description file. In the initialization phase of the planner, these
options will be passed on to the initialization method described in section 3.3.

To specify options for specific modules, we introduce a new section to be
used in the problem-task file, namely moduleoptions. This section contains
one or more entries. Each entry consists of the identifier of the module and an
arbitrary number of options separated by commas. Each option is encoded
by its name, followed by a “=” sign, and its value.

Figure 3.5 shows an example of how to use the new syntax in a PDDL
problem-task file.
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(:modules

(grabhelper

?o - object

?p - place

a()

b()

effect

@libgrabhelper)

)

(:action grab

:parameters (?o - object ?p - place)

[...]

:effects ([grabhelper] ?o ?p)

)

Figure 3.4: Example: Usage of the Effect module

(:moduleoptions

(module1 option1=value1,option2=value2)

)

Figure 3.5: Example: Usage of the module options
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The external module referred to as module1 will be initialized with two
options, option1 and option2. They will be assigned the values value1 and
value2 respectively.

3.3 The Module API

In this section, we define the interfaces for the different module types. These
can be used to implement module support in a planner and to create new
modules.

We define an interface in C here but bindings for other programming
languages should be easy to implement.

The module interface is very simple. It consists of three methods and
some simple data structures. Each module has an initialization method init
which needs to be called before using the module. Although this method
might have no effect with some modules, it must be implemented. The init
method has two parameters: the number of options and a list of option strings
(each option string consists of option name and option value, separated by
a comma). This list of options has to be created by the planner using the
values in the moduleoptions section in the problem-task file, as described in
section 3.2.2.

In addition to the init method, the API defines the actual module methods
checkcondition and applyeffect. Depending on the type of module, only one
of these needs to be implemented. Both methods have as parameters the
name of the action, a list of parameters, and a pointer to a planner call-back
method which can be used to access the current planning state. A planner
supporting external modules has to implement this call-back method.

The parameters of the call-back method are a list of predicates (facts)
and a list of numerical variable values, both of which the planner must fill if
the call-back method is used by the module.

See appendix B for a complete description of the API and all the data
structures.

3.4 PDDL/M Support Library

The PDDL Module Support Library consists of C declarations of the data
structures and interfaces used in the Module API defined in section 3.3, and
of methods to load and unload PDDL modules by name.

A module is represented by the structure defined in figure 3.6 and consists
of an internal handle used by the PDDL Module Support Library to load and
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typedef struct _Module {

void* handle;

int type;

int (*init)( int argc, char** argv );

int (*checkcondition)( const char*,

ParameterList*,

modulecallback* );

int (*applyeffect) ( const char*,

ParameterList*,

double* values,

modulecallback* );

} Module;

Figure 3.6: PDDL Module C interface

unload the module, of the type of the module, and of pointers to the init,
checkcondition and applyeffect methods.

Depending on the the type of the module, not all methods need to be
implemented. The checkcondition method is only implemented by condi-
tionchecker modules, while the applyeffect method is only implemented
by effect modules. Methods which are not implemented have NULL pointers
in the Module structure.

The type of module is defined as a simple enumeration, as shown in
figure 3.7.

typedef enum _ModuleType {

CONDITION_CHECKER,

EFFECT

} ModuleType;

Figure 3.7: PDDL Module C Type

The PDDL Module Support Library provides two methods for loading
and unloading PDDL modules by name. The loading method returns a
pointer to an instance of the Module structure, or a NULL pointer in case
no module with the provided name could be found. The unloading method
completely removes the Module instance from memory.
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Module* loadModule( const char* name );

void unloadModule( Module* );

Figure 3.8: PDDL Module loading interface

In addition it implements methods for memory management in combi-
nation with the different data structures, i.e. construction and destruction
methods for Parameters, Predicates, Functions, and lists of all three.
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Chapter 4

FF/M - An Implementation of
PDDL/M

An extension to a planning language is useless without a planner support-
ing the new syntax. In this chapter, we present an implementation of the
PDDL/M syntax as an extension to the award-winning FF planning system
by Jörg Hoffmann [Hoffmann and Nebel, 2001] or, more precisely, to its big
brother Metric-FF which extends FF to numerical state variables [Hoffmann,
2002]. So in the following, when we talk about FF, what we really mean is
Metric-FF.

First, we will give an overview of how FF works and talk about some
implementation details. We then describe how the external module extension
has been realized in FF.

4.1 Anatomy of a Planning System

FF is a forward planning system which relies on forward state space search,
using a heuristic that works with a relaxed version of the planning problem to
provide fast estimates for goal distances. Although FF supports full ADL, it
compiles the ADL domain description down to a much simpler form internally
by instantiating all parameters and eliminating quantifiers as well as negative
symbolic preconditions. The result is a STRIPS planning task combined with
numerical variables. In the following, we will use a slightly simplified version
of this so-called propositional normal form, which is close enough to the
original to explain the internal proceedings of FF.

We start by defining the formal concepts used, which are all based on a
set of propositions P and a set of numerical variables V = {v1, . . . , vn}.
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Definition 4.1 (State) A state S is a pair

S = (facts(S), values(S))

where facts(S) ⊂ P is a finite set of logical propositions, and values(S) :
V 7→ Q is a function which assigns a value to each numerical variable.

Definition 4.2 (Numerical Constraint) A numerical constraint nc is a
triple

nc = (exp(nc), comp(nc), exp′(nc))

where exp(nc) and exp′(nc) are arithmetical expressions over V and the ra-
tional numbers, and comp(nc) ∈ {<,≤, =, >,≥}.

A numerical constraint nc is fulfilled in a State S (S |= nc) iff the value
of exp(nc) in S stands in relation comp(nc) to the value of exp′(nc) in S.

Definition 4.3 (Condition) A Condition c is a pair c = (p(c), nc(c)) where
p(c) ⊆ P is a set of propositions and nc(p) is a set of numerical constraints.

A condition c is fulfilled in a state S (S |= p) iff p(c) ⊆ facts(S) and
∀n ∈ nc(c) : S |= n.

Definition 4.4 (Numerical Effect) A numerical effect ne is a triple

ne = (var(ne), ass(ne), exp(ne))

where var(ne) ∈ V , ass(ne) ∈ {:=, + =,− =, ∗ =, / =}, and exp(ne) is an
arithmetical expression over V and the rational numbers.

A numerical effect ne is applied to state S by updating values(S)(var(ne))
using the operator ass(ne) and the value of exp(ne) in S.

Definition 4.5 (Action) An action o is a tuple

o = (pre(o), add(o), del(o), ne(o))

where pre(o) is a condition, the “add-list” add(o) ⊆ P and the “delete-list”
del(o) ⊆ P are sets of propositions, and ne(o) is a set of numerical effects.

The result of applying an action o to a state S is defined as follows:

Result(S, o) =

{
S ′ S |= pre(o)
undefined otherwise

where facts(S ′) = (facts(S)∪add(o))\del(o) and values(S ′) is gained from
values(S) by applying all effects in ne(o).
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Definition 4.6 (Planning Task) A planning task T is a tuple

T = (P ,V ,O, I,G)

where P is a set of propositions, V is a set of numerical variables, O is a set
of actions, I is a state (the initial state), and G is a condition (the goal).

FF converts the planning task into a Linear Normal Form, defined as
follows.

Definition 4.7 (Linear Normal Form) A planning task

T = (P ,V ,O, I,G)

is in Linear Normal Form iff the following holds.

1. Any expression used in the left hand-side of a numerical constraint and
in the right-hand side of a numerical effect is of the form∑

i∈X

ci ∗ vi

where ci > 0 and X ⊆ {1, . . . , n}.

2. ∀o ∈ O : ∀n ∈ nc(pre(o)) : comp(n) ∈ {>,≥}

3. ∀o ∈ O : ∀n ∈ ne(o) : ass(n) ∈ {:=, + =}

The translation into a Linear Normal Form is for the most part straight-
forward, using inverse variables to eliminate negative weights and replacing
expressions like exp = exp′ with exp ≤ exp′ and exp ≥ exp′ or replacing
v− = exp with v+ = (−1) ∗ exp and so on. This is explained in detail in
[Hoffmann, 2002]. The important point here is that every planning task can
be converted into LNF.

Now, we can take a look at the heuristic of FF1, which solves a relaxed
planning task to provide a fast and optimistic estimate on goal distances. A
relaxed planning task “ignores” the delete lists of actions and the numerical
assignment effects.

1The heuristic presented here is not the only one used in FF. But presenting all of
FF’s internals would go beyond the scope of this thesis. We refer to [Hoffmann and Nebel,
2001] for a complete discussion of FF’s inner workings.

28



Definition 4.8 (Relaxed Action) Let o = (pre(o), add(o), del(o), ne(o))
be an action in Linear Normal Form. For the relaxed version of o then
applies

relaxed(o) = (pre(o), add(o), ∅, {n ∈ ne(o) | ass(n) = + =})

Definition 4.9 (Relaxed Planning Task) Let T = (P ,V ,O, I,G) be a
planning task in Linear Normal Form. The relaxation T ′ of T is then defined
as T ′ = (P ,V ,O′, I,G) where

O′ = {relaxed(o) | o ∈ O}

FF runs a GRAPHPLAN [Blum and Furst, 1995] algorithm on the relaxed
planning task. A plan graph is a layered graph with two iterating types of
layers: fact layers and action layers. The first layer contains all facts valid
in the initial state of the planning task. Action layer i contains all actions
whose preconditions are met in fact layer i (this includes no-op actions which
propagate facts from one fact layer to the next) and yields fact layer i+1 by
applying all effects of these actions. If the task is solvable, the creation of the
plan graph is finite and ends with fact layer n in which all goal conditions
are met. The GRAPHPLAN algorithm then searches backwards through the
graph to extract a solution plan2.

The most important feature of the relaxed planning task is its monotonic-
ity: due to the absence of negative symbolical effects and the fact that we
only evaluate numerical effects which increase values of numerical variables,
any condition which is true in state S is also true in every superstate S ′

(S ⊆ S ′). This leads to two major simplifications in the GRAPHPLAN al-
gorithm. Building the plan graph is polynomial in |O| because every action
level introduces at least one new action. Once each action has been selected
for insertion in the graph, the next fact layer contains all reachable facts
and thus also the goal (if the task is solvable). Furthermore, since no action
in the relaxed planning task removes any fact or decreases the value of any
numerical variable, no two actions can ever be mutually exclusive3. So the
algorithm will never backtrack and thus a relaxed solution 〈O0, . . . , Om〉 can
be extracted in polynomial time. This yields the goal distance heuristic of
FF

h(S) :=
∑

i=0,...,m

|Oi|

2We present a simplified variant of the GRAPHPLAN algorithm for a better under-
standing of FF’s heuristic. For a detailed discussion we refer to [Blum and Furst, 1995].

3In a plan graph two actions are mutually exclusive if one of them negates a precondition
of the other one or if one negates a fact which is in turn set by the other one.
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The base search algorithm of FF is an enforced variation of hill-climbing,
combining local and systematic search to select always one best successor to
the current state. Enforced hill-climbing differs from classical hill-climbing
in that it performs a complete breadth-first search starting from the current
state S instead of being restricted to a local search. Thus, it will always find
the next best successor state S ′. It then adds the path from S to S ′ to the
plan and iterates the search in S ′. Due to the often simple structure of the
search space, the next best state is usually only a few steps away. During this
search, a state S is evaluated using the GRAPHPLAN heuristic described
above.

Should the enforced hill-climbing algorithm fail to find a solution plan,
FF will fall back to a best-first search.

4.2 Extending FF to External Modules

Now, we will see how FF has been extended to support external module
preconditions (conditionchecker modules) and effect modules. In a domain
using external modulesm an action is extended as follows:

Definition 4.10 (Condition/M) A condition with external module sup-
port p is a triple c = (p(c), nc(c), mc(c)) where p(c) ⊆ P is a set of proposi-
tions, nc(p) is a set of numerical constraints, and mc(c) is a set of module
conditions.

A condition c is fulfilled in a state S (S |= p) iff p(c) ⊆ facts(S), ∀n ∈
nc(c) : S |= n, and ∀m ∈ mc(c) : S |= m where S |= m iff the call to
checkcondition with parameters determined from S in the external module
belonging to m returns a value 6= 0.

Definition 4.11 (Action/M) An action with external module support o is
a tuple

o = (pre(o), add(o), del(o), ne(o), me(o))

where pre(o) is a condition, add(o) ⊆ P and del(o) ⊆ P are sets of propo-
sitions, ne(o) is a set of numerical effects, and me(o) is a set of module
effects.

The result of applying an action o to a state S is defined as

Result(S, o) =

{
S ′ S |= pre(o)
undefined otherwise

where facts(S ′) = (facts(S) ∪ add(o)) \ del(o), and values(S ′) is gained
from values(S) by applying all effects in ne(o) and calling applyeffect in
all modules in me(o) with the parameters from S.
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The module effects which can be regarded as a different form of assign-
ment (:=) effects are simply ignored in the relaxed planning task. The latter
is a straightforward extension of the heuristic in [Hoffmann, 2002] which also
ignores numerical assignment effects. The module conditions, however, can
be treated in different ways. We could simply ignore them, too, and assume
they were always true (as in the current implementation of FF/M). This
would mean a relaxed planning task with external modules would not differ
from that in definition 4.9.

The other possibility is to treat module conditions like symbolic facts.
This can be achieved by introducing artificial facts for every module condi-
tion in the relaxed planning task. These artificial facts are all false in the
beginning of the GRAPHPLAN algorithm, which means that none of them is
included in the first fact layer of the plan graph. Now, imagine the creation
of action layer i, and an action with module condition mc whose symbolic
conditions and numerical constraints are all met in fact layer i. In order to
decide if this action can be applied, we check if the artificial fact correspond-
ing to mc is included in fact layer i. If this is the case the action can be
applied. If fact layer i does not include the artificial fact for module condi-
tion mc, we call the appropriate checkcondition function in the external
module belonging to mc. If the function returns a value 6= 0 and the module
condition is thus met, we include the artificial module fact corresponding to
the module condition in the next fact layer and apply the action4.

So the basic idea is that in the relaxed planning task, a module condition
is met on all levels of the plan graph that follow the layer in which the
condition was met for the first time. Algorithm 4.1 shows this in detail,
assuming a relaxed plan does exist. The artificial fact corresponding to a
module condition mc is depicted by pseudofact(mc).

As in [Hoffmann, 2002], one can show that algorithm 4.1 fails iff the
relaxed task is unsolvable. The proof given there is not changed by the
introduction of the artificial module facts. In fact, they are treated in the
exactly in the same way as classical facts.

It is, however, not as easy to extend the time analysis from FF to our
algorithm. The original GRAPHPLAN algorithm from FF terminates in
polynomial time in the size of the task and the number of time steps (i.e.
graph layers) built. If we treat a module call as an atomic operation of

4It should be made clear though, that we probably need a “relaxed” version of the
checkcondition module since the module may depend on certain characteristics of the
domain which are lifted in its relaxed version. An example is a module which checks the
space left on a table based on the objects already on the table. In the relaxed version of
this task an object will stay on the table once it has been put there. Thus, the module
would fail even if, in “reality”, objects have been removed from the table.
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Algorithm 4.1 Create relaxed plan graph for State S

P0 := facts(S)
for i := 0 to n do

maxi
0 := values(S)(vi)

end for
t := 0
while p(G) * Pt or ( (vi,≥ [>], c) ∈ nc(G) and maxi

t � [≯]c ) do
Ot := ∅
Pt+1 := Pt

for i := 0 to n do
maxi

t+1 := maxi
t

end for
for all o ∈ O do

if useAction(o, t) then
Ot := Ot ∪ {o}
Pt+1 := Pt+1 ∪ add(o)
for all (vi, + =, c) ∈ ne(o) do

maxi
t+1 = maxi

t+1 + c
end for

end if
end for
t := t + 1

end while

Algorithm 4.2 useAction: Determine if operator o should be used in step t
(Pi denotes the facts true in time step i)

if p(pre(o)) ⊆ Pt and ∀(vi,≥ [>], c) ∈ nc(pre(o)) : maxi
t ≥ [>]c then

for all m ∈ mc(pre(o)) do
if pseudofact(m) /∈ Pt then

if module(m).checkcondition(Pt, max0
t , . . . ,maxn

t ) then
Pt+1 := Pt+1 ∪ {pseudofact(m)}

else
return false

end if
end if

end for
return true

else
return false

end if
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time complexity O(1), this proposition still holds5. Yet in fact, a module
call can have arbitrary complexity making a complete time analysis virtually
impossible.

4.3 Improving FF/M

One of the most important steps in the preprocessing of FF is the full instan-
tiation of all predicates and actions, and the creation of an integer represen-
tation of the domain. This reduces the memory and computation overhead
during the actual planning to a minimum.

To accomplish this, FF fully instantiates6 all predicates and actions, thus
creating a simplified but probably larger representation of the domain. Each
entity in this simplified representation including action preconditions and
effects is assigned an integer. The numerical part is converted into an integer
representation of the LNF as described above. Thus, the domain is converted
into the simplest version possible: a collection of atomic facts and actions
modifying these facts, all represented by arrays of integers.

We extend the integer representation of the planing domain in FF in
an equally simple manner. Each module precondition will be completely
instantiated and assigned an integer. Effect modules will be integrated into
the representation of the LNF as described above.

A straightforward improvement in the external module support of FF/M
would be to base the communication between FF/M and the external mod-
ules entirely on the internal integer representation of FF. Each module would
be informed about the integer representation in the preprocessing phase (e.g.
through the use of the init function). This would increase speed by avoid-
ing many string copy operations. The disadvantage is of course that the
implemented modules would be dependent on FF/M and could not be used
anymore in combination with another planner that uses a different internal
representation.

5Treating a module call as an atomic action would be like using an oracle in complexity
theory.

6FF does actually not work on the full instanciation of all predicates and actions but
minimizes this set to those that are actually used in the problem. One example is that
predicates (here we talk about the symbolical instanciated ones) that can never be true
because no action exists to make them true are ignored completely.
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Chapter 5

The Geometric Domain

In chapter 2, we have shown that plain PDDL is not well-suited to model
geometric domains and have introduced the idea of an oracle-like or black-box
extension to PDDL using procedural attachments.

In chapters 3 and 4, we have described this extension, defined the new
syntax, and provided a reference implementation in the form of an extension
to the award-winning FF planning system.

Coming back to our original problem of handling grasp poses, we will now
put the new PDDL syntax to use. We intended to design a robot gripper
which is able to grasp objects using different grasp poses. A bottle, for
example, may be grasped at the top (when getting it out of a box) or from
the side (to put it into the fridge). The grasp pose cannot be changed while
the gripper is holding the object in a fixed grasp. In order to change the
pose, the robot gripper needs to put down the object and pick it up again
using the new pose. So the main issue we need to address is a mechanism
to test if a certain pose is “compatible” with a certain object and a certain
action.

We will approach this problem in two steps. First, we will use discretized
poses which allow to solve part of the problem using plain PDDL planning.
We then will replace these discretized poses by free poses defined by angles in
three-dimensional space. Before treating these two different pose encodings
in detail, we will outline the basic PDDL domain description which they are
based on, as well as the encoding of the additional domain information not
available to the planner (referred to as the full domain description in figure
2.2).

It should be noted that the domains presented here are merely examples
providing a proof of concept, a feasibility study of the usefulness of PDDL/M
for the handling of geometric problems in planning domains. By this, we do
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not claim to solve the problem exhaustively, but intend to present a promising
approach.

5.1 Basic domain description

The basic layout of the domain description is the same with both types of
pose encoding. Since we would like to pick up objects and put them down
again, we need two object types: those which can be picked up and moved
around and those which serve as surface. Each movable object needs to be
either on top of a surface object or in the grasp of the robot gripper at all
times. This is described by two predicates.

(ontopof ?client - object ?server - base)

(in_hand ?o - object)

We also introduce a predicate which is true if (in hand) is false for every
object in the domain.

(hand_free)

The problem necessitates the use of two very simple actions in our geo-
metric domain: The grab action is used to pick up a movable object o from
a base object b. This requires the gripper to be free and o to be on top of b.
As a result of the grab action the gripper is not free anymore, and o is not
on top of b anymore, but in hand. See figure 5.1 for the basic layout of the
grab action.

The putdown action is used to put down a movable object o currently
grasped by the gripper onto a base object b. Here the precondition is slightly
simpler, as mentioned above: o must be in the robot gripper. As a result the
gripper is free again, and o is no longer in hand but on top of b. See figure
5.2 for the basic layout of the putdown action.

5.2 World Model

For the design of a geometric domain one element is indispensable, namely
the world model describing the geometric objects used in the domain. In
our case, these objects are described as sets of triangles in three-dimensional
space. For the sake of simplicity, we associate with each object a set of
triangles parallel to the x-y-plane. In the case of a movable object these
triangles define its base area, while for a base object they define the surface
on which movable objects can be placed. Each object has a unique name
corresponding to the name used in the domain description.
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(:action grab

:parameters (

?client - object

?server - base

)

:precondition (and

(ontopof ?client ?server)

(hand_free)

)

:effect (and

(not (ontopof ?client ?server))

(not (hand_free))

(in_hand ?client)

)

)

Figure 5.1: Basic layout of the grab action

The following definitions may seem trivial but they will simplify later
discussion of the objects.

Definition 5.1 (Triangle) A triangle t is a triple

t = (p1(t), p2(t), p3(t))

where p1(t), p2(t), p3(t) ∈ R3 are the points defining the triangle in three-
dimensional space.

Definition 5.2 (Movable Object) A movable object o is a pair

o = (tris(o), f loor(o))

where tris(o) is the set of all triangles in the object and floor(o) is the set
of triangles in the base area.

Definition 5.3 (Base Object) A base object o is a pair

o = (tris(o), sur(o))

where tris(o) is the set of all triangles in the object and sur(o) is the set of
surface triangles.

Thus, an arbitrary set of objects may be defined to be used in an instance
of the geometric domain.

One particular movable object which must be defined is the robot gripper.
Since it is encoded implicitly into the domain, its name is fixed.
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(:action putdown

:parameters (

?client - object

?server - base

)

:precondition

(in_hand ?client)

:effect (and

(hand_free)

(not (in_hand ?client))

(ontopof ?client ?server)

)

)

Figure 5.2: Basic layout of the putdown action

5.3 Discretized Poses

A discretization of grasp poses allows us to handle them using symbolic
planning constructs. Therefore, we introduce a new object type pose and
extend the in hand predicate to describe the pose that is currently used to
hold the object.

(in_hand ?o - object ?p - pose)

We also introduce a new predicate stating that a certain pose can be used
with a certain movable object1

(supports_pose ?o - object ?p - pose)

Now every possible grasp pose has an equivalent object in the domain.
These poses will be used in the grab action when checking if the object can
be grasped with the pose in question. We must thus add another parameter
to the action representing the pose used to grasp the object. By adding the
supports pose predicate to the precondition of the action we can make sure
that the an object can actually be grasped with a certain pose.

The putdown action is modified in the same way. We also add to it a third
pose parameter. Evidently, the object must be grasped in the pose that is
used to put it down. This is ensured by the extended in hand predicate
which includes the pose used.

1Although the information provided by the supports pose predicate could also be en-
coded implicitly into the external module, testing the pose with an additional symbolic
construct may help to optimize the planning process further.
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These extensions, however, do not quite solve the problem yet (and inci-
dentally do use PDDL/M). We have ensured that only poses “compatible”
with an object are used to grasp it but we have not addressed the actual
geometric problem yet. So far, our encoding does not take into account if it
is actually possible to grasp an object in the current situation with regard
to its geometric surroundings. This is where an external PDDL/M module
comes in.

We will now design an external PDDL/M module to handle the geometric
part of our domain. This means that the module will be used to test if it is
actually possible to use a certain pose with a certain object in the current
geometric situation. Let us first take a look at the module from the planner’s
point of view and assume we already have such a module and only need to
integrate it into our domain. (We will not discuss the loading of the module
here. For the complete domain description, see appendix C.1. Let us assume
the module has been loaded into our domain using the name grabhelper.)

All we have to do to integrate the external module into our domain is
to add the following module condition to the precondition sections of both
actions.

([grabhelper] ?client ?server ?p)

In the case of the grab action we need to know if it is possible to grasp
the movable object client from the base object server using the pose p. In
the case of the putdown action we need to know if it is possible to put down
the movable object client onto the base object server if the robot gripper
holds it using pose p. In fact, both queries are identical. We need to know if
the two objects involved and the gripper collide in any way (except for the
trivial collisions when holding the movable object and putting it down onto
the base object). In this thesis, we simplify this problem and will only check
if the gripper collides with the base object when it puts down the movable
object. So we assume that the movable object always “fits” onto the base
object.

Having integrated the condition module into our domain and defined what
is has to do we will now take a look at the implementation.

We will restrict the discretized poses used here to horizontal and vertical.
In our simple setup, these poses are fixed in the implementation of the mod-
ule2 and translated into a horizontal or vertical orientation of the gripper
(using one fixed direction vector (0, 0, 1) or (0,−1, 0) respectively).

2It is of course possible to create a module which handles arbitrary discretized poses
by use of some conversion procedure. For our purposes, however, it is sufficient to have
two fixed poses.
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The implementation of the external module is straightforward. The check-
condition function as defined in section B.2 will be called with a combina-
tion of base object b, movable object m, and grasp pose p. It first cal-
culates the translation t of the movable object onto the base object. Due
to the restrictions on the objects and to their simple structure, this calcu-
lation is simply based on the floor and surface properties of the objects:
t = center(surface(b))− center(floor(m)). Following the translation of the
movable object, the gripper needs to be positioned according to p. Since the
default orientation of the gripper corresponds to the vertical orientation, it
only needs to be rotated if p = horizontal. Then, the bounding box of the
movable object bb(m) is determined. If bc is the center point of the top side
(if p = vertical) or the front side (if p = horizontal) of bb(m), the translation
of the gripper can be described by bc− center(floor(gripper)).

Once both m and the gripper have been positioned correctly, a collision
query between b and the gripper answers the question if pose p is usable with
m and b. The actual collision query is done using PQP, the Proximity Query
Package3.

5.4 Free Poses

The discretized poses presented above have one major disadvantage. Let us
assume we intended to create automatically a model of the surrounding world
by scanning all the objects and classifying them according to an ontology.
If we were restricted to discretized poses, we would either have to encode in
its own symbol every possible pose of every object, or restrict ourselves to
a small set of poses. In the first case, we would most likely end up with a
large number of discretized poses which would massively increase the size of
the domain description. In the latter case, we would of course lose accuracy
since we would have to “force” predefined poses onto the objects or merge
similar poses into one. So none of the approaches is really feasible.

One solution to this problem is free poses as presented in the following.
A free pose, in contrast to a discretized one, is not defined by a single logical
symbol but by numerical variables. These variables directly (or indirectly,
using some mathematical function) describe the grasp pose. Thus, a free
pose naturally yields the translation and rotation values of the robot gripper
necessary to grasp the object in question. While the number of grasp poses
describable through discretized poses is limited to the number of symbols,
free poses allow an arbitrary number of poses to be described with the same
set of numerical variables.

3PQP Home page: http://www.cs.unc.edu/∼geom/SSV/
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One possible definition of a free pose is the following, which is no more
than a placement of the gripper in three-dimensional space.

Definition 5.4 (Free Pose) A free pose p is a tuple

p = (rotx(p), roty(p), rotz(p), tr(p))

where for i ∈ (x, y, z), roti(p) ∈ R is the rotation of the robot gripper around
the i axis, and tr(p) ∈ R3 is the respective translation vector.

This is the definition we are going to use in this thesis. Nevertheless, we
will only work in our implementation with the three rotation values, while
the translation tr(p) will be calculated through the size of the object to be
grasped and the rotation values, as illustrated in the following.

Lez us suppose we wanted to calculate the translation of our gripper for
the rotation values of pose p and movable object o. Let center(T ) ∈ R3

be the center point of a set of triangles T (for the simple forms we are us-
ing, it is sufficient to determine only the mean point of all points in the
object: center(o)i = (maxp∈tris(o)(pi) − minp∈tris(o)(pi))/2 for i ∈ (x, y, z)
where p ∈ tris(o) iff ∃t ∈ tris(o) : p ∈ {p1(t), p2(t), p3(t)}). Let dir ∈ R3

be the direction vector of our gripper after the rotation. By direction of
the gripper we mean its intuitive orientation dir = center(floor(gripper))−
center(sur(gripper)). The straight line s(t) = center(o) + t ∗ dir then in-
tersects o in two points. (We assume every object to be convex.) Of these,
we are interested in the one that lies “further down” the straight line, i.e.
if s(t1) and s(t2) are the two points of intersection, the one we focus on is
q = s(min(t1, t2)). If we think of the gripper stabbing through the object, q
is the point of entry. The translation corresponding to pose p then is simply
t(p) = q − center(floor(gripper)).

We will now extend our geometric domain to support free poses, including
a modified domain description and a more elaborate external module.

Unlike for the discretized pose domain, we will not select one specific
pose to be used in each action. Instead, we will maintain a set of possible
poses stating which poses could be used in the current situation. Here,
current situations refers to the state of the world between actions. A current
situation could be the gripper holding an object. In the subsequent execution
of the plan, any of the poses in the associated set could be used, so the
final grasp poses may be selected after the planning process. Such post-
processing may include the prevention of poses that force the robot gripper
into a problematic position. A problematic position, for example, could be
one straining the hardware. It is unnecessary to select specific grasp poses
during the planning process since this will not change the resulting plan.
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Thus, postponing the selection of a final pose can only increase the quality
of the final plan.

5.4.1 PDDL/M Domain

We will use three numerical intervals representing the possible rotations along
all three axes:

(:functions

(pose_rot_x_min)

(pose_rot_x_max)

(pose_rot_y_min)

(pose_rot_y_max)

(pose_rot_z_min)

(pose_rot_z_max)

)

These three intervals define the set of poses that could be used in the
current situation. They each define a range of rotation angles valid in
the current planning situation. Thus a pose p is valid iff for i ∈ (x, y, z),
(pose rot i min) ≤ roti(p) ≤ (pose rot i max).

This is a rather simple pose set encoding, which has one major disadvan-
tage. It cannot describe arbitrary sets of poses. This is due to the mutual
dependancy of the intervals4 and the restriction to only one interval for every
angle. Therefore, it is not possible to describe a set like {(0, 0, 0), (0.5, 0, 0)}
because this would also include all x-rotation values between 0 and 0.5.

We will use the pose encoding despite these limitations since they do not
influence the main problem. We will discuss some ideas of how to improve
the encoding in chapter 7.

Now that we know how to handle a single grasp pose, let us take a look at
the PDDL/M domain description, which is again an extension of the basics
defined in section 5.1.

Having added the six numerical variables defining the grasp poses cur-
rently possible, we will now equally extend the grab and the putdown actions
with two external module calls. As with the discretized poses, we add a

4An x-rotation value x1 may allow for a much larger interval of y-rotation values than
x2. Nonetheless, we must choose the smaller one since any combination of rotation values
from the intervals has to describe a valid grasp pose.
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(:action grab

:parameters (

?client - movable

?server - base

)

:precondition (and

(ontopof ?client ?server)

(hand_free)

([grabhelper] ?client ?server)

)

:effect (and

(not (ontopof ?client ?server))

(not (hand_free))

(in_hand ?client)

([putty] ?client ?server)

)

)

Figure 5.3: grab action for free poses

module condition to the precondition section of both actions. Furthermore,
we add a module effect which is used to update the three pose intervals as
described below. Figure 5.3 shows this extension using the grab action as an
example. See appendix C.2 for the full PDDL/M domain description.

The three intervals defined above are only modified by these module ef-
fects. They are not actually used in the PDDL domain. The planner only
drags them along so that the external modules can access their current values.

We should probably clarify one issue here. If looked at from a semantic
point of view, the “effect” of setting the pose angles is not really an effect
in the strict sense. It sets a value which normally would be required before
execution of the action. The robot needs to know the grasp pose before
being able actually to grasp the object. One could think of the grab action
as a command not only to grasp the object but also to determine the proper
grasp pose. Thus one could understand the setting of the pose intervals as
a proper effect of the action and solve the semantic problem (which is not
really a problem but merely a minor imprecision without influence on the
solution).
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5.4.2 Module Implementation

Although we use identical module calls with both actions, we need the mod-
ules to perform different tasks depending on which action was used to call
them. In case of the grab action, we can assume that the gripper is currently
free, i.e. no currently usable poses are set and the condition checker module
has to find only one pose usable in the current situation. When a pose has
been found, the action can be executed (provided that all symbolic condi-
tions hold) and the effect module is called to determine all poses usable in
this situation and to update the three intervals in the planner accordingly.

Now the gripper holds the object and a range of usable poses has been
saved in the current planning state. (Remember that we do not fix the grasp
pose in the planning process, but always maintain an interval of possible
values.) The next action to be executed is the putdown action. Again, a
condition checker module has to search for a usable pose to put down the
object. This time, however, the module may only choose from the restricted
set of intervals defined by our six functions. The reason is simple: The
gripper cannot change pose while holding the object, so the only poses that
can be used to put it down are those which were usable when grasping it. If
the module condition holds, the action may be executed.

The module effect in the putdown action does not influence the planning
process but is important for the resulting plan, as it restricts the set of
currently usable poses to those usable for putting down the object.

To illustrate this, let P be the set of all free poses, and let grasp(o, b, P ) ⊆
P be the set of poses usable to grasp a movable object o, lifting it from a
base object b. We also define putdown(o, b, P ) ⊆ P as the set of poses
usable to put down a movable object o onto a base object b. Thus, the
poses usable in a plan grasping object o from base object b1 and putting
it onto base object b2 can be described as putdown(o, b2, grasp(o, b1, P )) or
grasp(o, b1, P ) ∩ putdown(o, b2, P ).

This is the set which the external modules need to determine.
In the external module, there are four cases to be handled: condition

checking for the grab and the putdown actions as well as effect execution for
both.

Condition Checking

When checking if the gripper can grasp or put down a movable object, we only
need to search for one usable pose. We perform this search in the simplest
way possible. By running through three nested loops (one for each rotation
axis), we generate all possible pose configurations and check in each case if
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the gripper collides with the base object. This collision query is done in the
same way as in section 5.3, except that the gripper is positioned according to
the definition above. The term “all possible pose configurations” is not quite
exact since, theoretically, there is an infinite number of configurations. Thus,
we introduce a step size defining the increment which is used to traverse the
pose configuration loops. (The step value can be configured through the
module options. See appendix C.2.2.)

In case of the grab action, the loop boundaries are only physical, i.e. all
three loops run from 0 to 360 degrees (0 to 2π).

In case of the putdown, action the pose intervals saved in the current
planning state are used as boundaries.

Once a usable pose has been found (i.e. a collision query has returned no
collision), the loop is stopped and the condition is considered met.

Effect execution

As stated above, our effect module has to determine all poses usable with a
combination of base object and movable object. This is slightly more com-
plicated than simply searching for one of them, as in the case of condition
checking. Due to the limitation of the “three interval” approach, we cannot
simply determine all possible combinations of rotation values but have to
search for the maximal intervals [xmin, xmax], [ymin, ymax], and [zmin, zmax]
with ∀p ∈ {(x, y, z) ∈ R3 | x ∈ [xmin, xmax] ∧ y ∈ [ymin, ymax] ∧ z ∈
[zmin, zmax]} : base object and gripper do not collide under pose rotation p.

Algorithm 5.1 calculates these intervals. The main idea behind this is
to determine intersections as follows. Imagine fixed x and y rotation values.
Now let zi be the smallest rotation value resulting in a non-colliding pose
and zj be the smallest value with j > i resulting in a colliding pose. We
assign the interval Zx,y = [zi, zj−1] to the fixed combination of x and y.

For each x rotation value, we get (ymax−ymin)/ STEP intervals Zx,y with
valid z rotation values, some of which may be empty (which would mean
that this combination of x and y values is not usable at all). If, for a fixed x
rotation value, yi is the smallest y rotation value with Zx,yi

6= ∅, and yj is the
smallest y rotation value with j > i and Zx,yj

= ∅, we define Yx = [yi, yj−1].
Equally, we define X = [xi, xj−1] where xi is the smallest x rotation value

with Yxi
6= ∅, and xj is the smallest value with j > i and Yxj

= ∅.
Now, the resulting intervals are

[xmin, xmax] = X

[ymin, ymax] =
⋂
x∈X

Yx
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(a) (b) (c)

Figure 5.4: All possible poses discretized with a step value of 0.5 (a), and poses
determined as free by algorithm 5.1 for the box (b) and the shelf (c)

[zmin, zmax] =
⋂
x∈X

⋂
y∈Yx

Zx,y

To determine these three pose rotation intervals, algorithm 5.1 updates
their initial values using three nested loops. It maintains three boolean vari-
ables inX, inY, and inZ stating if the algorithm is currently working on the
boundaries of X, Yx, and Zx,y respectively. It computes the intersections im-
plicitly by changing the interval boundaries each time a new rotation value
has been tested. Thus, the lower boundary is set once a non-colliding pose
has been found while the upper boundary is set a colliding pose has been
found. The in variables are used to memorize if these updates have to be
performed or not. For example, if inY is true, the lower boundry of the
y-interval has already been set and the algorithm is currently seaching for
the upper boundry.

As with the condition checking, the algorithm starts with different min
and max values depending on the action.

The pose value intervals generated by the algorithm translate into grip-
per positions as illustrated in figure 5.4 (b) and (c). It is obvious that the
calculated pose intervals do not cover all possible intervals. This is caused
by the limitations of the pose encoding which we already stated.
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Algorithm 5.1 Determine the usable pose rotations from the initial intervals
[xmin, xmax], [ymin, ymax], and [zmin, zmax].

inX := false
inY := false
inZ := false
x := xmin

y := ymin

z := zmin

while x ≤ xmax do
haveIntervalInX := false
inY := false
y := ymin

while y ≤ ymax do
haveIntervalInY := false
inZ := false
z := zmin

while z ≤ zmax do
if collision( x, y, z ) then

if inZ then
zmax := z - STEP

end if
else

haveIntervalInX := true
haveIntervalInY := true
if ! inX then

inX := true
xmin := x

end if
if ! inY then

inY := true
ymin := y

end if
if ! inZ then

inZ := true
zmin := z

end if
end if
z += STEP

end while
if ! haveIntervalInY then

if inY then
ymax := y - STEP

end if
end if
y += STEP

end while
if ! haveIntervalInX then

if inX then
xmax := x - STEP

end if
end if
x += STEP

end while
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Chapter 6

Results

We will now present some experimental results from the geometric domains
described in chapter 5. We will use the exemplary configuration outlined in
chapter 2 as a basis.

Initially, the cube lies inside the box. The goal is to put it onto the shelf.
To provide a means of comparison, we test this domain setup with different
numbers of cubes, boxes, and tables. Each of the cubes is sitting in one of
the boxes and has to be moved onto the shelf using one of the tables as a
temporary position to change the grasp pose.

The problem instances with multiple cubes may seem simple since all
movable objects have the same shape and need to be manipulated in an
equal manner. Apparently, we only need to solve the problem once and
“copy” the solution as many times as necessary. For the planning system,
however, this is irrelevant since it does not know anything about the shapes
of the objects and does not see a difference in calling the external module
for an object called cube or for one called bottle. So it cannot reuse solutions
to subtasks for other equal subtasks (or those appearing equal to a human
planner).

As said in section 5.3, with the discretized pose encoding, we only use the
two poses horizontal and vertical. This restriction does not have any influ-
ence on the performance of the external module since it will always perform
a collision check using one specific pose. A greater number of discretized
poses, however, would increase the size of the instanciated domain in FF/M,
resulting in a larger state space, and thus in a loss of performance. Since it is
free pose encoding which is of interest here, we will not investigate the exact
effect of a greater number of discretized poses.

Figure 6.1 shows a plan for a discretized pose planning problem with four
cubes, two boxes, and four tables, as generated by FF/M.
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0: GRAB CUBE1 BOX1 VER

1: PUTDOWN CUBE1 TABLE4 VER

2: GRAB CUBE1 TABLE4 HOR

3: PUTDOWN CUBE1 SHELF HOR

4: GRAB CUBE2 BOX2 VER

5: PUTDOWN CUBE2 TABLE4 VER

6: GRAB CUBE2 TABLE4 HOR

7: PUTDOWN CUBE2 SHELF HOR

8: GRAB CUBE3 BOX3 VER

9: PUTDOWN CUBE3 TABLE4 VER

10: GRAB CUBE3 TABLE4 HOR

11: PUTDOWN CUBE3 SHELF HOR

12: GRAB CUBE4 BOX4 VER

13: PUTDOWN CUBE4 TABLE4 VER

14: GRAB CUBE4 TABLE4 HOR

15: PUTDOWN CUBE4 SHELF HOR

Figure 6.1: FF/M planning result (discretized poses, four cubes, two boxes, and
four tables)

Figure 6.2 shows a visualization of the core part of the solution plan: One
cube has to be moved from the box to the shelf.

Figure 6.3 shows the plan for the simple configuration with one cube
and free poses, as generated by FF/M with a STEP value of 0.1. For each
action, the resulting pose intervals are given which could be used in the
corresponding planning situation. It is easy to see that the poses after the
putdown actions are subsets of the poses after the corresponding grab actions,
as defined in section 5.4.2. The intervals in the plan steps 0 and 3 generated
by FF/M correspond to the grasp poses shown in figure 5.4 (b) and (c)
respectively.

We will now take a look at the overall performance of FF/M when it
solves instances of our geometric manipulation planning domain. Table 6.1
shows the results of the different runs of FF/M in our example domain. The
tests were performed on a standard desktop computer1 with different STEP
values for the free pose encoding. The values are based on the internal timing
mechanism of FF and give the amount of time (in seconds) it took FF to
solve the entire problem instance.

1Used computer testing system: AMD Athlon(tm) XP 2000+ CPU (1667 MHz), 512
MB of RAM
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Free Poses Discretized
Cubes Boxes Tables Step 0.5 Step 0.2 Step 0.1

1 1 1 0.01 0.04 0.2 < 0.01
4 1 1 0.1 0.3 1.2 0.1
6 1 1 0.1 0.5 2.6 0.1
8 1 1 0.3 1.0 5.0 0.5
10 1 1 0.45 1.78 8.46 2.50
12 1 1 0.70 2.80 12.80 12.90

1 4 4 0.03 0.11 0.58 0.01
1 6 6 0.04 0.15 0.82 0.02
1 8 8 0.05 0.21 1.06 0.02
1 10 10 0.06 0.25 1.31 0.02
1 50 50 0.30 1.17 6.27 0.14

4 4 1 0.3 1.2 5.3 0.3
6 4 1 1.19 4.09 17.04 12.67
6 6 1 2.68 9.37 36.55 98.91
8 8 1 14.22 42.40 158.60 -
12 12 1 163.36 422.92 1444.90 -

2 1 2 0.03 0.14 0.81 0.01
4 1 4 0.33 1.61 9.08 0.23
6 1 6 2.27 9.44 49.21 67.72
7 1 7 121.23 502.75 2454.45 -

2 10 10 0.72 3.84 22.95 0.12
4 10 10 10.94 38.13 171.01 67.06
5 10 10 204.81 752.35 - -

2 2 2 0.04 0.18 1.03 0.02
3 3 3 0.63 3.13 17.42 0.08
4 2 4 0.49 2.23 12.05 0.45
4 4 4 1.0 3.9 19.5 1.4
4 4 6 1.80 7.34 37.15 3.42
4 8 1 1.4 4.5 17.9 2.6

Table 6.1: Stocking cubes onto a shelf using free poses with different STEP values
as well as discretized poses. All values give the amount of time (in seconds) which
it took FF/M to solve the problem. A ’-’ indicates that the planning process was
stopped after an hour, before completion. (Note that the memory was exhausted
in these cases and the system had to swap to the harddisk a lot.)
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(a) Grasp cube from box (vertical) (b) Put down cube onto table (vertical)

(c) Grasp cube from table (horizontal) (d) Put down cube onto shelf (horizon-
tal)

Figure 6.2: Visualization of a plan with discretized poses vertical and horizontal
for a single cube

Generally, planning problems using discretized poses are solved much
faster2. This is no surprise, as the implementation of the external module is
much simpler in this case and, thus queries are answered much faster. The
module used for the free pose domain performs multiple collision queries in
each call to determine the set of usable poses.

The results in the second section of table 6.1 illustratea that the number
of base objects is virtually irrelevant if the problem only contains a single
object to be manipulated. Even with 100 base objects, FF/M will find a
solution in just a few seconds. The reason for this is the small solution plan.
As described in section 4.1, FF performs an enforced hill-climbing search in

2Some of the results pointing to a quicker solution of the free pose problem are mislead-
ing. Due to the larger number of action templates generated by FF/M for the discretized
pose encoding, the system memory was exhausted quickly, which resulted in massive hard-
disk swapping.
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0: GRAB CUBE BOX 2: GRAB CUBE TABLE

POSE_ROT_X_A(0.000000) POSE_ROT_X_A(0.000000)

POSE_ROT_X_B(0.400000) POSE_ROT_X_B(1.900000)

POSE_ROT_Y_A(1.400000) POSE_ROT_Y_A(1.200000)

POSE_ROT_Y_B(3.200000) POSE_ROT_Y_B(3.400000)

POSE_ROT_Z_A(0.000000) POSE_ROT_Z_A(0.000000)

POSE_ROT_Z_B(0.000000) POSE_ROT_Z_B(0.000000)

1: PUTDOWN CUBE TABLE 3: PUTDOWN CUBE SHELF

POSE_ROT_X_A(0.000000) POSE_ROT_X_A(0.600000)

POSE_ROT_X_B(0.400000) POSE_ROT_X_B(1.900000)

POSE_ROT_Y_A(1.400000) POSE_ROT_Y_A(1.200000)

POSE_ROT_Y_B(3.200000) POSE_ROT_Y_B(3.400000)

POSE_ROT_Z_A(0.000000) POSE_ROT_Z_A(0.000000)

POSE_ROT_Z_B(0.000000) POSE_ROT_Z_B(0.000000)

Figure 6.3: FF/M planning result (free poses, STEP value 0.1)

the state space. If the plan length is small, then so is the number of states
explored.

However, if the number of objects to be manipulated increases, the per-
formance drops radically. Here, it becomes evident that the heuristic used in
FF/M to estimate the distance from the current planning state to the goal
state has not been extended to external modules yet. It would be interesting
to see how big a difference an improvement of the heuristic would make.

The situations in the third section of table 6.1 are comparable to the
problem of the box of water bottles mentioned earlier. While FF/M can
empty a small box of Volvic water bottles (which always come in boxes of
six bottles), emptying a box of beer (normally 24 bottles) presents a real
problem.

The last section in the table shows some mixed examples with a small
number of objects. These results suggest that an optimized planner will be
able to solve mid-sized problem instances in reasonable time.
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Chapter 7

Conclusion and Future Work

In this thesis, we have introduced an extension to PDDL allowing the use
of procedural attachments in action planning. We have seen how the award-
winning FF planning system can be modified to support this superset of
PDDL in a straightforward manner. We have presented a new approach to
manipulation planning based on these extensions and have shown that it is
feasible.

However, we have not optimized algorithms or encodings yet. In sec-
tion 4.3, we have already pointed out ways to enhance PDDL/M support
in FF/M through a non-standardized interface based on the internal domain
encoding used in FF. Another possible optimization concering to the interac-
tion between the planning system (FF/M) and the external modules would
be to integrate part of the heuristic into the external modules. Each external
module could provide a simplified version of its interface which could then
be used to get optimistic approximations of the actual answer for use in the
heuristic of the planner. In FF/M, this approach could be combined with
the extension of relaxed actions presented in section 4.2 to obtain a fast and
reliable heuristic which takes external modules into account.

In addition to the optimization of the planner, the domain encoding and
external modules used in the geometric domain in chapter 5 still allow many
improvements. The results from chapter 6 illustrate the decisive impact
of the STEP value on the performance of the planning system for the free
poses domain. This experimantally proves the apperent fact that improving
the performance of the external modules has a significant impact on the
performance of the whole system.

The free pose encoding based on three rotation intervals from section 5.4
is far from optimal since it can only encode a very small subset of the poses
actually usable. One possible approach would be to extend PDDL/M further
for it to support sets of numerical values or sets of intervals, thus allowing the
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encoding of the full set of poses. One could also further exploit the fact that
the numerical variables used to encode the rotation intervals are never actu-
ally used by the planner but only stored inside the current planning state.
If this information was only used and understood by the external modules,
it would be possible to embed arbitrary information into the planning state.
The external modules support in PDDL/M could be extended with a special
kind of data type which could be used by external modules to store informa-
tion inside the internal structures of the planner. With regard to the pose
encodings, one could imagine a data structure describing all usable poses in
an arbitrary way. This approach may even be used to store an entire geomet-
rical world model of the current planning situation, which is manipulated by
the external modules, inside the planner.

In chapter 5, we checked whether a certain pose is usable only by per-
forming a collision query for the initial position (or the final position in case
of the putdown action). It would probably be better to determine a collision-
free grasping path using an external path planner. Thus, we would increase
the accuracy of the pose planning and provide a solution for the sub-task of
the actual grasping at the same time. Equally, additional sub-tasks could by
integrated into our approach, so that we could create a kind of meta-planner
for the whole robot control.

Since we focused on PDDL/M and FF/M in this work and used the
problem of manipulation planning and pose encodings merely as an example
to prove the feasibility of our approach, we did not compare it to other
works, which are based on manipulation graphs. This comparison is still to
be drawn.
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Appendix A

PDDL/M - BNF Description

The following BNF description of the new PDDL syntax introduced in this
document is based on the one in [Edelkamp and Hoffmann, 2003]. We do
not present the complete BNF description here but only the parts that have
been changed in comparison to PDDL 2.2.

Domains

Domains are defined exactly as in PDDL 2.2, except that we now allow the
definition of external modules.

<domain> ::= (define (domain <name>)

[<require-def>]

[<modules-def>]:module

[<types-def>]:typing

[<constants-def>]

[<predicates-def>]

[<functions-def>]:fluents

<structure-def>*)

<modules-def> ::= (:modules <module-entry>+)

<module-entry> ::= (<name> <typed list (variable)> module-fnkt* (<module-type> @<filename>)

<module-fnkt> ::= <name>()

<module-type> ::= conditionchecker|effect

<filename> ::= A library name usable to the dynamical loader

Actions

Actions are defined exactly as in PDDL 2.2, except that we now allow exter-
nal module preconditions as well as module effects.

<GD> ::=:module <modulecall>

<c-effect> ::=:module <modulecall>

<modulecall> ::= (<modulename> <term>*)

<modulename> ::= A module name as specified in the
domain file enclosed in square brackets.
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Problems

Problems are defined exactly as in PDDL 2.2, except that now we allow the
definition of options for the external modules defined in the domain file.

<problem> ::= (define (problem <name>)

(:domain <name>)

[<require-def>]

[<module-options-def>]:module

[<object declaration>]

<init>

<goal>

[<metric-spec>]

[<length-spec>])

<module-options-def> ::= (:moduleoptions <options-entry>+)

<options-entry> ::= (<name> <option-list>)

<option-list> ::= <option><suppl option>*

<option> ::= <name>=XXX

<suppl option> ::= ,<option>

Requirements

In addition to the requirements in PDDL 2.2 we introduced the new :module

requirement.

Requirement Description
:module The domain requires external modules to be loaded.

55



Appendix B

The complete PDDL/M
Module API

We now present the complete PDDL/M Module API as discussed in section
3.3.

B.1 PDDL/M Module Data Structures

The module API defines the necessary data structures and some usable helper
methods.

typedef struct _Parameter {

char* type;

char* name;

char** values;

} Parameter;

typedef struct _ParameterList {

Parameter* parameter;

struct _ParameterList* next;

} ParameterList;

typedef struct _Predicate {

char* name;

ParameterList* parameters;

} Predicate;

typedef struct _PredicateList {

Predicate* predicate;
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struct _PredicateList* next;

} PredicateList;

typedef struct _Function {

char* name;

ParameterList* parameters;

double value;

} Function;

typedef struct _FunctionList {

Function* function;

struct _FunctionList* next;

} FunctionList;

Parameter* new_Parameter();

ParameterList* new_ParameterList();

void free_Parameter( Parameter* );

void free_ParameterList( ParameterList* );

Predicate* new_Predicate();

PredicateList* new_PredicateList();

void free_Predicate( Predicate* );

void free_PredicateList( PredicateList* );

Function* new_Function();

FunctionList* new_FunctionList();

void free_Function( Function* );

void free_FunctionList( FunctionList* );

B.2 PDDL/M Module Interface

The interface an external PDDL/M module has to provide is defined as
follows. Condition Checker modules implement the checkcondition method
while Effect modules implement the applyeffect method.

typedef int modulecallback( PredicateList*, FunctionList* );

void init( int argc, char** argv );

int checkcondition( const char*,

57



ParameterList*,

modulecallback* );

int applyeffect( const char*,

ParameterList*,

double* values,

modulecallback* );

58



Appendix C

The complete geometric
PDDL/M domain

C.1 Discretized Poses

C.1.1 The domain description
(define (domain geometric-domain-v1)

(:requirements :strips :module :typing)

(:types pose movable base)

(:modules

(grabhelper ?o - movable ?b - base ?p - pose

conditionchecker @libmodule_v2.so)

)

(:predicates

(hand_free)

(in_hand ?o - object ?p - pose)

(ontopof ?client - movable ?server - base)

(supports_pose ?o - movable ?p - pose)

)

(:action grab

:parameters (

?client - movable

?server - base

?p - pose

)

:precondition (and

(ontopof ?client ?server)

(hand_free)

(supports_pose ?client ?p)

([grabhelper] ?client ?server ?p)

)

:effect (and

(not (ontopof ?client ?server))

(not (hand_free))
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(in_hand ?client ?p)

)

)

(:action putdown

:parameters (

?client - object

?server - base

?p - pose

)

:precondition (and

(in_hand ?client ?p)

([grabhelper] ?client ?server ?p)

)

:effect (and

(hand_free)

(ontopof ?client ?server)

(not (in_hand ?client ?p))

)

)

)

C.1.2 An example problem
(define (problem fact1-v1)

(:domain geometric-domain-v1)

(:moduleoptions

(grabhelper itemfile=items1-v2)

)

(:objects

box1 box2 table - base

cube - movable

hor ver - pose

)

(:init

(ontopof cube box1)

(hand_free)

(supports_pose cube ver)

(supports_pose cube hor)

)

(:goal

(and

(hand_free)

(ontopof cube box2)

)

)

)
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C.2 Free Poses

C.2.1 The domain description
(define (domain geometric-domain-v2)

(:requirements :strips :module :typing :fluents)

(:types movable base)

(:modules

(grabhelper ?o - movable ?b - base

conditionchecker @libmodule_v3.so)

(putty ?o - movable ?b - base

pose_rot_x_a() pose_rot_x_b()

pose_rot_y_a() pose_rot_y_b()

pose_rot_z_a() pose_rot_z_b()

effect @libmodule_v3.so)

)

(:predicates

(hand_free)

(in_hand ?o - movable)

(ontopof ?client - movable ?server - base)

)

(:functions

(pose_rot_x_a)

(pose_rot_x_b)

(pose_rot_y_a)

(pose_rot_y_b)

(pose_rot_z_a)

(pose_rot_z_b)

)

(:action grab

:parameters (

?client - movable

?server - base

)

:precondition (and

(ontopof ?client ?server)

(hand_free)

([grabhelper] ?client ?server)

)

:effect (and

(not (ontopof ?client ?server))

(not (hand_free))

(in_hand ?client)

([putty] ?client ?server)

)

)

(:action putdown

:parameters (

?client - movable

?server - base

)

:precondition (and
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(in_hand ?client)

([grabhelper] ?client ?server)

)

:effect (and

(hand_free)

(ontopof ?client ?server)

(not (in_hand ?client))

([putty] ?client ?server)

)

)

)

C.2.2 An example problem
(define (problem fact1-v2)

(:domain geometric-domain-v2)

(:moduleoptions

(grabhelper itemfile=items1-v2,step=0.1,debug=off)

)

(:objects

box1 box2 table - base

cube - movable

)

(:init

(ontopof cube box1)

(hand_free)

)

(:goal

(and

(hand_free)

(ontopof cube box2)

)

)

)

62



Bibliography

[Alami et al., 1990] Rachid Alami, Thierry Simeon, and Jean-Paul Lau-
mond. A geometrical approach to planning manipulation tasks. the case
of discrete placements and grasps. In The fifth international symposium
on Robotics research, pages 453–463, Cambridge, MA, USA, 1990. MIT
Press.

[Alami et al., 1995] R. Alami, J. P. Laumond, and T. Siméon. Two ma-
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