
Learning Road Traffic Control:

Towards Practical Traffic Control
Using Policy Gradients

Diplomarbeit

Silvia Richter

Albert-Ludwigs-Universiẗat Freiburg
Fakulẗat für Angewandte Wissenschaften

Institut für Informatik

July 2006

Erkl ärung
(Declaration)

Hiermit versichere ich, dass ich diese Abschlussarbeit selbstständig verfasst habe,
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe und
alle Stellen, die ẅortlich oder sinngem̈aß aus ver̈offentlichten Schriften entnom-
men wurden, als solche kenntlich gemacht habe. Diese Abschlussarbeit wurde
nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt.

(I hereby declare that I wrote this thesis on my own, only making use of the sources
mentioned, and that I have indicated all places where parts from other published
documents were used in word or in meaning. This thesis has not been used for any
other examination so far.)

Canberra, im Juli 2006 (July 2006) Silvia Richter

Abstract
The optimal control of traffic lights in urban road networks is a highly complex
problem. Many factors influence the flow of traffic, and hence the performance
of a traffic network, of which few can readily be measured. Currently used con-
trol systems are often relatively simple and date back several decades, while more
sophisticated optimisation methods fail for large networks.

Reinforcement learning algorithms are a means of learning control strategies
for complex environments, requiring no pre-specified knowledge about possible
solutions. Policy-gradient algorithms are reinforcement learning methods that are
particularly useful for learning control strategies (policies) for large and only par-
tially observable environments. They use a parameterised function to represent the
policy, and perform gradient ascent on the parameters of this function. Conver-
gence to a (local) optimum is guaranteed, under appropriate conditions.

In this work, we examine how policy-gradient ascent can be used to learn the
control of traffic signals, with the goal of optimising the traffic flow in a road net-
work. We show that our methods perform very well, are able to scale up to large
networks and can achieve better results than other commonly used approaches such
as saturation balancing algorithms.

Acknowledgements
I thank Douglas Aberdeen, my main advisor, for his guidance and help, and Bern-
hard Nebel for making this thesis possible. Thanks to Olivier Buffet for valuable
advice throughout this thesis, and for his patient help during long hours of debug-
ging. Conrad Sanderson, Simon Günter and Malte Helmert have all proof-read
parts of this thesis and deserve thanks for their dedication and helpful suggestions.
Finally, thanks to all at the Statistical Machine Learning group of NICTA, Can-
berra, for making me feel at home in the group, and to the New South Wales Roads
and Traffic Authority for providing the basis for this thesis through a cooperation
project with NICTA.

Contents

1 Introduction 9

2 Traffic Control 11
2.0.1 Why Traffic Control is Hard 11
2.0.2 Traffic Models . 11

2.1 Existing Control Methods . 12
2.1.1 Glossary . 12
2.1.2 Categories of Traditional Control Techniques 15
2.1.3 TRANSYT . 15
2.1.4 SCOOT . 16
2.1.5 SCATS . 16
2.1.6 Shortcomings of Traditional Systems 17

3 Reinforcement Learning 19
3.1 Markov Decision Processes . 21

3.1.1 Acting Optimally . 21
3.1.2 Classical Algorithms for Solving MDPs 22

3.2 Challenges in Reinforcement Learning 29
3.3 Partially Observable MDPs . 30
3.4 Policy Gradient Ascent . 32

3.4.1 Definitions and Assumptions 32
3.4.2 Objective Functions . 33
3.4.3 A “Vanilla” Policy Gradient Method 34
3.4.4 Natural Policy Gradient Methods 37
3.4.5 Policy Gradient With Approximate Value Functions 38
3.4.6 Natural Actor Critic . 39
3.4.7 Online Natural Actor Critic 41
3.4.8 Factored Learning With Policy-Gradients 43

3.5 Reinforcement Learning for Traffic Control 45

4 Policy-Gradient for Traffic Control 47
4.1 Expected Strengths of Policy Gradient Methods 47
4.2 A Simple Traffic Simulator . 48

7

8 CONTENTS

4.2.1 The Graphical User Interface 51
4.3 Architecture of the Learning System 52
4.4 Real-World Deployment of our System 54
4.5 Performance Criteria . 55

5 Experiments 59
5.1 Baselines . 59

5.1.1 SAT: A Simple Saturation-Balancing Technique 60
5.2 Test Scenarios . 61

5.2.1 Fluctuating Scenario . 62
5.2.2 Sudden Influx . 63
5.2.3 Offset . 64
5.2.4 Adaptive Driver . 65
5.2.5 Large Scale Optimisation (10 x 10) 66

5.3 Setup of the Experiments . 66
5.3.1 Particular Design Decisions 67

5.4 Results and Analysis . 68
5.4.1 Results Per Scenario . 69
5.4.2 Convergence Rates . 72
5.4.3 Assessment of Observation Features 72

6 Conclusion and Outlook 77

A Detailed Results 79

Bibliography 84

Chapter 1

Introduction

Traffic jams have become a familiar sight for many drivers travelling to work in
the morning or going for a trip on the weekend. As car ownership rates and traffic
volume have steadily increased over the last decades, existing road infrastructure
today is often strained nearly to its limits. Continuous expansion of this infras-
tructure, however, is not possible or even desirable due to spacial, economical and
environmental reasons. It is therefore of paramount importance to try to optimise
the flow of traffic in a given infrastructure.

However, the inputs to this optimisation problem can be arbitrarily complex:
to find an optimal solution, it would be necessary to know the position, speed
and route of every vehicle in the system. Furthermore, all reactions of drivers to
changing traffic conditions would need to be known and taken into account. In
reality, traffic light controllers need to work with far less information about the
current traffic situation. In most cities around the world today, the only sensors
available are inductive loop detectors, which are embedded in the roads and count
the number of cars passing over them.

The difficulty of controlling traffic lights optimally, along with the importance
of the problem, have led to a great number of research approaches [19]. This
makes it quite surprising that the systems used today often date back some 20 or 30
years. Simple controllers still perform quite well as opposed to more sophisticated
methods, as the latter are in many cases not able to deal with more than a handful
of intersections at the same time [19].

One possible method for finding control strategies in complicated domains is
reinforcement learning [32]. Reinforcement learning has been a popular field in
machine learning throughout the last few decades. Its main attraction is that it is a
general framework, capable of addressing virtually any “real-world problem”, and
particularly requiring little previous knowledge about the solutions to be learned.
It can deal with incomplete information and stochastic changes in the environment,
which are two complications present in the traffic control problem. Reinforcement
learning can furthermore cope with delayed feedback about the control strategy
that is being pursued.

9

10 CHAPTER 1. INTRODUCTION

In reinforcement learning, the goal for the learner is to learn the best reaction
to any situation that it may find itself in at some point in time. This so-called
policy is acquired through interaction with an environment in a trial and error pro-
cess. The learner, often called anagentin this context, continually chooses actions
based on its current perception of the world, and then receives feedback on these
actions which modify its concept of good behaviour in the corresponding situations
or statesof the environment. With this technique it is possible to learn in complex
and highly stochastic domains without having previous knowledge about possi-
ble solutions.Policy-gradient(PG) methods are a class of reinforcement learning
algorithms that are particularly well suited for use in large real-world problems.
They calculate policies by performing gradient-ascent on a parameterised policy
function.

In this work, we use PG methods to learn signalling policies for traffic lights.
Performing gradient ascent on the policy parameters enables us to efficiently search
through the large space of possible policies. Our approach scales up to a large num-
ber of signalled intersections by having each intersection controlled by a separate
controller. At the same time, the controllers can work together to optimise the over-
all system through the use of common world information and performance feed-
back. We show that we are able to automatically find effective policies, learning
from simple observations and without the need of an explicit model of the system.
Our methods outperform a popular controlling technique used around the world, at
least within the limitations of our simulation.

This thesis is structured as follows: In Chapter 2, we define the traffic control
problem, introduce some vocabulary used in traffic literature and give an overview
of existing techniques for traffic control. In particular, we point out some weak-
nesses of current control systems. In Chapter 3, we describe the reinforcement
learning framework and some classical algorithms. We introduce policy-gradient
methods in general and natural policy gradients in particular, and present the two
algorithms we use in our experiments.

The core of this work is described in Chapter 4, where we show how we apply
policy-gradient methods to traffic control. We discuss the expected advantages of
our approach as opposed to existing control techniques, and define optimisation
criteria. Then we develop the architecture of the learning system and present a
traffic simulation program that we implemented for training the traffic light con-
trollers. Chapter 5 contains a set of experiments we conducted and their results.
We describe the baselines we compare against, and develop test scenarios appro-
priate for demonstrating the particular strengths of PG methods. Subsequently, we
present the results of our experiments and analyse the performance of PG com-
pared to the baselines. We also compare our two PG algorithms against each other
and draw conclusions about their respective usefulness for traffic control. Chapter
6 summarises the work presented and gives an outlook on possible future work in
this area.

Chapter 2

Traffic Control

The flow of traffic in a road network can be influenced by several measures, such as
signalling at intersections, messaging to the drivers, collecting tolls, and marking
of the roads, with signalling being however the most important control measure
[19]. The narrowed-downtraffic control problemthus consists of finding an opti-
mal signalling schedule for all intersections in a network, typically with the aim of
minimising the waiting time of cars at intersections, the total travel time or other
performance criteria such as the number of stops, fuel consumption (and hence
emissions), etc.

2.0.1 Why Traffic Control is Hard

The traffic control problem is difficult for a variety of reasons, with its sheer size
being the prime reason. Many variables influence the performance of a network
even when the signalling policy is fixed. Factors that come into play, for example,
are irregular and unpredictable incidents like pedestrians, accidents or illegal park-
ing, and the weather. Driver characteristics are a further source of variance, as they
influence the choice of routes as well as driving behaviour like speed and distance
keeping.

A further aspect making optimal traffic control difficult is that information
about the current manifestation of traffic in the network can in most cases only be
partially attained through (noisy) measurements. In fact, most signal controllers in
use today rely solely on the information gained from inductive loops embedded in
the roads. Finally, tight real-time constraints exist, e. g., decisions based on current
information may need to be made within 2 seconds [19].

2.0.2 Traffic Models

In order to deal with the problem of incomplete information about the current traf-
fic situation, many control techniques in use today build and maintain an internal
modelof the traffic situation, derived from available data such as loop detector
counts [9]. The model then serves as the basis for decision making, predicting

11

12 CHAPTER 2. TRAFFIC CONTROL

the reaction of traffic on a possible signalling strategy, and deriving performance
criteria such as queue lengths at intersections.

Models can operate on different levels of abstraction. Some view traffic as
made up of single vehicles (the microscopic view), while others describe the flow
of traffic in terms of streams (using fluid theory), or calculate characteristics on the
network level, such as the traffic intensity in terms of cars per space unit (macro-
scopic view) [28].

A popular traditional approach is to combine a deterministic component of traf-
fic flow based on fluid theory with a stochastic component based on steady-state
queueing theory [28]. Steady-state queueing theory calculates car arrival distribu-
tions at an intersection and derives estimations of delays and queue lengths. This is
done locally, i. e., for each intersection separately, taking into account only the up-
stream neighbour intersection. This theory cannot model the coordinating effects
of the interaction between various intersections, and it has further limitations when
traffic is dense (when the average flow exceeds the average capacity for a certain
time interval, and no stochastic equilibrium exists).

A further difficulty for accurate modelling arises from the fact that signalling
policies and traffic flow interact. It is not sufficient for models to fix the expected
routes of vehicles and optimise the signalling for the resulting traffic pattern – mod-
els must also take into account that drivers adapt their behaviour, and possibly their
route choices, to changed conditions. This is what is called the traffic assignment
problem [11].

Much research has gone into developing ever more sophisticated models (for
some recent work see [9, 10]). The problem remains, however, that models are
seldom perfect and that the performance of controlling strategies depending on
such models may suffer from this inaccuracy.

2.1 Existing Control Methods

In this section we give an introduction to the basic vocabulary used in traffic theory,
an overview of existing approaches to traffic control, and some examples of popular
controlling systems in use today.

A large part of the following glossary as well as of the descriptions of cur-
rent systems is based on Markos Papageorgiou’s “Review of Road Traffic Control
Strategies” [20].

2.1.1 Glossary

A streamis a sequence of cars entering an intersection from a certain direction and
leaving it in a certain direction. If two streams can cross the intersection without
interfering they are calledcompatible, else they are calledantagonistic. A phase
or stageis a time interval where a certain subset of the lights at an intersection are
green, such that a certain set of compatible streams have the right of way during

2.1. EXISTING CONTROL METHODS 13

that time. The term phase is also used to denote the set of streams corresponding to
it, while the termsphase lengthor green-timeare used to denote the duration of the
phase. Asignal cycletraditionally is completed when each phase has been on once,
thecycle timebeing the time needed for the completion of one cycle.Inter-green
timesare the few seconds needed in between different phases, where no stream has
the right of way, to avoid interference of antagonistic streams.

Traditionally, control algorithms aim to optimise traffic flow via thephase
scheme, thesplit, and theoffset. Thephase schemeor stagingdetermines which
streams will have the right of way together, i. e., it groups the signal lights into
subsets that will be green at the same time, and it determines the order in which the
corresponding phases will come on. Popular groupings of streams into phases in
Australia include thesplit approachand thediamond overlap. In the split approach
(SA), all streams coming from one direction have the right of way together, while
in the diamond overlap (DO) there is one phase where straight and left turns of two
opposite directions go together, followed by a phase where the right turns of those
two directions go together. Examples for phase schemes made up of two SAs and
two DOs respectively are shown in Figure 2.1. Phase schemes combining the two
(DOSA) are also used.

A split gives a distribution of the cycle time to the individual phases, thus
determining the length of each phase. Anoffsetrefers to the time interval between
a reference point in time and the start of a new cycle. Offsets can be introduced to
coordinate neighbouring intersections: if, for example, along a street (also called
a link in network terms) several intersections have the same phase schemes and
similar cycle times, then offsetting subsequent intersections by the average travel
time between their predecessors and themselves creates a “green wave” for the
vehicles travelling along this link, minimising the number of stops and waiting
times at intersections.

Thedemanddenotes the number of cars that want to enter the road network at a
given point in time or over a certain period of time. If we assume that the demand is
independent of the control strategy used in the network, we assumefixed demand.
Thesaturationof a streams during a phasep is the ratio of actual (current) traffic
volume on the stream and the maximum possible traffic volume, given the current
length of the phase:

saturation(s, p) :=
current traffic(s, p)

max traffic(s, p)
(2.1)

Under-saturatedtraffic conditions are those where the demand for any link in the
network does not exceed the capacity of the link, and queues that build up during
red phases can be emptied during green phases.Saturatedandover-saturatedare
both used to denote the opposite of under-saturated. A popular traditional approach
to traffic control is based on balancing the saturation of the (streams in) different
phases. Algorithms following this approach are the so-calledsaturation-balancing
algorithms.

14 CHAPTER 2. TRAFFIC CONTROL

(a) NS straight (b) NS right (c) EW straight (d) EW right

(e) N (f) S (g) E (h) W

Figure 2.1: The double diamond-overlap (DODO) phase scheme (above), and the
double split approach (SASA) phase scheme (below). N, S, E, and W denote north,
south, east and west respectively.

2.1. EXISTING CONTROL METHODS 15

2.1.2 Categories of Traditional Control Techniques

According to Gartner [11], scientific research on traffic began in the 1930s with
the application of probability theory to the description of road traffic. In the 1950s,
various approaches were pursued to develop advanced traffic models, including
traffic wave theory and queueing theory [11]. The first computer based signalling
controller was installed in Toronto, Canada, in 1963 [10].

Existing systems can historically be grouped into three main categories [10,
11]. Fixed timecontrol strategies are calculated off-line, based on historical data
about traffic flow at particular times of day at given intersections. Because they can-
not adapt to the actual traffic situation, they are only appropriate for dealing with
under-saturated traffic conditions. TRANSYT and MAXBAND are well-known
members of this category [20, 25].Adaptivestrategies employ real-time control
systems, calculating their policies based on the actual current traffic as determined
from sensor readings. SCOOT and SCATS are two prominent members of this
group.

More modern methods of the so-calledthird generationdiffer from traditional
approaches in that they are not concerned with separately optimising cycle times,
splits and offsets. Given a pre-specified phase scheme and a sophisticated dynamic
traffic prediction model, they try to find optimal lengths for all phases, solving a
dynamic optimisation problem on a discretized time representation. CRONOS and
COP use are two examples that use dynamic programming [19]. The exponential
complexity of the problem, however, limits these approaches to the local view of a
few intersections at a time, instead of aiming for a global optimum. Heuristic op-
timisation methods as employed in PRODYN allow scaling up to bigger networks
[19].

A fourth approach that has become popular are the so-calledstore-and-forward
based techniques [19]. They use simplified traffic models, thus trading accuracy of
the models against computation time for policy calculation. They are based on the
fact that optimisation with real-valued variables can be solved in polynomial time
in contrast to the NP-hardness of problems involving integer valued variables. One
simplification of the optimisation problem used by these methods, for example, is
to describe the outflow of an intersection with an average value at any time, instead
of making the distinction of flow zero during a red phase and a positive flow during
green.

2.1.3 TRANSYT

TRANSYT (the Traffic Network Study Tool) is probably the best-known off-line
system available [20]. It was developed in the 1960s by Robertson [25] and sub-
stantially extended later on. It is a global optimisation method, i. e., it employs
a macroscopic model of the traffic network based on historical data and calculates
the control policies for all intersections jointly, using a mix of heuristic search algo-
rithms like hill-climbing and genetic algorithms. Given a cycle length, it computes

16 CHAPTER 2. TRAFFIC CONTROL

split and offset, optimising a performance index consisting of waiting times and the
number of stops in the whole network. Other performance criteria like fuel con-
sumption can also be optimised. Because of its use of heuristic search techniques
it is not guaranteed to find the optimal control policy [20].

2.1.4 SCOOT

SCOOT (the Split Cycle Offset Optimisation Technique) [26] is often referred to as
the traffic adaptive version of TRANSYT, and is among the most popular systems
deployed today. It was developed by the Transport and Road Research Labora-
tory (TRRL), UK, in 1973 and is in use in many European cities like London and
Madrid, as well as in Bangkok, Beijing, Toronto and other major cities throughout
the world. It has since been under continuous development, with Siemens Traffic
Control Ltd. and Peek Traffic Ltd. being industrial partners in the project.

SCOOT works with loop detectors located at a certain distance from each in-
tersection (typically some 100–300 meters), from which it calculates the expected
car arrival profile. Using this information, it optimises cycle time, split and offset
with a hill-climbing algorithm. Like TRANSYT, it aims for minimisation of wait-
ing time and number of stops across the whole network. The cycle time here is
identical for groups of intersections in the network, facilitating offset calculation.
In addition to this global base schedule, SCOOT makes small incremental optimi-
sation steps for each controller. Every controller can decide to advance or retard a
scheduled phase change by up to4 seconds, if that improves the local performance
index. Once every cycle, the controller also checks whether incrementing or decre-
menting the offset by4 seconds would be preferable. Similarly, the cycle time of
groups of intersections may be adapted by a few seconds up or down.

One disadvantage of having the loop detectors installed far from the intersec-
tions is that saturated traffic conditions are registered late, when queued traffic
backs up to the detectors. This means that SCOOT cannot employ measures that
keep traffic back at the borders of a congested subsystem. Instead, it switches to
special measures once it registers the saturated conditions, its primary goal then
being not minimisation of travel time but the dispersion of queued up traffic [20].

2.1.5 SCATS

SCATS (the Sydney Coordinated Adaptive Traffic System) [30] is one of the oldest
adaptive systems. It was introduced in 1964 by the New South Wales Roads and
Traffic Authority (RTA), and runs computer-based since 1972, being employed in
most major Australian and New Zealand cities as well as in many cities throughout
South East Asia and North America.

SCATS is a decentralised system and does not involve a complicated traffic
model. It uses a fixed phase scheme and recalculates the cycle time, split and offset
of each intersection once every cycle. It works on two levels: the tactical level,
where cycle time and splits are determined for each intersection separately, and the

2.1. EXISTING CONTROL METHODS 17

strategic level, where intersections are coordinated. The system is supported by a
set of pre-specified plans, which contain phase schedules for all intersections for
certain times of the day, as calculated from historical data. These plans are loaded
regularly and are subsequently modified according to current conditions.

At each intersection, a local SCATS controller measures the traffic volume on
every link with the help of loop detectors. These are located closely to the stop
lines of the intersection. Once every cycle, new target values for the cycle time and
split of each intersection are derived from a saturation-balancing algorithm (see the
glossary in Section 2.1.1), which calculates the phase lengths in such a way that a
certain level of saturation is achieved for the most used stream of any phase. The
cycle time is then simply the sum of the phase lengths. SCATS does not employ
the new values directly, but adjusts its current plan by a small step towards the new
values.

For achieving offsets, the network is divided into sections of up to 10 – 20 in-
tersections which can be coordinated. Again, SCATS relies on pre-specified plans
for offset values. If neighbouring intersections have a similar cycle time, they can
decide tomarry, both adopting the longer cycle time and reading the corresponding
offset from one of the offset plans.

Systems that perform small incremental changes of their schedules like SCATS
are especially suitable for stable and slowly changing traffic demands. However,
rapidly changing traffic conditions pose a problem to them, as they are not able to
adapt quickly enough. Furthermore, SCATS is purelyreactive: because the loop
detectors are located closely to the intersections, SCATS can only adapt its policy
to traffic that has already arrived at the intersection, instead of anticipating changed
demand. SCATS does not optimise the global network performance. A further
disadvantage is that it needs prior knowledge about expected traffic volumes and
involves a substantial amount of hand-tuning for calculation of the base phase and
offset plans.

We are particularly interested in SCATS, as our work was inspired by a project
launched in cooperation with the New South Wales Roads and Traffic Authority.
Our focus, when setting up the learning system, was largely motivated by the de-
sire to compare against SCATS and demonstrate better performance in those areas
where SCATS is known to have weaknesses. We therefore evaluated the perfor-
mance of our controllers under conditions compatible with SCATS, and designed
an approximation to the adaptive component of SCATS as a baseline. However,
due to the fact that SCATS is a proprietary system, our emulation of SCATS is lim-
ited to the publicly known facts about the system, which means that our emulation
might differ slightly from the way SCATS actually works. Section 5.1.1 describes
our implementation in detail.

2.1.6 Shortcomings of Traditional Systems

Summarising the description of traditional approaches to traffic control, we can
identify the following weaknesses:

18 CHAPTER 2. TRAFFIC CONTROL

1. Most existing methods rely on a model of the traffic flow. This makes them
prone to suboptimal behaviour if the employed model lacks accuracy or if
unforeseen events occur. Moreover, most systems do not have a mechanism
for learning from feedback on the quality of their model, which may lead to
systematic errors [9].

2. Many of the more sophisticated optimisation methods do not scale up to
large networks. Instead, independently optimised subsets of intersections
are combined, possibly resulting in sub-optimal overall performance.

3. Over-saturated traffic conditions can rarely be handled adequately [20].

4. Many systems have problems with traffic incidents or rapidly changing de-
mands, as they are slow to react, only allowing incremental changes to their
pursued policy.

Chapter 3

Reinforcement Learning

The key idea of reinforcement learning is very simple: Humans or animals often
learn from positive or negative feedback for their actions (see Rescorla and Wagner
[23] for an introduction and examples in psychological studies). Using the same
idea, an artificial agent can be made to learn from so-calledreward signalsabout
the utility of its actions in a given situation orstate, thereby weakening or strength-
ening the probability of the corresponding behaviour in that state in the future.

The property of needing little or no previous knowledge about a problem dis-
tinguishes reinforcement learning from other forms of machine learning. In tra-
ditional supervised learning, for example, a learning algorithm is given examples
for correct answers to questions and the goal is to generalise from the seen exam-
ples [29]. In this setting the human supervisor needs to know the correct answer
to at least a subset of the questions, in order to construct training examples. In
many cases, however, when the problem is complex, we do not have the necessary
knowledge to construct explicit training examples. At the same time we do often
have some idea about the desirability of a given world state. The advantage of
reinforcement learning is that it suffices to be able to judge the utility of a state
relatively to others, in order to ultimately learn the right behaviour in any state.
Supervision here only consists of giving the learner rewards or punishments upon
reaching desirable or undesirable states, respectively. It is then the learner’s task to
determine which of its actions were responsible for leading to that state, and hence
which actions were good or bad in the corresponding previous states.

In more detail, the framework for reinforcement learning is as follows: at every
time step, the agent chooses an action applicable in the current state. The environ-
ment then reacts to that action by transitioning into a new state (deterministically
or stochastically), and the agent receives a scalar reward signal. In the general
case, this reward can depend on the action chosen in a given state and the next state
reached. Figure 3.1 depicts the interaction of agent and environment graphically.

Most algorithms for reinforcement learning assume the environment to be a
Markov decision process (MDP), i. e., a system in which the state transitions only
depend on the action chosen by the agent and the current state, not on past events.

19

20 CHAPTER 3. REINFORCEMENT LEARNING

Agent

World /
Environment

action reward
state /
observation

Figure 3.1: Interaction between the learning agent and its environment.

If this is the case, theMarkov property(after the Russian mathematician Andrei
A. Markov) is said to hold, or the environment isMarkovian. A formal definition
of an MDP will be given in the next section. There are numerous variations of
MDP-based problems:

• The world model (i. e., state transition probabilities and rewards) may or
may not be known to the learner. If the world model is known, learning is
not necessarily needed and a solution can be calculated analytically.

• The learner may or may not be able to reliably identify the current state. If
this is not the case, we speak ofpartial observabilityof the environment.

• Environment interaction sequences (so-calledepisodes) can have finite or
infinite length. In the first case, the problem often is to find a sequence
of actions that lead to a “goal state”, while in infinite episodes we want to
maximise the accumulated rewards.

Traffic light optimisation is indeed a very difficult task, considering the above
points. The learner does not know the exact model of the environment (how will
traffic flow react to a certain signalling policy?), we only have partial observability
(it is not possible to measure location, speed, and intended route for every vehicle
in the system), and we must deal with an infinite horizon, since traffic does not
stop.

We will now define Markov decision processes formally and present some pop-
ular algorithms for finding policies in them. Following that, Section 3.2 describes
some of the general difficulties involved with reinforcement learning, while Section
3.3 extends the MDP formalism to include partial observability. Policy-gradient
methods for finding policies in MDPs or POMDPs are presented in Section 3.4.
The following section and Section 3.2 are largely based on the textbook by Sutton
and Barto [32].

3.1. MARKOV DECISION PROCESSES 21

3.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined by a tupleM = 〈S,A, T,R〉, where

• S is a set of states,

• A is a set of actions,

• T : S × A →
∏

(S) is a state transition function mapping a state and an
action to a probability distribution over the states, and

• R : S × A → R is a reward function mapping a state and an action to an
immediate scalar reward.

The agent interacts with the system defined by the MDP by selecting, at each
time step, an actiona ∈ A in the current states ∈ S of the MDP. The system
then transitions to a new states′ ∈ S, as sampled from the probabilistic function
T (s, a), and the agent receives the reward signalr ∈ R, wherer = R(s, a). While
we defined the reward function to be deterministic, all equations and algorithms
in this thesis hold for stochastic reward functions as well, ifR(s, a) is seen as the
expectedreward of actiona in states.

The action-selection of the agent is defined by itspolicy, which in general is a
functionπ mapping states to a probability distribution over the actions,π : S →∏

(A) . The policy thus specifies, for each state, a probability for the execution of
each action. We will need the stochasticity of policies later on, when we introduce
partial observability. However, for now we assumedeterministicpolicies, hence
the probabilityπ(s, a) equals one for exactly one action in states and zero for all
other actions.

We also assume finite MDPs, i. e., MDPs with finite state and action spaces.
We will use subscripts to denote states, actions and rewards at particular time steps,
wherert+1 is the reward obtained by the agent after choosing actionat in statest

at time stept.

3.1.1 Acting Optimally

The goal of the agent is to find an optimal policy, i. e., a policy that maximises
the long-term reward sequence obtained from the environment. When trying to
specify this high-level goal in more detail, however, several models of optimality
are possible [32].

In a finite-horizonscenario, where the length of each interaction with the en-
vironment is limited by a fixed number of time stepsT , we can simply aim to
maximise the expectedsumof rewards obtained in an interaction episode:

E

(
T∑

t=1

rt

)
.

22 CHAPTER 3. REINFORCEMENT LEARNING

This is the easiest case, but in many real-world problems we cannot guarantee a
finite horizon. Note also that the value of this expectation depends on the starting
state.

In infinite-horizon cases, where the interaction with the environment is un-
bounded in length, thediscountedmodel has become popular. Here, a discount
factorγ, where0 ≤ γ < 1, is used to discount future rewards:

E

(∞∑
t=1

γt−1rt

)
.

By discounting future rewards, we ensure convergence of the infinite sum of re-
wards. However, this has further implications for the agent: since future rewards
are worth less, it is preferable for the agent to obtain a reward immediately than to
obtain the same reward a few time steps later. In some applications this behaviour
is indeed desirable. For example, the rewards could represent money that loses
some of its value over time through inflation. In many cases, the discounting of re-
wards is simply used as a computational trick to solve an infinite-horizon problem.
However, the implications of choosing this model have to be examined carefully.
Like the expected sum of rewards, the expected discounted reward also depends on
the starting state of the episode.

A third, and perhaps the most natural model, is theaverage reward model,

lim
T→∞

1
T
E

(
T∑

t=1

rt

)
,

where an agent aims to maximise its expected average reward per time step. This
value does not depend on the starting state. However, algorithms for finding poli-
cies that match this criterion seem more complicated and have not been investigated
thoroughly yet [13]. The termreturn is generally used to denote a target function
of the reward sequence, like one of the above.

3.1.2 Classical Algorithms for Solving MDPs

In this section, we present some of the most popular algorithms for finding policies
in MDPs, as they form the historical and theoretical basis of algorithms for the
more general case of partially observable MDPs. We introduce the concepts of
value functions, greedy policies, temporal difference, and eligibility traces, which
we will build on later.

The definition of a learning environment as an MDP prescribes that it is station-
ary, i. e., the transition function and reward function do not change in time. When
the transition function and the reward function (the so-calledmodelof the MDP)
are known to the agent, no learning is actually needed. An optimal behaviour in
this system can be calculated by solving a set of linear equations. It has been shown
that for every finite MDP there exists a stationary deterministic policy that is op-
timal [27]. All of the algorithms we present are guaranteed to asymptotically find
such an optimal policy.

3.1. MARKOV DECISION PROCESSES 23

Classes of algorithms

One fundamental issue when talking about MDP algorithms is whether or not they
require the agent to know the model of the MDP. Assuming this knowledge, so-
lutions can be calculated analytically, as mentioned above, or bydynamic pro-
gramming(DP) methods. If the model is not known beforehand, areinforcement
learningapproach is needed that finds out about the environment through interact-
ing with it. In this case, one can either try to learn the model through experience,
observing the frequency of the respective state transitions and rewards, and then
employ a DP-like method (this is themodel-basedapproach). Or, one can try to
learn a state-action mapping directly by searching the space of possible policies,
bypassing model estimation. Such algorithms aremodel-freemethods. We will
discuss the relative merits of the latter class in more detail in Section 3.4, where
we introduce policy-gradient methods as members of this category.

In the following, we present some classical algorithms for finding policies in
MDPs, including both model-based and model-free approaches. We first define the
valueor utility of being in a certain state, and similarly the values of actions in
a given state. These values correspond to the total return expected from the state
or action, respectively. We then present two dynamic programming algorithms,
Value Iteration and Policy Iteration, that calculate state values from the environ-
ment model and derive policies from them. Policies are derived by selecting, in
each state, the action that leads to the state with highest utility. Temporal differ-
ence (TD) learning methods are introduced next. They do not assume a model of
the environment, but learn the values for states or actions through environment in-
teractions. As all of these methods work by calculating values for states or actions,
they are calledvalue-basedmethods.

Value Functions

In the following, we use the discounted reward measure used in most classical
algorithms [32], allowing however the discount factorγ to equal 1 if termination
of each episode is guaranteed. That way our definitions encompass the sum of
rewards measure in those cases where it is well-defined.

We define the value of a state s under policyπ, V π(s), as the expected return
when starting in state s and followingπ [32]:

V π(s) := E

(∞∑
t=1

γt−1rt

∣∣∣∣∣s0 = s

)
. (3.1)

Similarly, the value of a state-action tuple underπ, Qπ(s, a) is defined as the ex-
pected return when starting in states, taking actiona there and followingπ from
then on:

Qπ(s, a) := E

(∞∑
t=1

γt−1rt

∣∣∣∣∣s0 = s, a0 = a

)
. (3.2)

24 CHAPTER 3. REINFORCEMENT LEARNING

The functionsV π andQπ are called the state-value function and the action-value
function for policyπ, respectively.

Let in the followinga anda′ always be actions fromA, ands ands′ be states
from S. We simplify notation and write

∑
a for

∑
a∈A, and use thePr(·) notation

to denote a probability, e. g.,Pr(s′|s, a) = T (s, a, s′) is the probability of the
environment transitioning to states′ given the agent chooses actiona in states.

The famous Bellman equations can be directly derived from the definitions in
Equations (3.1) and (3.2). They state that the values of neighbouring states are tied
together:

V π(s) =
∑

a

π(s, a)

(
R(s, a) + γ

∑
s′

Pr(s′|s, a)V π(s′)

)
(3.3)

Qπ(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)V π(s′). (3.4)

An optimal policyπ∗, i. e., one that maximises the expected return among all
policies, needs to take an optimal action at each step,

π∗(s, a) = 1 ⇒ a ∈ arg max
a′

(
R(s, a′) + γ

∑
s′

Pr(s′|s, a′)V ∗(s′)

)
, (3.5)

whereV ∗(s) is the highest values has under any policy,V ∗(s) := maxπ V
π(s).

The reverse is also true: a policy that chooses an optimal action in each state (i. e.,
a policy that fulfils (3.5) for alls anda), is an optimal policy [29]. Therefore, all
optimal policies have exactlyV ∗ as their state-value function, and in an analogous
manner they share the optimal action-value functionQ∗ [32]. For those optimal
value functions in particular, the Bellman optimality equations hold:

V ∗(s) = max
a

(
R(s, a) +

∑
s′

Pr(s′|s, a)γV ∗(s′)

)

= max
a

(
R(s, a) + γ

∑
s′

Pr(s′|s, a)V ∗(s′)

)
(3.6)

Q∗(s, a) = R(s, a) +
∑
s′

Pr(s′|s, a)γV ∗(s′)

= R(s, a) +
∑
s′

Pr(s′|s, a)γmax
a′

Q∗(s′, a′)

= R(s, a) + γ
∑
s′

Pr(s′|s, a) max
a′

Q∗(s′, a′). (3.7)

Value Iteration

The Value Iteration algorithm calculates a state-value function V by iteratively
applying the Bellman optimality equation (3.6) to initially random state values. It

3.1. MARKOV DECISION PROCESSES 25

updates, at each step, every state value estimate according to its old value estimates
of the neighbouring states:

Vt+1(s) := max
a

(
R(s, a) + γ

∑
s′

Pr(s′|s, a)Vt(s′)

)
.

This algorithm provably converges to the optimal state-value functionV ∗ [29].
After convergence, we can construct anoptimalpolicy by choosing actions greedily
with respect to the state-value function, i. e., in each states we choose an actiona
that is optimal with respect toV ∗ as given by the right-hand side of the implication
in Equation (3.5).

Policy Iteration

The Policy Iteration algorithm iteratively evaluates and improves a policy. It starts
with a random policy. In each iteration, it calculates the state-value functionV π

of the policy, and then creates a new policyπ′ which is greedy with respect toV π.
As the actions chosen byπ′ lead to at least as much return from each state as the
actions chosen byπ, π′ is at least as good asπ. Furthermore, when the policy does
not change anymore, the state valuesV π fulfil the Bellman optimality equation
(3.6), henceV π = V ∗, and we have converged to an optimal policy [32].

The state-value functionV π can be calculated analytically or iteratively, in a
similar way as Value Iteration calculates the optimal state valuesV ∗:

V π
t+1(s) :=

∑
a

(
π(s, a)R(s, a) + γ

∑
s′

Pr(s′|s, a)V π
t (s′)

)
. (3.8)

This process provably converges to the true state-value function underπ, V π, as
defined in (3.1).

Temporal Difference Learning

Dynamic programming methods like Value Iteration and Policy Iteration are guar-
anteed to asymptotically find the optimal policy, assuming that a complete model of
the environment is known. But as the state space grows, calculating the exact value
of every state soon becomes very costly. One iteration of the Value Iteration algo-
rithm, for example, has complexityO(|S|2|A|), and potentially many iterations are
necessary.

However, in very large state spaces we may not need to know the exact value
of every state, or of the actions in that state, to act well. This is because the policy
only depends on therelative values of states and actions, which can usually be
estimated long before convergence to the true value function. Furthermore, there
may be many states that are rarely ever visited during a typical episode, and for
which we do not necessarily need very good estimates. An alternative approach
therefore estimates the value functions through experience, by taking actions and

26 CHAPTER 3. REINFORCEMENT LEARNING

observing their outcome. That way computational efforts are concentrated on the
states which occur frequently.

Gathering experience through environment interaction is often termed Monte-
Carlo exploration. Sutton and Barto [32] reserve the term Monte-Carlo for a class
of algorithms that complete finite interaction episodes, and estimate the transi-
tion probabilities and rewards by averaging over the values observed during the
episodes. We will however use Monte-Carlo exploration for any learning by expe-
rience, as described above.

The Monte-Carlo algorithms in the restricted sense of Sutton and Barto have
the drawback that they can only be applied to episodic tasks, since they wait until
an episode has terminated to update their estimated values. Another class of al-
gorithms that lies between dynamic programming methods and true Monte-Carlo
algorithms are the temporal-difference learning (TD) methods. They learn value
functions by iteratively executing actions according to their current policy, and
updating their estimates of the value functions after every step, depending on the
observed rewards.

TD(λ)

The TD(λ) family of algorithms do not actually learn a policy, but are presented to
demonstrate the principle of the temporal difference learning approach. They learn
the values of states under a given policy, and can thus be used to evaluate policies.
The simplest and best-known temporal-difference algorithm, TD(0), iteratively ex-
ecutes an action according toπ and updates its value estimates by a small amount
depending on the observed reward. LetVt be the state-value function estimate at
time stept. After executing an action in the current statest and receiving the re-
ward rt+1, TD(0) updates its value estimate ofst by moving its value function
towards the equilibrium prescribed by the Bellman equation (3.3):

Vt+1(st) := Vt(st) + ∆Vt(st),

where
∆Vt(st) := αt[(rt+1 + γVt(st+1))− Vt(st)]

is the so-called temporal difference. Thus, TD(0) updates its value estimates based
on the value estimates of neighbouring states, like dynamic programming meth-
ods do (this is called bootstrapping). However, unlike DP, TD(0) updates its val-
ues based on oneobservedsample transition instead of all possible transitions to
neighbouring states. Instead of exactlyaveragingover sampled rewards for an en-
tire sample trajectory like Monte-Carlo algorithms, TD(0) performs updates with
small, fixed step sizesαt possibly decreasing over time. It converges to the true
state-value function in the mean, or with probability 1 for decreasing step sizes
[32].

The general TD(λ) algorithm does not only observe one transition, but updates
its value estimates based onall future rewardsin the (possibly infinite) episode. A

3.1. MARKOV DECISION PROCESSES 27

discount factorλ ensures that the infinite sums of rewards exist, and defines by how
much the value of a state is updated for a reward received at a certain later point
in time. We define then-step return following time stept, R(n)

t , as the discounted
reward we expect when observingn sample steps of the environment and using our
current value estimates after that:

R
(n)
t :=

n−1∑
k=0

γkrt+k+1 + γnVt(st+n)

The temporal difference of TD(λ) is then defined as follows:

∆Vt+1(st) := αt

(
(1− λ)

(∞∑
n=1

λn−1R
(n)
t

)
− Vt(st)

)
(3.9)

Thus, TD(λ) uses a weighted average over alln-step returns. The factor(1 − λ)
ensures that the weights sum to 1. Although the definition of the weighted average
in the above update formula seems rather complicated, there is an easy implemen-
tation for it. An online algorithm cannot complete, at each time stept, the update
corresponding to this time step as given in (3.9) (becauseR

(n)
t depends on future

time steps). Instead we have to keep updatingV (st) during all future time steps.
This can be implemented with the help ofeligibility traces. An eligibility trace
here is an additional variable for each state, keeping track of how often and how
recently a state was visited, in short: how eligible a state is for updates whenever
a reward occurs. This reflects how responsible each state is deemed to be for a
reward occurring at a later time step. On each step, the eligibility trace for states
is updated as follows:

zt+1(s) =
{
γλzt(s) if s 6= st+1

γλzt(s) + 1 if s = st+1

The update performed on the value estimates at time stept is then

∆Vt+1(s) = αt[rt+1 + γVt(st+1)− Vt(st)]zt(s)

for all s ∈ S. For a diminishing step size sequence(αt)t∈N, this implementation is
equivalent to (3.9) [6].

Eligibility traces are thus a means of crediting states for rewards obtained later
on. Decaying them exponentially can be seen to express the assumption that re-
wards are exponentially more likely to be connected to states visited recently than
to states visited longer ago. They present one way to solve the temporal credit
assignment problem (cf. Section 3.2), and our policy-gradient algorithms will be
using them in a similar form.

28 CHAPTER 3. REINFORCEMENT LEARNING

SARSA and Q-Learning

SARSA and Q-Learning are two temporal-difference learning algorithms that learn
state-action values. SARSA learns the action-value functionQπ of its current pol-
icy, and continually improves its policy with respect to these values, in a similar
way to Policy Iteration. The Q-Learning algorithm, on the other hand, learns the
optimalaction-value functionQ∗ directly. The policy it follows during learning has
no influence on the learned value estimates, hence Q-Learning is a so-calledoff-
policy method. We first describe SARSA and subsequently Q-Learning, pointing
out the differences between the two algorithms.

SARSA updates its value estimates based on the experience of two time steps,
by first executing actionat in statest and observing the rewardrt+1, and then
executing actionat+1 in the resulting next statest+1:

Qt+1(st, at) = Qt(st, at) + αt [(rt+1 + γQt(st+1, at+1))−Qt(st, at)] .

The name SARSA is derived from this update rule, as it involves the quantities
(st, at, rt, st+1, at+1). The Q-values SARSA learns depend on the actions pre-
scribed by its policy, thus SARSA learns the action-value function of its current
policy. However, it updates its policy at each time step to exploit the learned Q-
values, and is guaranteed to asymptotically converge to the optimal value function
and an optimal policy. Conditions for convergence are again decreasing step sizes
αt, and that all state-action tuples are visited infinitely often, to learn their cor-
rect values. (A corresponding condition is required for the TD(λ) algorithm and
Q-Learning.) To ensure that all state-action tuples continue to be visited, SARSA
must use a slightly stochastic policy instead of always choosing a greedy action
with regard toQπ. One possibility to do this is to usually choose greedy actions,
but with a small, decreasing probabilities choose a non-greedy action (cf. Section
3.2). The traditional SARSA algorithm as defined above performs its value up-
dates based onone-steptemporal-difference look-aheads, like TD(0). SARSA can
be modified to use discounted infinite look-aheads like a TD(λ) algorithm does, by
using eligibility traces. This leads to a family of algorithms SARSA(λ).

The Q-Learning algorithm learns theoptimalaction-value functionQ∗ directly.
Its value estimates are updated at each time step according to the following rule:

Qt+1(st, at) = Qt(st, at) + αt

[(
rt+1 + γmax

a
Qt(st+1, a)

)
−Qt(st, at)

]
.

Because of the maximisation operator in the above formula, the update of the value
estimate for a state-action tuple is based on the reward observed for that tuple
and the estimates for the best neighbouring state-action tuple. The policy pursued
thus has no influence on the learned values, as long as it guarantees to visit all
states infinitely often. Q-Learning and SARSA are true reinforcement learning
algorithms, as they learn a policy without assuming knowledge of the world model.

3.2. CHALLENGES IN REINFORCEMENT LEARNING 29

3.2 Challenges in Reinforcement Learning

Exploration versus Exploitation

In most RL settings, from the beginning, the agent learns by interacting with the
environment. It continually needs to choose actions depending on its current state
and knowledge about the world. (The only exception being if we can learn from
observing someone else interacting with the environment.) This naturally leads to a
problem known as theexploration-exploitation trade-off: should the agent exploit
its current knowledge and choose the actions that seem most promising? Or should
it explore the world by choosing actions which it has less information about, in
order to accumulate information and possibly find better actions in the future?

A popular approach to solve this problem is to use non-deterministic action
selection, i. e., with a small probability select an action that is not deemed optimal,
but which helps to gain information about the environment. Theε-greedyaction
selection is the easiest implementation of such a strategy: with probability1−ε the
learner selects the action it currently thinks best, and with probabilityε it selects a
random action. Another possibility is to use asoftmaxselection rule, which weighs
the probability of selecting an action by its estimated utility. Assume a preference
function p(s, a) that specifies some estimate of the utility of actiona in states,
e. g.,p(s, a) := Q(s, a) for all s anda. The most common softmax function is to
use a Boltzmann, or Gibbs, distribution of that preference function, whereτ is a
positive “temperature” parameter (possibly decreasing with time):

π(s, a) :=
e

p(s,a)
τ∑

a′ e
p(s,a′)

τ

.

The Temporal Credit Assignment Problem

A further difficulty that arises frequently in reinforcement learning problems is
the delay of reward. Often, the agent receives a big positive or negative reward
only after a long sequence of interactions with the environment, for example at
the end of a game. Which of its actions in the sequence should the agent credit
for getting that reward? If the agent loses the game, it may very well be that it
played flawlessly during most of the time, but made one very bad move which led
to losing the game. This is called thetemporal credit assignment problem. It is
especially hard in infinite horizon tasks, as there is no bound on how much delay
rewards may have. Discount factors can be used to impose an artificial horizon
by assuming that rewards are exponentially more likely to be due to recent actions
(see the explanation of eligibility traces in Section 3.1.2).

Large State Spaces and Partial Observability

More complications arise when we try to solve large and complex real-world prob-
lems with reinforcement learning. Many real-world problems have a prohibitively

30 CHAPTER 3. REINFORCEMENT LEARNING

large state space that cannot be enumerated explicitly. Here, the classical versions
of our algorithms become intractable and we need to resort to some kind of ap-
proximation for some or all of the relevant variables and functions in the problem,
e. g., the state space, the value functions, and the policy representation. The ap-
proximate value-function approach, where one tries to approximate the state-value
or action-value functions and derive a policy from those approximations, has a sig-
nificant drawback: as opposed to an exact value function, there is no guarantee
anymore that the resulting greedy policy will be optimal. Even if the optimal pol-
icy is representable in the chosen approximation framework, no guarantees exist
for value-based algorithms to converge to this policy [6, 33]. This is because small
changes in the value function may cause discontinuous changes in the policy [6].
Alternatively, thepolicycan be approximated, e. g., by a parameterised function of
the state descriptions, instead of explicitly storing an action for each state. This is
the approach taken by policy-gradient methods (see Section 3.4).

Finally, in real-world problems the agent may not always be able to determine
the current state of the environment exactly. That may be because the agent relies
on sensor measurements that only reflect some aspects of the current state. In such
partially observableenvironments learning is much harder, and the agent usually
requires memory about past actions to act well. Partially observable MDPs are
introduced formally in the next section, where we also discuss their complexity
and approaches to solving them.

3.3 Partially Observable MDPs

Many types of problems can be cast as MDPs. However, MDPs make strong as-
sumptions about how well the learner can perceive its environment – namely that
it can identify every state reliably. In many realistic applications this requirement
is not given. Noisy sensor readings, or an infinite state space that can only be per-
ceived through a discrete number of different sensor readings, are reasons why an
agent may not be able to identify the exact state of the environment. A general-
isation of MDPs that is able to express these kinds of problems are the partially
observable MDPs, or POMDPs.

A Partially Observable Markov Decision Process (POMDP) is defined by a
tupleM = 〈S,A,Ω, T,R,O〉, where

• S is a set of states,

• A is a set of actions,

• Ω is a set of observations,

• T : S × A →
∏

(S) is a state transition function mapping a state and an
action to a probability distribution over states,

3.3. PARTIALLY OBSERVABLE MDPS 31

• R : S ×A→ R is a reward function mapping state-action tuples to immedi-
ate scalar rewards, and

• O : S →
∏

(Ω) is an observation function mapping states to a probability
distribution over the observations.

Again, we will in the following assume finiteness of the state, action and observa-
tion spaces. In this framework, an agent does not know the exact state of the en-
vironment at every time step. Instead, it senses an observation associated with the
state (where an observation is often a vector of various observation features). States
that lead to the same observation can now not be distinguished by the learner un-
less it has additional information, possibly attained through past interactions with
the environment.

One possibility, for example, is to maintain abelief staterepresentation in the
learner, where a belief state is a probability distribution over all possible states,
which is updated at every time step according to the agent’s model of the world
and the new observations encountered. Other approaches are to keep track of the
lastn interactions with the environment (finite window methods) or to maintain an
internal state in the learner that dictates the choice of action, given an observation
(finite state controllers).

POMDPs are much harder to solve than MDPs. While algorithms for explicitly
represented MDPs run in polynomial time and the policy existence problem, i. e.,
the question whether there is a policy with expected reward≥ c, is P-complete
[18], policy existence for POMDPs is undecidable for all popular performance
criteria, even if we assume knowledge of the underlying MDP model [16]. When
we restrict ourselves to stationary, i. e., memoryless policies, the policy existence
problem is in NEXP for the average reward criterion [24].

Using memoryless policies in POMDPs means that we ignore partial observ-
ability and treat observations as sufficient indicators of the underlying world state.
However, memoryless policies will most often not be optimal in POMDPs. In fact,
the best memoryless policy can be arbitrarily worse than the optimal policy of the
underlying MDP [31]. Nevertheless it often makes sense, in the face of intractabil-
ity, to consider only memoryless policies. Many real-world problems may have
good memoryless or low-memory policies, where a simple mapping from the sens-
ings of the learner to actions is sufficient for good performance [15]. For the traffic
control problem, we restrict ourselves to low-memory policies, which indeed prove
to be effective.

If memoryless policies are deemed to be appropriate for a given POMDP, it
is possible to employ traditional MDP algorithms like the ones presented in Sec-
tion 3.1.2. However, SARSA, Q-Learning and many other value-based methods
may fail to converge for POMDPs [6]. Eligibility traces can be used to partially
overcome these problems [15]. As they allow updating the value of states based
on all future rewards, the uncertainty about the (value of) the current state may be
resolved gradually, as future rewards are observed. SARSA(λ) has shown to yield
good results in a number of standard problems from the POMDP literature [15]. A

32 CHAPTER 3. REINFORCEMENT LEARNING

second disadvantage of value-based methods is that they usually produce determin-
istic policies, while the optimal policy for POMDPs may be stochastic [31]. The
inability of the learner to distinguish states makes it easy to construct examples
where a stochastic policy outperforms the best deterministic memoryless policy.

3.4 Policy Gradient Ascent

An effective way to avoid the disadvantages of value-based methods under partial
observability is to search in the space of policies directly. Policy gradient (PG)
ascent methods do this by performing gradient ascent on the parameters of a pa-
rameterised policy function, adjusting the parameters into the direction of higher
rewards. They are guaranteed to converge to alocal optimum of their optimisation
function (e. g., the expected long-term average reward) under appropriate condi-
tions. In combination with Monte-Carlo-like exploration of the environment, they
allow efficient handling of large state spaces.

3.4.1 Definitions and Assumptions

From now on, we assume a stochastic policyπ : RK×Ω×A→ [0, 1] parameterised
by a vectorθ ∈ R

K . Let st be the state of the environment at time stept. The
agent then perceives observationot, generated stochastically from the environment
according to the observation functionO, and chooses actionat with probability
π(θ, ot, at). We will use the currying notation for functions, e. g.,π(θ) to denote
the function that takes an observationo and an actiona and returnsπ(θ, o, a).
Similarly,O(s) denotes a probability distribution over all possible observations in
state s, whileO(s, o) specifies the probability of seeing observationo in states.

In the following, letP (θ) be theglobal state transition matrixof the POMDP
given that the agent follows policyπ(θ): P (θ) then is a stochastic|S| × |S| matrix
where an entryP (θ)s,s′ represents the probability of the environment transitioning
from states to states′ in reaction to an action of the agent:

P (θ)s,s′ =
∑
o∈O

∑
a∈A

Pr(o|s)Pr(a|θ, o)Pr(s′|s, a)

=
∑
o∈O

∑
a∈A

O(s, o)π(θ, o, a)T (s, a, s′)

We furthermore make the following assumptions:

Assumption 1: Eachπ = π(θ) for θ ∈ R
K has a unique stationary distribution

dπ = [dπ(1), ...dπ(|S|)] satisfying the balance equation:

dπP (θ) = dπ.

If this holds, the Markov process specified by the POMDP and the policyπ has
at most one recurrence class, and the probability of being in a states at timet for
t→∞ is independent of the starting state:dπ(s) = limt→∞ Pr(st = s|π).

3.4. POLICY GRADIENT ASCENT 33

Assumption 2: The derivatives

∂π(θ, o, a)
∂θk

exist and the ratios
|∂π(θ,o,a)

∂θk
|

π(θ, o, a)

are uniformly bounded by a constantC < ∞ for all o ∈ Ω, a ∈ A, θ ∈ R
K , and

k = 1, ...,K.

3.4.2 Objective Functions

Ideally, we would like to find policy parameters that maximise theaveragereward
per step that we obtain by following the policy infinitely long,Ja(θ) :

Ja(θ) := lim
T→∞

1
T
E

(
T∑

t=1

rt

)
(3.10)

= lim
T→∞

1
T

(
T∑

t=1

∑
s

Pr(st = s|π)
∑

a

π(θ, s, a)R(s, a)

)
=
∑

s

dπ(s)
∑

a

π(θ, s, a)R(s, a).

However, most policy-gradient algorithms resort to some approximation of the gra-
dient by introducing a discount factorγ in a similar way DP algorithms do (see
Section 3.1.2), thus optimising thediscountedreturn, which depends on the start-
ing states0:

Jγ(θ, s0) := E

(∞∑
t=1

γt−1rt|s0

)
(3.11)

=
∞∑

t=0

γt
∑

s

Pr(st = s|s0)
∑

a

π(θ, s, a)R(s, a).

The expecteddiscounted return assumes that the probability of starting in a
certain state is given by the stationary state distributiondπ, and is defined as

Jγ(θ) :=
∑

s

dπ(s)Jγ(θ, s).

Optimising the expected discounted returnJγ(θ) is equivalent to optimising the
average rewardJa(θ), since(1 − γ)Jγ(θ) = Ja(θ) holds [31]. Also, asγ ap-
proaches 1,for every states the discounted returnJγ(θ, s) normalised by(1− γ)
approaches the average reward:limγ→1(1 − γ)Jγ(θ, s) = Ja(θ) [6]. If we aim

34 CHAPTER 3. REINFORCEMENT LEARNING

to maximise this normalised discounted return from a given starting points0, we
have the following objective function:

J ′γ(θ, s0) : = (1− γ)Jγ(θ, s0)

= (1− γ)
∞∑

t=0

γt
∑

s

Pr(st = s|s0)
∑

a

π(θ, s, a)R(s, a)

=
∑

s

dπ
γ (s)

∑
a

π(θ, s, a)R(s, a), (3.12)

wheredπ
γ (s) is thediscounteddistribution of states encountered when starting in

s0 (for better readability, the dependence ons0 is here implicit):

dπ
γ (s) := (1− γ)

∞∑
t=0

γtPr(st = s|s0, π). (3.13)

We will in the following generally useJ(θ) to denote an objective function, and
specify its definition when specific algorithms are described. Note thatJ(θ) does
not depend on the state, as opposed to the value functionsV andQ used by value-
based methods.

3.4.3 A “Vanilla” Policy Gradient Method

Traditional policy gradient methods (also termed “vanilla” PG methods) aim to
compute the gradient of the average or discounted rewardJ(θ) in the space of
the parametersθ and update the policy parameters at each step with the following
update rule:

θt+1 := θt + α∇J(θt)

where

∇J(θ) :=
[
∂J(θ)
∂θ1

, ...,
∂J(θ)
∂θK

]
.

The problem is to estimate the gradient∇J(θ). As one example for how this
can be done, we present the OLPOMDP algorithm by Baxter and Bartlett [5]. Bax-
ter and Bartlett assume a reward function that only depends on the states. This
formulation of MDPs is equivalently powerful to ours, but the state spaces of the
two usually differ. However, our application indeed fulfils the requirement that re-
wards only depend on states, and we will thus assume action-independent rewards
throughout this section.

Let r = [R(1), ..., R(|S|)] be the vector specifying the reward for each state.
Under Assumption 1, the expected long-term average reward is independent of the
starting state and is equivalent to the product of the rewards and the stationary
probability of being in each state under policyπ(θ):

3.4. POLICY GRADIENT ASCENT 35

J(θ) =
∑
s∈S

dπ(s)R(s) = dπT r.

If the model of the underlying MDP were known,∇J(θ) could be calculated
exactly with the following formula (for a derivation, see [5]):

∇J(θ) = dπ∇P (θ)[I − P (θ) + 1dπ]−1r,

whereI is the identity matrix and1 is a vector of ones. Baxter and Bartlett show
that the term[I − P (θ) + 1dπ]−1 in the above formula exists and is equal to∑∞

t=0(P (θ)t − 1dπ). Since the entries in each row ofP (θ) sum to 1, we have
∇(P (θ)1)dπ = ∇1dπ = 0, which, after some rewriting (see [1]), leads to

∇J(θ) = dπ∇P (θ)

[∞∑
t=0

P (θ)t

]
r. (3.14)

Since we do not know the model (or in cases where we want to avoid the heavy
matrix inversion calculations involved with large state spaces), we can do a Monte-
Carlo exploration of the environment and iteratively calculate an approximation of
the gradient. Baxter and Bartlett [5] suggest to compute abiasedestimate of the
long term average reward gradient,∆T , overT time steps. In the limit, this esti-
mate is guaranteed to converge to anapproximation∇βJ(θ) of the true gradient:

lim
T→∞

∆T = ∇βJ(θ),

where the approximation∇βJ(θ) satisfies:

lim
β→1

∇βJ(θ) = ∇J(θ).

The bias factorβ cannot be set arbitrarily close to 1 because it influences thevari-
anceof the estimate, which is proportional to 1

(1−β)2
. The increasing variance, as

β approaches 1, results from the increasing difficulty of the temporal credit assign-
ment problem, as the artificial horizon increases (see Section 3.2). The choice ofβ
is therefore a trade-off between the bias and the variance of the estimate. Specifi-
cally, the approximation∇βJ(θ) is given by

∇βJ(θ) = dπ∇P (θ)

[∞∑
t=0

βtP (θ)t

]
r. (3.15)

Again, we refer to Baxter and Bartlett [5] for the proofs of the derivations and
convergence statements.

Baxter and Bartlett show that the following equality holds:

∇βJ(θ) = lim
T→∞

1
T

T−1∑
t=0

∇π(θ, ot, at)
π(θ, ot, at)

T∑
r=t+1

βτ−t−1R(sτ), (3.16)

36 CHAPTER 3. REINFORCEMENT LEARNING

whereot andat are the observation perceived and the action taken at time stept,
respectively, such that the truncation of (3.16) afterT time steps,

∆T :=
1
T

T−1∑
t=0

∇π(θ, ot, at)
π(θ, ot, at)

T∑
r=t+1

βτ−t−1R(sτ) (3.17)

is the desired estimate converging to∇βJ(θ) in the limit for T → ∞. The term
∇π(θ,ot,at)
π(θ,ot,at)

in the above equation is what has been called thelikelihood ratio in
earlier work on the computation of gradients of loss functions. For shortness of
notation, we will make use of the fact that

∇π(θ, ot, at)
π(θ, ot, at)

= ∇ log π(θ, ot, at),

wherelog will denote the natural logarithm throughout this thesis, and call the term
∇ log π(θ, ot, at) the “log gradient” ofπ. One way to compute (3.17) efficiently is
to use an eligibility tracezt (cf. Section 3.1.2) to store the discounted sum of the
past “log gradient” terms:

zt+1 = βzt +∇ log π(θ, ot, at).

Now gt := R(st+1)zt+1 is the immediate gradient estimate ofJ(θ) at time stept,
and averaging overT time steps gives Equation (3.17).

Instead of collecting gradients over a certain time horizonT and averaging
them in the end, the online algorithm OLPOMDP [5] uses the gradientgt =
R(st+1)zt+1 at each time step to update its parameters. It thereby trades accu-
racy of the parameter updates against (often) faster convergence, due to the more
frequent updates [7]. Its pseudo code is given in Algorithm 1.

Algorithm 1 OLPOMDP
1: t = 1, z1 = [0], θ0 = [0]
2: ε = step size,β = bias factor
3: while not convergeddo
4: observeot (generated according toO(st))
5: generate actionat according toπ(θt, ot)
6: receiveR(st+1) (with next statest+1 generated according toP (θt)st,st+1)
7: setzt+1 = βzt +∇ log π(θt, ot, at)
8: setθt+1 = θt + εR(st+1)zt+1

9: sett = t+ 1
10: return θt

Like all direct policy search algorithms, policy gradient methods have the ad-
vantage that they are more suitable for dealing with large state spaces than value-
based methods. The disadvantages of “vanilla” PG methods are their sometimes
slow convergence and the high variance of the gradient estimates. The discount
or bias factor and the step-size parameter are critical values, which are usually
determined empirically.

3.4. POLICY GRADIENT ASCENT 37

3.4.4 Natural Policy Gradient Methods

As Amari [2] points out, the policy gradient in parameter space as described in the
previous section may not be the most desirable policy update direction. Although
“vanilla” gradient methods are guaranteed to converge to a local optimum of their
performance function, convergence is often very slow, and estimation procedures
suffer from high variance of the gradient estimates. We would also prefer an up-
date procedure that is not dependent on the representation of the policy – i. e., if a
policy can be represented by two different parameterisations, then we would like
the updates made to the policies to be the same in both cases, only depending on
the policies rather than the parameters.

This criterion is fulfilled by thenatural gradient[2]. In a Riemannian space of
parametersθ, the natural gradient of a functionJ(θ) is defined as

∇̃J(θ) := G−1∇J(θ),

where the matrix G is the metric of the Riemannian space [2]. Amari [2] proved
that on the parameter space of a set of probability distributions (as defined, for
example, by parameterised policies), theFisher information matrixF (θ) is such
a metric, henceF (θ) = G. Given a family of probability distributionsp(x, θ)
parameterised byθ, it is defined component-wise as follows:

F (θ)i,j := E

[
∂ log p(θ, x)

∂θi

∂ log p(θ, x)
∂θj

]
.

For reinforcement learning in MDPs (where a policy is again conditioned on
states rather than observations), we can use the Fisher information matrix corre-
sponding to theprobabilities of sample trajectories, which result from following
the policyπ, resulting in [22]

F (θ)i,j := E

[
∂ log π(θ, s, a)

∂θi

∂ log π(θ, s, a)
∂θj

]
.

The expectation here is over the states and actions occurring in an infinite sample
path.

The natural gradient in policy space can thus be calculated using the Fisher
information matrix as∇̃J(θ) = F (θ)−1∇J(θ). The Fisher information metric
represents a distance over the space of policiesπ where two given policies al-
ways have the same distance, regardless of their representation. On the other hand,
policies that only differ slightly with regard to their parameters can have a large
distance, if the small change in parameter space corresponds to a large change with
regard to the action probabilities. Gradient ascent using the natural gradient of
policies thus has the advantage that it allows to quickly step over large plateaus in
parameter space, where “vanilla” policy-gradient algorithms have difficulties. Like
“vanilla” gradient ascent, natural gradient ascent is guaranteed to converge to a lo-
cal optimum, as the angle between the natural gradient and the ordinary gradient is
never larger than ninety degrees [22].

38 CHAPTER 3. REINFORCEMENT LEARNING

Kakade [14] provides experimental results, showing that in many cases the
natural gradient as calculated from the Fisher information matrix is indeed superior
to the “vanilla” gradient in terms of faster convergence and less frequent plateaus.
His algorithm learnsF online, i. e., by updating, at each time step,

ft+1 = ft +∇ log π(θ, s, a)(∇ log π(θ, s, a))T ,

so that afterT time stepsf
T is an unbiased estimate ofF .

3.4.5 Policy Gradient With Approximate Value Functions

In Section 3.4.3 we gave an example of how a model-free estimate of the policy
gradient can be computed by interacting with the environment. While this is an
easy and straightforward approach, it completely ignores the relations of states,
i. e., it does not make use of the fact that neighbouring states have similar values,
as expressed in the Bellman equation. This contributes to the variance of such
gradient estimates.

To remedy this problem, it is possible to calculate the policy gradient∇J(θ)
using state-action values, which are in turn approximated from Monte-Carlo roll-
outs. Sutton et al. [33] proved the decisive property thatapproximatedstate-action
values are sufficient to guarantee convergence to the true gradient under certain
conditions. Using a slight adaptation of thepolicy gradient theoremof Sutton et
al., the policy gradient in any MDP can be calculated as follows [22]:

∇J(θ) =
∑

s

dπ
γ (s)

∑
a

∇π(θ, s, a)(Qπ(s, a)− b(s)),

where for the normalised discounted reward model,J(θ) anddπ
γ are defined as

in Equation (3.12) and Equation (3.13),Qπ is the usual discounted action-value
function as in (3.2), andb(s) is an arbitrary function ofs. For the average reward
model the same result holds withdπ

γ := dπ (the stationary distribution), andQπ

also defined differently. The exact definition of Sutton et al. forQπ in this case is
somewhat unusual, but does not matter asQπ will be replaced by an approximation.

To see thatb(s) can indeed be an arbitrary function ofs, note that for any state
s,
∑

a π(θ, s, a) = 1, and hence
∑

a∇π(θ, s, a) = 0. However,b(s) can be useful
in reducing the variance of the gradient estimate, if theQπ-values are estimated
from experience. It is then called a baseline [12]. For example, a baseline of re-
wards can be calculated by averaging all rewards obtained in an interaction with
the environment (here,b does not depend ons). By subtracting the reward base-
line from the expected return as in Equation (3.4.5), or directly from the obtained
reward at each step, we get a more accurate estimate of therelative value of a
state-action tuple.

The termQπ(s, a) (or Qπ(s, a) − b(s), sinceb(s) is arbitrary), in the above
equation can be replaced by an approximationfπ

w(s, a) satisfying

fπ
w(s, a) = (∇ log π(θ, s, a))Tw (3.18)

3.4. POLICY GRADIENT ASCENT 39

wherew is a parameter vector, without affecting the unbiasedness of the resulting
gradient estimate [33]. If Equation (3.18) holds, the approximation function is said
to becompatiblewith the policy parameterisation. The resulting estimate is thus

∇J(θ) ≈
∑

s

dπ
γ (s)

∑
a

∇π(θ, s, a)(∇ log π(θ, s, a))Tw. (3.19)

As Peters et al. [22] point out, the fact that
∑

a∇π(θ, s, a) = 0 means thatfπ
w(s, a)

has zero mean with regard to the action distribution:∑
a

π(θ, s, a)fπ
w(s, a) =

∑
a

π(θ, s, a)(∇ log π(θ, s, a))Tw

=
∑

a

π(θ, s, a)
∇π(θ, s, a)T

π(θ, s, a)
w = 0.

This implies thatfπ
w(s, a) really approximates anadvantage functionAπ giving

therelativevalue of each action in a state,Aπ(s, a) = Qπ(s, a)−V π(s). It is thus
not possible to learnfπ

w(s, a) in a TD-like bootstrapping manner from the values of
neighbouring states, as the values of states are explicitly subtracted out [22]. Sutton
et al. suggested to learnfπ

w(s, a) from roll-outs by taking the immediate reward at
each time steprt as an unbiased estimate ofQ(s, a), and performing least-squares
minimisation betweenfπ

w(s, a) and the estimated Q-values [33]. However, a gen-
eral problem is thatfπ

w(s, a) is constrained to be linear inw, which means that
it may not be possible to approximate the true advantage functionAπ(s, a) very
accurately.

3.4.6 Natural Actor Critic

RL algorithms that maintain both value functions and a separate representation of
the policy (instead of simply using a greedy policy with respect to the value func-
tion) are known asactor-critic algorithms [32]. The representation of the policy
is the actor, responsible for choosing actions at each step, while the value function
plays the role of the critic, evaluating the performance of the actor.

We now take a closer look at actor-critic frameworks that use a compatible
function approximatorfπ

w(s, a) to the state-value advantage functionAπ(a, s) as
outlined in the previous section (i. e.,fπ

w(s, a) = (∇ log π(θ, s, a))Tw holds).
Such frameworks can be very elegantly combined with the natural gradient de-
scribed in Section 3.4.4. Peters et al. [22] show that if the simple gradient∇J(θ)
is estimated according to Equation (3.19), then∇J(θ) ≈ F (θ)w, whereF (θ) is
the policy Fisher matrix from Section 3.4.4:

∇J(θ) ≈
∑

s

dπ
γ (s)

∑
a

∇π(θ, s, a)(∇ log π(θ, s, a))Tw

=
∑

s

dπ
γ (s)

∑
a

π(θ, s, a)∇ log π(θ, s, a)(∇ log π(θ, s, a))Tw

= E
[
∇ log π(θ, s, a)(∇ log π(θ, s, a))T

]
w = F (θ)w.

40 CHAPTER 3. REINFORCEMENT LEARNING

Hence, when we calculate the natural policy gradient∇̃J(θ), the Fisher informa-
tion matrix and its inverse cancel each other out, and the result is exactlyw:

∇̃J(θ) = F (θ)−1∇J(θ)

≈ F (θ)−1F (θ)w
= w.

This means that we can avoid estimation ofF (θ) completely. As computing a good
estimate ofF (θ) normally requires far more data (i. e., environment interactions)
than is needed for a good estimate ofw [22], we get a gradient estimate at much
lower cost.

Peters et al. [22] recently developed an algorithm calledNatural Actor Critic,
or NAC for short, which exploits this fact. It is based on the LSTD(λ) algorithm
(Least Squares Temporal Difference) [8], which approximates state values by min-
imising the squared error on data gathered from Monte-Carlo roll-outs.

In the following, we give some intuition about how the NAC algorithm works.
We begin with the Bellman equation (3.4) for fixed parametersθ where the value
of actiona in states isQ(s, a). This can also be written as the valueV (s) plus the
advantage of actiona in states,A(s, a):

Q(s, a) = V (s) +A(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)V (s′). (3.20)

We approximate the value functionV linearly using a base functionφ and a param-
eter vectorv: V (s) ≈ φ(s)T v. The advantage functionA is approximated by our
compatible approximator,A(s, a) ≈ fπ

w(s, a) = (∇θ log π(θ, s, a))Tw. Replacing
V andA in the above equation with these approximations, we get

φ(s)T v + (∇ log π(θ, s, a))Tw ≈ R(s, a) + γ
∑
s′

Pr(s′|s, a)φ(s′)T v.

Our goal is to solve for the natural policy gradientw. However, both the parameter
vectorsw andv are calculated by the algorithm. We reformulate the above equation
as a temporal-difference estimate ofQ(st, at), noting in particular that the expected
immediate reward from states, R(s, a), is replaced by the observed next reward
rt+1, and the summation expressing the expected (discounted) value of the next
state is replaced by an approximationγφ(st+1)T vt of the discounted value of the
observed next state. This approximation introduces an additional zero-mean error
termσ:

φ(st)T vt + (∇ log π(θt, st, at))Twt ≈ rt+1 + γφ(st+1)T vt + σ(st, at, st+1).

Rewriting as a linear system yields

(φ(st)− γφ(st+1))T vt + (∇ log π(θt, st, at))Twt − σ(st, at, st+1) ≈ rt+1

[(∇ log π(θt, st, at)T , (φ(st)− γφ(st+1))T][wT
t , v

T
t]T − σ(st, at, st+1) ≈ rt+1

3.4. POLICY GRADIENT ASCENT 41

Finally, we pre-multiply both sides by an eligibility tracezt+1 (cf. Section 3.1.2),
leading to

zt+1[(∇ log π(θt, st, at)T , (φ(st)− γφ(st+1))T][wT
t , v

T
t]T − zt+1σ(st, at, st+1)

≈ zt+1rt+1.

The NAC algorithm approximatesw by aggregating both sides of the above equa-
tion over many time stepsH,

DH :=
H−1∑
t=0

zt+1[(∇ log π(θt, st, at)T , (φ(st)− γφ(st+1))T] (3.21)

cH :=
H−1∑
t=0

zt+1rt+1, (3.22)

and solving the equationDH [wT , vT]T = cH for [wT , vT]T . Note that the noise
term zt+1σ(st, at, st+1) does not appear inDH . This is becauseσ is zero-mean
and has sufficiently small variance to be averaged out [8].

If we only calculated the state valuesv in the above manner (and aimed for the
undiscounted average reward by settingγ := 1), we would have Boyan’s LSTD(λ)
algorithm [8]. LSTD(λ) has been shown to converge with probability 1 under mild
assumptions [17]. The conditions are that each state has a stationary probability
greater than 0, i. e., is visited infinitely often, and that the matrix containing in each
row i the basis function of statei has full column rank. NAC is actually only con-
cerned with finding accurate values forw, but adapting LSTD(λ) in this manner
means that NAC inherits the convergence guarantees, whilev can be seen to con-
strain the possible solutions forw. Pseudo code for NAC is given in Algorithm 2.

The NAC algorithm thus has several properties which make it a promising
candidate for solving hard RL problems. It is the first algorithm to use the natural
gradient in an actor-critic framework, trying to get “the best of both worlds”: the
natural gradient for faster convergence as opposed to the “vanilla” gradient, and a
value function that incorporates the Bellman equation into the policy. This is why
NAC is our algorithm of choice for the traffic control problem.

3.4.7 Online Natural Actor Critic

We adapt NAC in two ways to tailor it to our problem. First of all, we need to deal
with partial observability, as we can only obtain crude information about world
states through the loop detectors. We solve this by assuming that our observations
are adeterministicfunction of the state (i. e., assuming noiseless sensors), and by
using the observations as state features, i. e., as the basis functionsφ(s) in the NAC
algorithm. Hence we assume that our observations can be used to approximate
the value of a state, in other words, that in order to act well our observations are
sufficiently accurate indicators of the underlying state.

42 CHAPTER 3. REINFORCEMENT LEARNING

Algorithm 2 Natural Actor-Critic with LSTD-Q(λ)
1: t = 0, D0 = [[0]], θ0 = [0], z0 = [0]
2: ε = step size,γ = Critic discount,λ =Actor discount
3: observeo0 (generated according toO(s0))
4: while not convergeddo
5: while w not convergeddo
6: generate actionat according toπ(θt, st)
7: zt+1 = λzt + [∇ log π(θt, st, at)T , ψT

t]T

8: Dt+1 = Dt + zt+1[∇ log π(θt, st, at)T , φt − γφt+1]
9: receivert+1 (generated according toR(st, at))

10: ct+1 = ct + zt+1rt+1

11: [wT
t+1, v

T
t+1]

T = D−1
t+1ct+1

12: θt+1 = θt

13: t = t+ 1
14: θt = θt−1 + εwt

15: return θt

Secondly, we turn NAC into an online algorithm, updating the parameters at
each time step instead of waiting until the gradient estimate has converged. This
is motivated by the following observation: when doingstochasticgradient ascent
in large state spaces, i. e., when gradient estimates are only based on a small sub-
set of the possible examples, they are typically noisy. The computational effort of
calculating a very accurate estimate with regard to such a noisy example subset
may then not pay off, and computationally cheap online algorithms can often be
shown to converge faster, because the policy can improve at every step [7]. Fur-
thermore, to get the most out of a more accurate gradient estimate, a line search or
quasi-newton method should be used, which estimates the optimal step size into the
direction of the gradient estimate. In our application a line search is not feasible (at
least not in a real-world deployment), since during a line search performance of the
system can become very poor, e. g. causing traffic jams. Quasi-newton methods,
on the other hand, need exact gradients to perform well.

The original formulation of NAC requires an inversion of the matrixA for every
parameter update, which naively incurs a computational cost ofO(n3), wheren =
|θ| + |φ|. For our online algorithm, which performs parameter updates at every
time step, it is therefore crucial to reduce this cost. We use the Sherman-Morrison
update of a matrix inverse (as suggested by Nedić and Bertsekas for LSTD(λ)
[17]):

(D + zyT)−1 = D−1 − D−1zyTD−1

1 + yTD−1z
.

In other words, we always work in the inverse space. The update now isO(n2),
which is still expensive compared to “vanilla” PG approaches. However, as we
will show in Chapter 5, NAC can make up for expensive computations by requiring
orders of magnitude fewer steps to converge to a good policy. Pseudo code for our

3.4. POLICY GRADIENT ASCENT 43

online version of NAC is given in Algorithm 3.

Algorithm 3 Online Natural Actor-Critic

1: t = 0, D−1
0 = I, θ0 = [0], z0 = [0]

2: ε = step size,γ = Critic discount,λ =Actor discount
3: observeo0 (generated according toO(s0))
4: while not convergeddo
5: generate actionat according toπ(θt, ot)
6: zt+1 = λzt + [∇ log π(θt, ot, at)T , oT

t]T

7: receivert+1 (generated according toR(st, at))
8: observeot+1 (generated according toO(st+1) with next statest+1 generated

according toP (θt)st,st+1))
9: y = [∇ log π(θt, ot, at)T , oT

t]T − γ[0T , oT
t+1]

T

10: αt = 1− 1
t

11: u = (1− αt)D−1
t−1zt

12: qT = yT
t D

−1
t−1

13: D−1
t+1 = 1

αt
D−1

t − uqT

1+qT zt

14: g = rtzt+1

15: [wT
t+1, v

T
t+1]

T = D−1
t+1g

16: θt+1 = θt + εwt

17: t = t+ 1
18: return θt

We retain the aggregation ofDH from Equation (3.21), using a rolling aver-
age implemented by theα weighting (line 10). This means thatDt, the value of
DH at time stept, is an average of the Fisher matrices for many parameter values.
Actually, we expected a discounted average to work better, since it should yield
a value forDt that better representsθt (placing more emphasis on the Fisher ma-
trix estimations for recent values ofθ). However, this performed poorly, perhaps
because decayingα mitigates ill-conditioning in the Fisher matrix as parameter
values grow [14]. We only use instantaneous gradient estimatesg = R(st+1)zt+1

instead of the accumulated gradientscH from Equation (3.22), to avoid multiple
parameter updates based on the same rewards.

The OLPOMDP algorithm of Baxter and Bartlett [5] that we introduced in
Section 3.4.3, produces per step gradient estimates from the discounted sum of
the past likelihood ratio terms∇ log π(θt, ot, at) for all t, multiplied by the instant
rewardrt+1. This is exactlywt+1 if we setβ := λ andDt := I, for all t. Other
PG approaches [14, 33] are also specialisations of NAC [22]. As the simplest and
fastest infinite-horizon algorithm we use OLPOMDP for comparisons.

3.4.8 Factored Learning With Policy-Gradients

The policy-gradient algorithms we described, online NAC and OLPOMDP, both
learn a stochastic memoryless policyπ(θ) mapping observationso to actionsa.

44 CHAPTER 3. REINFORCEMENT LEARNING

In order to learn traffic control strategies, we need in fact a policy that defines
the behaviour of all intersection controllers jointly. Hence an actiona is a vector
a = [a1, . . . , aN], specifying actions for all controllers in the network, whereN
is the number of controllers. Similarly, leto = [o1, . . . , oN] be a concatenation
of observation vectors andθ = [θ1, . . . , θN] be a concatenation of the parameter
vectors for all intersection controllers. We define that the actionai for controlleri
only depends onoi andθi:

π(θ, o, a) = Pr(a1, a2, . . . , aN |θ1, . . . , θN , o1, . . . , oN)

=
∏

i

Pr(ai|θi, oi).

Then the “log gradient” term used in the updates of our algorithms is

∇ log π(θ, o, a) = ∇ log
∏

i

Pr(ai|θi, oi)

=
∇
∏

i Pr(ai|θi, oi)∏
i Pr(ai|θi, oi)

.

Let ∇θj
(θ, o, a) be the “log gradient” ofπ with respect toθj , ∇ log π(θ, o, a) :=

[∇θ1(θ, o, a), . . . ,∇θN
(θ, o, a)] . Then

∇θj
(θ, o, a) =

∇θj

∏
i Pr(ai|θi, oi)∏

i Pr(ai|θi, oi)

=
∇θj

Pr(aj |θj , oj)
∏

i6=j Pr(ai|θi, oi)∏
i Pr(ai|θi, oi)

=
∇θj

Pr(aj |θj , oj)
Pr(aj |θj , oj)

= ∇θj
logPr(aj |θj , oj).

Hence, the global “log gradient” can be split into “log gradients” for each con-
troller, using only the parameters, observations and actions of that controller. Sim-
ilarly splitting the other variables used in NAC and OLPOMDP lets us learn the
control policy of each controllerseparately, i. e., with an independent instance of
NAC or OLPOMDP. This tremendously reduces the complexity of learning: in
the case of NAC, for example, the complexity is reduced to O(Nn2) instead of
O(N2n2), wheren = 1

N |θ|+ |o| is the size of the parameters and observations for
one controller.

This approach is only correct as long as all controllers receive the same, global
reward at each time step. However, learning can be sped up significantly by using
local rewards, which reward each controller separately for its respective policy
[3]. Although this usually implies losing the guarantee of finding a local optimum
(across the entire system), local rewards are often preferable in large systems, at
least if maximising the local rewards separately can be shown to lead to a good

3.5. REINFORCEMENT LEARNING FOR TRAFFIC CONTROL 45

global performance of the system. As Bagnell and Ng show [3], using local rewards
becomes necessary as the number of agents grows: they demonstrate that with
global rewards, the number of training iterations needed to achieve near-optimal
results for MDPs is linear in the number of agents, while with local rewards a
logarithmic number of iterations is sufficient.

3.5 Reinforcement Learning for Traffic Control

To our knowledge, policy-gradient algorithms have so far not been applied to learn-
ing control policies for traffic lights. Previous work suggesting the use of reinforce-
ment learning includes that by Wiering [35], who uses Q-learning (see Section
3.1.2), and extensions of this approach by Bakker et al. [4]. In the approaches of
Wiering and Bakker, like in our approach, each intersection has a controller acting
as a separate agent. The actions of each agent are to switch certain traffic lights
green or red during the next time step. Wiering and Bakker assume fixed routes
for the vehicles in their system, i. e. drivers do not adapt to traffic conditions. The
state representation they use is thencar-based: every car has a separate state space
encoding its current location and final destination. Every car also learns a value
function that relates the actions of intersection controllers (whether to turn the light
this car waits for green or red in the next time step) to the expected remaining travel
time for that vehicle. If the intersection controller decides to turn the light red, the
expected travel time of a vehicle waiting for this light will be higher than if the in-
tersection controller turns the light green. The intersections controllers then choose
their actions to maximise the summed value functions of all cars currently waiting
at that intersection. Hence they learn to minimise the average travel time of the
waiting vehicles.

Wiering compares his approach against a number of baseline strategies, two of
which achieve good performance. The first is a throughput based strategy, which
sets the lights at any time step in such a way that a maximum number of cars can
pass through the intersection. The second strategy always gives the right of way
to the longest queue at the intersection. In under-saturated conditions, the perfor-
mance of the RL approach is similar to that of the two baselines. As the traffic
volume grows, the estimated travel times of cars increasingly differ, depending on
congested roads at later stages of their trip. The RL approach profits from learning
these estimates and beats the baselines notably under conditions of heavy traffic.
Bakker enhances the method of Wiering by adding communication between inter-
sections, and improves the performance of the RL method further.

However, Wiering and Bakker train their algorithms on a very simple traffic
simulator, and furthermore derive state information from the simulator that would
not be accessible in the real-world. As their approach is model-based, they assume
knowledge about all the cars waiting at an intersection and about the destinations
of those cars. In a real-world deployment, estimation of these values would require
the use of a highly sophisticated traffic prediction model. As mentioned before, this

46 CHAPTER 3. REINFORCEMENT LEARNING

may incur loss of performance through imperfection of the model. Furthermore,
Wiering and Bakker ignore partial observability by assuming, for example, that a
few values like the current location and destination of a car are sufficient indicators
of that car’s remaining travel time. If this assumption is not fulfilled in a real
traffic system, a value-based method like Q-learning might do arbitrarily badly
(see Section 3.3).

Another RL approach to traffic light control is pursued by Thorpe and Ander-
son [34], who employ the SARSA algorithm (see Section 3.1.2). The controllers
learn to minimise the maximum travel time of any vehicle in the system. One con-
troller is trained on a single intersection, and the state of that controller is replicated
to all intersections of a network after training is completed. This means that ev-
ery controller optimises its intersection only locally, and furthermore implies the
assumption that every intersection controller should pursue the same policy. The
method of Thorpe and Anderson beats the performance of a fixed duration strategy,
where all phases are assigned equal, fixed length. A second baseline they compare
against is a strategy of “greatest volume”, where the most-used stream always gets
the right of way. This is a simple version of a saturation-balancing algorithm (see
Section 2.1.1). Assuming knowledge about the exact locations of all cars in the
network, the RL method beat the greatest volume strategy. With a simpler traffic
representation assuming only the number of cars on any road to be known, RL did
not perform as good as the greatest volume strategy.

Chapter 4

Policy-Gradient for Traffic
Control

In Chapter 2, we introduced the traffic control problem, presented some current
control systems and discussed their limitations. Subsequently, we introduced pol-
icy gradient methods as a class of reinforcement learning techniques, and stated
their general properties (see Section 3.4). In this chapter, we do the connecting
step and show why policy-gradient methods are appropriate for learning traffic
control strategies, and how learning can be achieved.

4.1 Expected Strengths of Policy Gradient Methods

Policy-gradient (PG) techniques are able do deal with large state spaces, stochas-
ticity and partial observability. Apart from these general properties, there are a
number of possible further advantages that PG methods can demonstrate specif-
ically in the traffic control area, and which give our approach a strong position
against other current controllers (see Section 2.1.6):

• PG does not need a traffic model, hence it is not dependent on the accuracy
and reliability of complicated traffic predictions. PG does not need an ex-
plicit model because the parameters of the control policies implicitly model
only the information relevant to acting well, rather than modelling details
that have little impact on the policy.

• PG can quickly react to changing traffic conditionsby recognising pat-
terns. Its policy can be as rich as pre-specified plans, but is learned automat-
ically.

• PG can scale up to large networksby learning each intersection’s control
policy separately, while making cooperation between neighbouring intersec-
tions possible through common observations.

47

48 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

• PG can learn to optimise the overall network, as e. g., the use of a com-
mon, global reward achieves automatic cooperation of all controllers.

In order to demonstrate that policy-gradient methods indeed exhibit all of these
features, we conducted a set of experiments requiring the above-mentioned capa-
bilities. The following section describes the traffic simulation system we used for
training the controllers and the architecture of our learning system.

4.2 A Simple Traffic Simulator

In order to learn traffic control via reinforcement learning, we need an environment
in the form of a simulated traffic system. As described in Chapter 2, finding ac-
curate models for traffic flow has been the subject of extensive research for more
than half a century. Various (mostly commercial) programs exist that simulate traf-
fic based on such advanced models and that can be used to test the effectiveness
of traffic control techniques. The input to these programs typically consists of a
road network, the control policy for the signalled intersections at each time step,
and a specification of the traffic volume and direction (e. g., origin and destination
nodes for each car, or turn ratios at intersections). From the simulated traffic flow,
performance criteria such as queue lengths at intersections or average travel times
can be calculated, which can be used to evaluate the quality of a controlling policy.

First trials with such systems unfortunately were not successful. The simula-
tion softwareArtemisby Peter Hidas, for example, is designed to be operated via a
graphical user interface, and provides little support for automation. At our request,
the author extended the program to allow running it from the command line. How-
ever, after investing several weeks of time, the software was deemed too slow and
unstable for our purposes. As the process of tuning parameters by Monte-Carlo
experimentation demanded that the simulation process be as fast as possible, speed
was a major requirement for our simulator.Paramics, a popular test bed used by
the Road Travel Authority, Sydney, was also ruled out for this very reason. It was
only accessible to us through a client-server connection at the time, which would
have slowed down experimentation beyond tolerable limits. However, after estab-
lishing appropriate algorithms and control models with this work, the next step will
be to re-investigate these simulation systems.

The advantage of a policy gradient method (or any direct policy search method)
is that it learns a policy without constructing an explicit internal model of the en-
vironment. Hence we do not need a very realistic traffic simulation to demonstrate
the general capability of our technique. As long as the simulator displays the es-
sential concepts of a traffic system, we can be optimistic that good results for this
system mean that we would also achieve positive results in a more realistic setting.
(This is essentially an assumption made by all traffic control systems to varying
degrees, since no model or simulator can approach the complexity of a real road
network.) We therefore decided to implement our own traffic simulation system,
aiming at fast simulation speed rather than at an accurate model of traffic flow. Of

4.2. A SIMPLE TRAFFIC SIMULATOR 49

course one could argue that learning in a simple system is easier than in a realis-
tic traffic system. The main difference is that a more realistic traffic model would
include many more variables influencing the behaviour of the individual vehicles.
To a PG learning agent these variables would not be represented explicitly, hence
the system would seem noisier, complicating learning. However, since conditions
in a traffic system change relatively smoothly with the flow of traffic, we assume
for now that our PG controller would be able to cope with the additional noise, and
restrict our experiments to the mentioned simple simulator.

We represent the central components of a traffic system: roads with limited
capacities, intersections with controllers reacting to current conditions observed
through inductive loop detectors, and vehicles travelling from specified origins to
specified destinations on the map. We take particular care to create a system that
is appropriate for being controlled by a SCATS controller, since it is our aim to
be comparable to SCATS: the loop detectors are located at the stop lines of in-
tersections, and the signal lights are controlled by SCATS-compatible controller
commands.

To arrive at a basic representation of a traffic system, we made, amongst others,
the following simplifying assumptions:

• All vehicles move at uniform speed.

• Road lengths are multiples of a space unit, where one unit is exactly the
distance a car travels within one time step.

• We do not care about the relative positions of cars within one road segment,
or about interactions between cars. Hence the number of cars in a road seg-
ment has no influence on the travel speed of the cars.

Apart from these, there are many more simplifications in our system, as described
in the following.

In our simulator, roads are placed in a grid, and signalled intersections may
be defined at grid nodes. Sparse grids are possible, i. e., not every grid line or
node needs to be occupied by a road or intersection, respectively. This allows quite
general maps to be specified, but limits roads to be horizontal or vertical, and a
maximum of four roads can be connected by an intersection. The run time of our
algorithms does not depend on the size of the map, but of the number of controlled
intersections in it. At every intersection, there are two separate queues for the cars
from each incoming direction: one queue for cars aiming to turn right, and one for
cars aiming to go straight or turn left (stemming from the fact that we are modelling
Australian traffic, which is left-hand sided). In the following we will use the term
turn for any of the possible movements at an intersection, i. e., for turning left,
right, or going straight.

Cars always enter the system at intersection nodes rather than at arbitrary loca-
tions along the roads. Such new cars exit their source intersection independently of
the current phase. Every vehicle has a fixed destination, which is also an intersec-
tion. In order to get there, drivers choose a shortest path and also try to minimise

50 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

waiting times at intersections. If at an intersection two different turns would lead
to equally short routes, drivers will prefer to use one turn over the other if it is
green by the time they arrive, and if the queue for that turn is not too long (no more
than half of the maximum possible length as given by the road capacity). If none
of the turns is preferable, drivers decide randomly for one of them. Thisgreedi-
nessof drivers, when choosing turns, is one step towards modelling the adaption
of drivers to control policies (see the description of the traffic assignment problem
in Section 2.0.2). To our knowledge, other simulators usually fail to model such
effects. Considering driver adaption is however very important when we want to
show the effect that different control policies may have, as we will do in one of our
experiments.

Each time step in our simulator corresponds to roughly 5 – 10 seconds in the
real world. Using a more finely grained time discretisation would have led to
greater accuracy of the model, but also to slower simulation and longer learning
This is because more time units would lie between an action and rewards cor-
responding to it, increasing the temporal credit assignment problem (see Section
3.2). Hence, choosing the length of the time unit was a trade-off between speed
and accuracy of the simulation.

At each such time step – or, more precisely, at the beginning of each time
unit – the intersection controllers make the decision about which signal phase to
turn on during the next time step. They can choose between 4 different phases:
north-south-straight, north-south-right, east-west-straight, and east-west-right. The
phases for going straight always include the left turn as well (cf. the explanation of
the diamond overlap phase scheme in Section 2.1.1). Controllers can stay in their
current phase or switch to any other phase – we do not restrict the order of phases.
To ensure a reasonable policy, however, the simulator enforces the constraint that
within one cycle each phase has to come on at least once. The cycle length here is
an arbitrary fixed number of time steps, which we usually chose to be 16. Also, we
set an upper limit on the number of time steps a phase may be on during a cycle
without interruption (usually 13). If the action a controller decides to take, i. e.,
the phase it wants to switch on, violates these restrictions, the simulator ignores
the controller and switches on a phase that satisfies the constraint. Imagine for
example that phasep has not been on during a cycle, and in the last step of the
cycle the controller wants to turn on phaseq. Then the simulator turns on phasep
instead. If the simulator has the choice between various phases that have not been
on during the last two or three steps of the cycle, it chooses a phase according to a
fixed order of phases.

After the signal lights have been set, the locations of the cars are updated. The
order in which this happens is fixed, depending on the time of creation of the cars,
thus it does not matter where the cars currently are in the network. All cars trav-
elling along roads move forward one space unit into the next road segment. When
arriving at an intersection, a car passes through immediately if the light correspond-
ing to its desired turn is green, and if there is no queue for that turn. Otherwise,
it lines up in the queue. To account for the fact that queued cars require time for

4.2. A SIMPLE TRAFFIC SIMULATOR 51

acceleration, we limit the number of cars that can pass through an intersection in
one time step, if there is a queue. In the first time step of a phase this limit is 2,
while in subsequent time steps it is 5. This has the effect of additionally modelling
inter-green times, i.e., we account for the time lost by switching phases. A car
queued up in front of an intersection can pass through, during a time step, if the
throughput limit has not been reached and if the queue is notblocked: as a rough
model of limited road capacity, we only allow cars to enter the next road segment if
the number of cars in that segment does not exceed a certain road capacity parame-
ter (20 in our experiments). This allows us to represent saturated traffic conditions.
Cars that cannot move forward due to a blocked segment stay at their current po-
sitions. A queue in front of an intersection gets blocked as soon as any car in it
cannot pass through due to a blocked road. If a new car is scheduled to enter the
network, but the corresponding road where it would be entered is blocked, that car
does not enter the system but is ignored.

From the point of complexity, our simulation model is comparable to that used
in other studies that applied reinforcement learning to traffic [4, 35]. Implementing
our own system, however, allowed us to build in the simulation of the SCATS-like
loop detectors and to implement the greediness of drivers mentioned above, as well
as producing a very fast simulator. It is capable of simulating 3,800 time steps per
second with 100 intersections and an average of 930 cars, on a 3.2 GHz AMD
Athlon 64 processor.

4.2.1 The Graphical User Interface

We also implemented a Graphical User Interface (GUI) for the simulator. It al-
lows examination of the network topology, traffic volume and policies pursued by
the controllers graphically, and thus supported the development of the system sub-
stantially. Figure 4.1 shows a snapshot of our simulator as displayed by the GUI.
As mentioned before, each intersection has eight queue lines with loop detectors,
where the latter are displayed as thin blue rectangles. The current settings of the
lights are displayed by the green and red rectangles in front of each queue, corre-
sponding to green and red lights, respectively.

The four small lines in the middle of intersections reflect the policy pursued
by the intersection controller over the last few cycles, showing how much time
(relatively) the controller has given to each of the four phases. The longer a line,
the more time the controller has devoted to the corresponding phase in the past.
The snapshot displayed in Figure 4.1 is taken at the beginning of learning. The
controllers on the horizontal road have just begun to learn giving most time to the
east-west-straight phase (the third phase), while the controllers on the vertical road
are learning to devote most time to the north-south-straight phase (the first phase).
The controller of the central intersection has experienced most traffic on the vertical
road so far, which is why it has devoted more time to the third phase than to the
first phase.

52 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

Figure 4.1: A snapshot of our simulator as displayed by the GUI. Note that traffic
is left-hand sided.

4.3 Architecture of the Learning System

In our setup, each intersection is controlled by a separate controller using one of
the policy-gradient algorithms introduced in Section 3.4, NAC or OLPOMDP, to
learn a policy. Cooperation between the controllers is achieved through common
observations and, in some scenarios, common rewards. Each controller represents
its policy through alinear function approximator, which takes as input the obser-
vations corresponding to a state, and has four outputs corresponding to the four
possible phases. The value it assigns to each output corresponds to the likelihood
with which it wants to turn that phase on during the next time step. We turn these
likelihoods into well-formed probability distributions by using the softmax func-
tion described in Section 3.2 on the network’s outputs to decide the next phase.
The policy parametersθ form the weights of the linear approximator. At each time
step, they are updated by back-propagation into the direction of the reward gradi-
ent, as calculated by the PG algorithm. We have also experimented with non-linear
approximators, i. e., with multi-layer neural networks, but we could not observe a
benefit from that.

In detail, the controller of intersectioni maps the observationsot,i at time step
t to a probability distributionπt,i overP possible phases as follows (in our case,
P = 4). Let xt,i be the output vector of the linear approximator, where thepth

4.3. ARCHITECTURE OF THE LEARNING SYSTEM 53

entry is denoted asxt,i[p], and letθi be theP × |ot,i| matrix of parameters for
intersectioni. Let up be the unit vector with a 1 in rowp, andat,i the action for
controlleri resulting from the calculation. Then

xt,i = θiot,i , Pr(at,i = p|θt,i, ot,i) =: πt,i(θt,i, ot,i, p) =
ext,i[p]∑P

p′=1 e
xt,i[p′]

,

πt,i(θt,i, ot,i) := [πt,i(θt,i, ot,i, 1) . . . πt,i(θt,i, ot,i, P)].

The “log gradients”∇θt,i
log πt,i(θt,i, ot,i, p), needed by our algorithms for up-

dating the parameters of each controller (see Algorithm 1 in Section 3.4.3, and
Algorithm 3 in Section 3.4.7), are then as follows:

∇θt,i
log πt,i(θt,i, ot,i, p) = (up − πt,i(θt,i, ot,i))oT

t,i.

The intersection controllers interact with the simulator as follows: at the begin-
ning of a time step, all controllers receive observations corresponding to the current
state of the traffic simulator (these are different for each controller). Subsequently,
the controllers calculate the probabilities for the different signal phases, according
to their policy parameters and the softmax function, as described above. The next
phase for each controller is decided by taking a random decision according to the
calculated phase probabilities. Over time, the policies generally become more de-
terministic (although this will not happen if a stochastic policy is really optimal).
As mentioned in the last section, the simulator may however turn on a different
phase, if the phase calculated by the controller violates the restrictions we placed
on policies. This over-ruling of policies is simply part of the environment and does
not violate the assumptions needed for PG methods to be valid.

Given all actions of the controllers, the simulator simulates one time step by
setting the signal lights accordingly and moving the cars, as well as entering new
cars and taking out cars that have arrived at their destination. Then the controllers
receive the rewards corresponding to the new state of the simulator, and update
their policies according to NAC or OLPOMDP. The decision of the controllers at
each time step is based on a subset of the following possible observation features:

• Cycle duration: specifies how many time steps the current cycle has lasted
already. This is important to support time based decisions like offsets. This
information, as well as all other features, are presented in a binary format to
facilitate learning of the function approximators. It consists of 16 bits, where
thenth bit is on exactly in thenth step of the cycle.

• Current phase: specifies what phase we were in during the last time step. It
consists of 4 bits, where each bit corresponds to a phase.

• Current phase duration: indicates how many time steps the current phase
hascontinouslybeen on up to now. It is made up of 5 bits, indicating that
we have spent more or equal to 1, 2, 4, 8 or 13 continuous time steps in the
current phase (hence several bits may be on).

54 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

• Phase durations: specifies for every phase how many time steps it has been
on in total during the current cycle. It consists of 5 bits per phase, in the
same format as the current phase duration.

• Detector active: indicates, for every one of the eight loop detectors at the
intersection, whether it is active at the moment (i. e., whether there is at least
one car waiting). This information is made up of 8 bits, one for each detector,
where the bit is one if the detector is active.

• Detector history: specifies for every detector how busy traffic has been dur-
ing the current cycle, i. e., how saturated the corresponding stream of traffic
has been. It consists of 3 bits per detector, indicating a saturation level of
more than 0, more than half capacity, or capacity.

• Neighbour information : gives a comparison of the detector counts of neigh-
bouring intersections, indicating where traffic is expected from. In our phase
scheme, traffic coming in from the north and south always has the right of
way together, and so has traffic from the east and west. Hence we spec-
ify whether thesumof expected traffic from the north and south is greater
than the sum of expected traffic from the east and west. For all neighbour-
ing intersections, the detector counts of those lanes are summed that could
potentially send cars towards this intersection. The two numbers that result
from summing all traffic from the north and south, and summing all traffic
from the east and west, are compared for several time steps in the past. By
looking back in time as many time steps as correspond to the road length, a
controller gets the information about incoming cars just before they arrive.
In the experiments, the controllers always got information about a window
from 3 to 5 time steps in the past, covering all different road lengths used.
This information is then encoded in 2 bits for each of the past time steps,
where the first bit is on if more traffic is expected to come towards this inter-
section from the east/west, and the second bit is on if more traffic is expected
from the north/south. By looking back into the past as many time units as
the longest road has space units, the controllers can learn to know exactly at
what time step traffic will be arriving at their intersection.

4.4 Real-World Deployment of our System

One of the goals of this work was to develop a method that could theoretically
be employed in the real world. Hence we only used information for the observa-
tion features (see last section) that would be available in the real world, such as
detector counts and information about the past actions of the controllers. As will
be explained in the following section, the additional use of (simple) traffic mod-
els could however improve performance, as that allows for more specificrewards
which support learning.

4.5. PERFORMANCE CRITERIA 55

Note that, if our methods were to be employed in practice, actions have to
be taken which avoid using a very bad policy in the beginning of learning (caus-
ing traffic jams on the streets). One way to solve this could be to simulate the
road network and expected traffic beforehand, and pre-train our controllers on that
simulation. Our controllers would continue learning in the subsequent deploy-
ment, in order to make up for the imperfection of the simulation and to adapt to
changing traffic demands. Alternatively, our algorithms could learn an initial pol-
icy by observing SCATS before they start executing their policies, e. g., by back-
propagation.

4.5 Performance Criteria

One of the most important choices when setting up a learning system is which
performance measure to use, i. e., how to reward the learners. As described in the
previous chapter, frequently used optimisation criteria for traffic systems include
the average or total travel time, waiting times, number of vehicle stops and queue
lengths.

The travel timecriterion is especially appealing since it is a very general mea-
sure, encompassing both waiting times and stops. There are, however, two prob-
lems with using the (negated) average travel time as reward for our learning system.
First of all, calculating this value requires knowledge that we would not have in the
real world. Our simulator is able to deliver this value, but in a real-world deploy-
ment it would only be accessible through (imperfect) traffic modelling. Even if we
did decide to employ a traffic model in practice for estimation of this value, the
travel time criterion still poses a problem in our test scenarios due to their small
size. The problem is that travel times can only be calculated for vehicles once
they have arrived at their destination. We would, however, like to feed reliable re-
wards to our learners as soon as possible after relevant actions, to ease the temporal
credit assignment problem (see Section 3.2) – preferably at every time step. In our
smaller test scenarios we often deal with only a few cars in the system at any point
in time, which means that there are time steps where no car arrives. If we fed a
reward of zero to the learner at those time steps, that would be the best negative
travel time possible, thus we would falsely reward our learner for the fact that no
car arrived. Furthermore, even in those time steps where cars do arrive, the average
travel time will only be calculated from a small number of vehicles, leading to high
variance in the rewards.

In order to solve the averaging problem in our small test scenarios, we decided
to use thenumber of carsin the system at any time step as a criterion. This is
equivalent to the total travel time criterion if we assume that the number of cars en-
tering the system is independent from our control policy. It can be seen as follows
(using the notation of Papageorgiou [20]).

Let k = 0, 1, ... be a discrete time index,N(k) the number of cars in the sys-
tem during time intervalk, d(k) the demand (i. e., the number of cars entering the

56 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

system) ande(k) the exits, i. e., the number of cars leaving the system or arriving
at their destination, during time stepk. We count cars towardsN(k) if they are
produced before or in time stepk and leave the system after time stepk, i. e., cars
that arrive at their destination in time stepk are not counted for that time step any-
more. We aim to minimise the total travel timeTK , i. e., the total number of time
steps vehicles spend in the system, which is equivalent to minimising the average
travel time if measured over an infinite horizon. Over a limited time horizon of
lengthK, the total travel time is simply the sum of cars at each time step:

TK =
K∑

k=0

N(k) (4.1)

Hence, using the number of cars as the immediate reward at each time step has
exactly the effect we want, namely to reward the learner for minimisation of the
total travel time.

The problem remains, however, that in practice we would not know the exact
number of cars in the system at any point in time. In the real world, we would need
to maintain at least a simple model of the traffic flow in our system, and estimate
the number of cars from the total detector counts in the system.

We decided therefore to use a second,local performance criterion in some of
our experiments. In this setting, each intersection controller is optimised indepen-
dently, using rewards calculated from the local detector counts. In addition to the
advantage of using a completely model-free performance criterion, this factorised
learning leads to a tremendous speed-up in terms of computation time per iteration
(see Section 3.4.8). If our system were to be employed in practice, local rewards
would also avoid the need of communicating rewards to the controllers from a cen-
tral server. Apart from saving communication overhead, this decentralisation leads
to a more robust system. However, with the local rewards we cannot guarantee
global optimisation of the system anymore (see Section 3.4.8). An obvious way
of trying to amend this problem would be to combine local and global rewards.
However, we have not pursued this approach in our experiments.

The local reward we use is thethroughputof an intersection, i. e., the number
of cars passing through it during one time step. This criterion can be related to
the travel time by making several strong assumptions. These do not hold in reality,
but demonstrate that the use of this criterion should generally improve the average
travel time. The travel time of a car is comprised of two components: the time it
spends travelling along roads (in the following called the road travel time) and the
time it spends waiting at intersections. If we assumefixed routesfor the vehicles
(i. e., we assume that the routes drivers choose to get to their destinations are inde-
pendent of our control policy), and if we assumeconstant road travel times, i. e.,
we assume that the time it takes to travel along the links in the system is indepen-
dent of our control policy, then the total road travel time over all cars is constant.
Thus minimising the total waiting time at intersections is equivalent to minimising
the total travel time.

4.5. PERFORMANCE CRITERIA 57

Looking at each intersection separately, the totallocal waiting time over all
cars during one time step is exactly the number of cars waiting at that intersection,
hence this measure equals the summedqueue lengthsat an intersection. Local min-
imisation of the queue lengths at intersections would be an appealing optimisation
criterion, since it is still closely related to the travel time, but allows for the speed-
up in learning that local rewards offer. However, knowing this value in practice
would still imply the usage of traffic prediction models, as otherwise we would not
know how many cars are queued up at the intersection.

To arrive at our completely model-free criterion, we therefore make a further
simplifying assumption: we assume that the arrival process of cars at an intersec-
tion is independent of its control policy. In practice, the control policies of neigh-
bouring intersections will usually influence each other, such that the assumption
does not hold. Given the assumption, however, locally maximising the throughput
of an intersection at any time step is exactly the same as locally minimising queue
lengths (in our framework). Here, a special property of our algorithms comes into
play: the discount factor used when attributing rewards to former actions. It is not
sufficient to maximise the throughputon averagein order to optimise travel time
(under the mentioned assumptions) – it is necessary to achieve throughputas early
as possible. Only if cars pass through an intersection as early as possible will they
arrive as early as possible, optimising their travel time.

This requirement is fulfilled by our learning algorithms. Because they discount
rewards, it is more desirable for the intersection controller to get, say, three cars
through in time stepk, than to get two cars through in time stepk and one car in
time stepk + 1. That way we usually achieve the desired effect of passing cars
through as early as possible. Depending on the discount factor, however, a policy
that leads to a great reward at a later time step but sacrifices a small reward in an
earlier time step may be overall preferable to the learner.

Hence, our local rewards are an approximation to the travel time criterion. But
even though we cannot guarantee global optimisation of the travel time when using
the throughput rewards, they have led to very good results in our experiments.

Note, however, that our above arguments only hold true if the time window we
optimise the throughput over (cf. Equation (4.1)) starts with an empty system. To
see this, consider a pathological example. Imagine a system consisting of only one
intersection and imagine that at every time step one car arrives, from alternating
directions. In the optimal case, the controller switches to the corresponding phase
just for the time step when a car arrives, thus no car ever needs to stop. If the
controller is not synchronised with the arriving cars, but one step behind, for ex-
ample, it can obtain the optimal throughput of one car per time step – over a certain
time window – even though cars have to wait. Hence, in this case maximising the
throughput over a time window does not lead to minimisation of the total travel
time during that time window, independently of the discount factor. Assuming op-
timal behaviour of the controller, this situation can only occur if the time window
starts when one car is already waiting at the intersection. Otherwise the controller
would have had to pass that car through as soon as it arrived. If the policy of

58 CHAPTER 4. POLICY-GRADIENT FOR TRAFFIC CONTROL

the controller is not optimal, such situations may also occur during the optimisa-
tion period, leading to ongoing suboptimal behaviour of the controller. However,
SCATS does not consider policies at such a fine grain level and would not do better
in similar scenarios.

Both our global and our local reward measures do not guaranteefair treatment
of the vehicles, i. e., they do not balance travel times, or waiting times respectively.
As an example, imagine a system consisting of one intersection with a maximum
possible throughput ofm cars per time step. Imagine that in time step zero,m
cars arrive from the north andm cars arrive from the west. In all subsequent time
steps, furtherm cars arrive from west. Whether the controller lets them cars from
the north through early, or whether they wait for a long time while cars from the
west pass through–the number of cars in the system will be the same, which means
that none of the policies is preferable from the point of view of the intersection
controller. Although this is sensible if we only care about minimising the total
travel time, in the real world this effect would not be desirable. Criteria like the
mean squared travel time could be used to tackle the problem. In our toy examples,
however, travel time criteria do not work well for the reasons explained above,
which is why we made the conscious decision not to care about unbalancedness of
waiting times in our experiments. The policy restriction of visiting all phases once
per cycle ensures that no car waits forever.

Chapter 5

Experiments

Our goals in this work are threefold. Firstly, we want to demonstrate the general
applicability of policy-gradient (PG) methods to traffic control, and demonstrate
that we can achieve good performance. Secondly, we want to target known weak-
nesses of the system that motivated this research, the Sydney Coordinated Adaptive
Traffic System (SCATS), as described in Section 2.1.5, and show that we can out-
perform a SCATS-like algorithm (within the limitations of our simulator). Thirdly,
we aim to compare the performance of the recently proposed Natural Actor Critic
algorithm NAC (see Section 3.4.6) to the standard or “vanilla” policy-gradient al-
gorithm OLPOMDP (see Section 3.4.3). We also compare the two PG algorithms
to the three baselines described in the following section.

5.1 Baselines

In all experiments, we quote the performance of the initial policy of our algo-
rithms, i. e., the policy our algorithms start out with before learning begins. This
policy results from initialising the weights of the linear function approximator that
represents the policy to zero. Since both PG algorithms use a neural net of the
same structure, the initial policy is the same for both algorithms. Because of the
softmax function (see Section 3.2) all phases are thus assigned equal probabilities,
which means that the initial policy corresponds to a uniform random policy (with
one exception – in one scenario we had to bias the initial policies). We call this
baseline RANDOM. A second simple baseline is the performance of auniform pol-
icy, i. e., a policy that assigns equal lengths to all phases, where the phases follow
a fixed order. We hand-tune this policy to use the best possible phase length (given
restricted cycle length) for all of our experiments. This baseline is referred to as
UNIFORM.

Our main goal is to compare the performance of our learning approach against
a SCATS-like approach. To this end, we implemented a baseline emulating the
adaptive part of SCATS. It is called SAT and is described in the following section.

59

60 CHAPTER 5. EXPERIMENTS

Algorithm 4 SAT
1: for cycle = 1 to∞ do
2: for p = 1 to PHASESdo
3: throughput = throughputlast cycle(maxstream(p))
4: target max throughput = throughput / TARGET SATURATION
5: target length[p] = length for throughput(target max throughput)
6: target length[p] = max(1, target length[p])
7: target length[p] = min(target length[p], MAX PHASELENGTH)
8: for p = 1 to PHASESdo
9: if length[p] < target length[p] then

10: length[p]++
11: else iflength[p] > target length[p] then
12: length[p]- -
13: cycle length =

∑
p(length[p])

14: index = 0
15: while cycle length >MAX CYCLE LENGTH do
16: if length[index] > 1 then
17: length[index] - -
18: cycle length - -
19: index = (index+ 1) mod PHASES
20: run cycle(length)

5.1.1 SAT: A Simple Saturation-Balancing Technique

SAT is inspired by the SCATS system described in Section 2.1.5 in that it tries to
achieve an equal saturation of the traffic flow on all phases. Like SCATS, it is an
adaptive method, adjusting its policy at each decision point in small discrete steps,
depending on the current traffic. It also uses the same kind of traffic information
from detector loops located closely to the stop-lines of intersections as SCATS. It
is, however, much simpler than SCATS as it is purely automatic–it does not include
any hand-tuned plans for optimal behaviour given certain traffic patterns, or pre-
specified offset plans for coordinating intersections. Our goal was to implement
SAT as closely as possible to the adaptive part of SCATS, given limited access to
information about the proprietary system (see Section 2.1.5).

SAT has a fixed phase scheme, namely the double diamond overlap DODO
(see Section 2.1.1), where the order of the four phases is as follows: north-south-
straight, north-south-right, east-west-straight, and east-west-right. Once every cy-
cle, it calculates new targets for the lengths of all phases and adjusts its policy
into that direction. It aims for a saturation flow of90%. Given a maximum cycle
length, it starts by allocating time units to each phase in such a way that the most
used stream in the phase is as close as possible to90% saturation. If the resulting
plan exceeds the maximum cycle length, time units are subtracted iteratively from
all phases until the maximum length requirement is met. This then forms the new

5.2. TEST SCENARIOS 61

goal plan, and SAT modifies its current plan by adjusting each phase by one time
unit towards the goal plan. Each phase must however be allocated at least one time
unit.

Pseudo code for SAT is given in Algorithm 4. In line 3 of the algorithm, the
function “maxstream” returns the most used stream of a phase, and the func-
tion “throughputlast cycle” then returns all detector counts of that stream dur-
ing the last cycle. In line 4, a target value is derived for the maximum possi-
ble throughput of a phase that would lead to the90% saturation goal (see the
definition of saturation, Equation (2.1) in Section 2.1.1). In line 5, the function
“length for throughput” calculates the minimum phase length that allows for the
target maximum throughput. In line 20, the function “runcycle” uses the calcu-
lated new policy for one cycle, before returning for a new re-calculation of the
policy.

In spite of its simplicity, SAT is a surprisingly effective method, in most cases
beating the performance of the hand-tuned uniform controller by far, and even
beating non-uniform static policies that were hand-tuned (staticpolicies are those
that do not change over time.) This is mostly due to the fact that SAT is able to
(slowly) adjust its policy. For example, by oscillating its policy continually, it is
able to give, for example, anaveragelength of2.5 time units to a certain phase,
while a fixed policy can only be chosen to either give2 or 3 time units to that
phase. As such, SAT has more flexibility in finding good phase length values even
for steady traffic demands.

5.2 Test Scenarios

For our experiments, we develop a test bed of specific traffic scenarios appropriate
for demonstrating the advantages of our approach. Our first four test scenarios
are designed in such a way that we expect PG learning to outperform the SAT
controller. The weaknesses of SCATS and SAT that we target (cf. Section 2.1.5
and Section 5.1.1) are

1. SAT’s inability to adjust to rapidly changing demand (“Fluctuation Sce-
nario”),

2. the reactiveness of SAT (“Sudden Influx Scenario”),

3. the fact that SAT cannot calculate the values for offsets between intersections
automatically (“Offset Scenario”), and

4. the fact that SAT only optimises locally instead of globally (“Adaptive Driver
Scenario”).

In three of these four scenarios (2,3, and 4) we show that we can learn from specific
observation features by restricting ourselves to a particular subset of the observa-
tion features.

62 CHAPTER 5. EXPERIMENTS

The fifth scenario (“Large Scale Optimisation”) is a large scale experiment
aiming to show the general applicability of PG methods to traffic control. In this
scenario we had no particular prior reason to expect PG to outperform SAT. The
five scenarios are described in detail in the following sections.

Global rewards are only used if the scenario demands it (in two cases), with lo-
cal rewards being used in the remaining cases. In all scenarios, we choose the car
production rates (i. e., the number of cars entering the system) to be small enough
such that SAT can cope with the traffic, i. e., roads never fill up to the point where
entering cars must be blocked (cf. Section 4.2). A rather short road length (be-
tween 2 and 5) is used in all scenarios. In the global reward case, this facilitates
learning for our algorithms as rewards follow the respective actions sooner (due to
shorter travel times). The short road lengths and the restrictions to few observa-
tion features both speed up learning of our algorithms, which was helpful given the
limited time scale of our experiments. However, the same results could probably
be obtained with longer roads and full sets of observations, by using a smaller step
size parameter and giving the algorithms proportionally more time to learn.

5.2.1 Fluctuating Scenario

The Fluctuating scenario focuses on an intersection of two roads, where horizontal
traffic flows from west to east, and vertical traffic flows from north to south. A
snapshot of our graphical user interface depicting the network is given by Figure
5.1. The traffic volume entering the system on the horizontal and vertical traffic
axes is proportional to a sine and cosine function of the time, respectively. Thus the
demand at the centre intersection also oscillates with time. This scenario models
a rapidly changing demand that has a pattern. It is realistic because traffic control
can lead to “bunching” of traffic: upstream intersections release periodic bursts of
traffic, which then disperse as they travel along the road. Pedestrians at a zebra
crossing also have the effect of compacting a stream of traffic into waves.

SCATS adapts too slowly to changing demand to deal well with such situa-
tions. Since it is purely reactive and has no means of recognising traffic patterns, it
can only begin to adapt its policy once it notices changed demand. This means, for
example, that when demand on the horizontal axis grows, SAT lags behind, allo-
cating too little time to the horizontal phase, thus building up queues at the central
intersection. On the other hand, during times of decreasing demand it allocates
more time than necessary to the horizontal phase, unnecessarily creating queues
on the vertical axis.

In detail, the traffic volume in the scenario is created as follows. Letcn(t) be
the number of cars entering the system from the north at time stept, andcw(t)
the number of cars entering from the west. Thencn(t) andcw(t) are calculated as
follows:

cn(t) := b(sin(f(t)) + 1)/2 · base numc
cw(t) := b(cos(f(t)) + 1)/2 · base numc,

5.2. TEST SCENARIOS 63

Figure 5.1: The network used in the Fluctuating scenario and the Sudden Influx
scenario. Note: as discussed in Section 4.2, we model left-hand sided traffic.

wheref(t) is a function of the current time step andbase num is the average
number of cars to be produced. Adding1 to the sine and cosine functions achieves
that the result is always positive, varying between0 and2, and hence dividing by2
and multiplying bybase num leads to the production of a total ofbase num cars
per time step on average in the scenario. In the experiment reported in the next
chapter, we setbase num := 3 andf(t) := π/10 · t, so that after20 time steps we
have completed one period.

Each road consists of 4 pieces linked by intersections, so that there are 5 in-
tersections on each road: 3 central ones and 2 end intersections. As mentioned in
Section 4.2, the end intersections only serve the purpose of providing origin and
destination nodes for the cars. The control policy at these intersections does not
influence the network, so that we do not need to train controllers for them. The
road length is3 units, leading to an optimal travel time of12 time units for every
vehicle. We use all observation features and local rewards in this scenario.

5.2.2 Sudden Influx

The Sudden Influx scenario shows how intersection controllers can learn to “co-
operate” by using common observations. In this scenario we make use of the
neighboursfeature described in Section 4.3, meaning that a controller may use the
detector counts registered at its neighbour intersections to anticipate traffic coming
towards it. The road network is the same as in the Fluctuation scenario (see Figure
5.1), i. e., a crossing of two roads with three controllable intersections and two end

64 CHAPTER 5. EXPERIMENTS

Figure 5.2: The Offset scenario.

intersections on each road, and a road length of3.
The only regular traffic in this scenario is a steady stream of cars (1 per time

step) travelling horizontally from east to west. Hence, usually it is a good policy
for the controller of the centre intersection to give maximum time to the east-west-
straight phase. Every now and then (with probability of0.02 per time step), how-
ever, we enter a group of 15 cars from the north, with destination south. When
this happens, the controller of the centre intersections should change its behaviour
temporarily and give more time to the north-south-straight phase, otherwise those
cars will wait for a long time before they can pass through. Optimally, the con-
troller learns to anticipate the sudden strong demand for the north-south-straight
phase (using the information from its neighbours), and changes its policy in time
beforethe cars arrive. We use only the neighbours feature and local rewards for
this scenario.

5.2.3 Offset

Many drivers have been frustrated by driving along a main street, to be constantly
interrupted by red lights. In this scenario the goal is to learn an offset between
neighbouring intersections, a feature that needs to behand-tunedin most other con-
trollers. While SCATS can automatically decide whether to use offsets or not, can-
didate roads for offsets and the corresponding offset values must be pre-specified
(see 2.1.5).

The scenario consists of one road with three consecutive controlled intersec-
tions, where we neglect any traffic flowing in from side roads. The network is
depicted in Figure 5.2. At every fourth time step, a car enters the system from
the west, its destination being the eastern end point. Optimally, the controllers
thus learn to be in the east-west-straight phase exactly at those time steps when a
car arrives at their intersection. However, due to the constraint that every phase
has to come on once during a cycle (where the cycle length is 8 time steps in this
scenario), the controllers cannot always stay in the east-west-straight phase. They
must thus learn to visit the other phases at those time steps where no traffic is
expected, which corresponds to traffic being held up at an upstream intersection.
The road length is 2 in this scenario, resulting in an optimal travel time of8. We
restrict the observations to thecycle duration, meaning that our controllers learn
from time information only, and use global rewards to facilitate cooperation of the
controllers. The fact that cars are always entered at the same steps of a cycle makes
it possible to learn from the cycle duration feature only. Otherwise the neighbours
feature would be needed to tell controllers when to expect traffic.

5.2. TEST SCENARIOS 65

Figure 5.3: The Adaptive Driver scenario.

5.2.4 Adaptive Driver

The Adaptive Driver scenario is an example of a network where optimising all
controllers independently does not lead to optimal global performance of the net-
work. The network is depicted in Figure 5.3. Like in the Fluctuation scenario
and the Sudden Influx scenario, we have north-south and east-west streams that
interact only at a central intersection, Intersection D. Both streams have the same
high volume, modelling two main roads, so that the controller of the central in-
tersection should devote approximately equal time to both corresponding phases
(north-south-straight and east-west-straight). An additional stream of cars is gen-
erated in the south-west corner, at Intersection H, and travels diagonally to the east,
to Intersection E. For a vehicle of that stream, two equally short routes are avail-
able by going straight, or turning east at Intersection F. However, cars that turn east
to join the northbound traffic flow at Intersection G must then turn east again at
the central Intersection D, forcing the controller of Intersection D to devote time
to a third north-south-right phase, and forcing the main volume of traffic to pause.
(This is because in our model of left-hand sided traffic the right turn is an extra
phase, see Section 2.1.1). For the overall network it is actually preferable if the
controller of the critical Intersection F routes more cars north than east, as those
cars can join the main eastbound traffic flow at Intersection C.

This scenario relies on a driver model that prefers, among routes of equal dis-
tance, the route with shorter waiting time at intersections. If the controller of the
critical Intersection F gives equal time to both the north-south-straight phase and
the east-west-right phase, then the numbers of vehicles travelling north and east
will be approximately equal (due to random route decisions). A locally optimising
system like SAT, which starts out with equal phase lengths, will thus usually con-

66 CHAPTER 5. EXPERIMENTS

tinue to follow a policy that gives equal lengths to both phases. On the other hand,
by giving more time to the first of these phases than to the second, the intersec-
tion controller can influence the route decisions of the drivers. As the drivers will
choose the turn which incurs less waiting time, the controller can actively route
cars north.

The road length is again3, so that12 would be the optimal travel time. One
car per time step is produced at each of the end intersections A, B, E, H and I.
Furthermore, a second car per time step is produced with probability 0.15 at each
end intersection. This is the highest car production rate that SAT can handle well.
Since this scenario is explicitly designed to require optimisation of the global net-
work, we use global rewards. Our observations for this scenario consist only of the
phase durations, informing the controller how much time it has spent so far in each
phase during the current cycle. That way our controllers are forced to learn a good
averagepolicy which is, for example, not influenced by specific detector counts.

5.2.5 Large Scale Optimisation (10 x 10)

This scenario aims to show the general applicability of PG methods in a relatively
large-scale setting. In a10×10 intersection network, perhaps modelling a city cen-
tre, each node potentially produces two cars at each time step according to fixed
small probabilities between0 and0.25. The production probabilities and the two
destinations for the cars from each source are chosen randomly at the beginning
and then stay fixed during the run of the simulation. This way we create a system
with semi-random traffic patterns: stochastic route choices for the vehicles and the
stochasticity in the car production create variance in the system. On the other hand,
since the sources and destinations for all cars are chosen when the scenario is con-
structed, the system has some regularity which the controller can learn to optimise.
Compared to the size of the intersection subgroups that SCATS’ base plans opti-
mise (10 – 20 intersections, see Section 2.1.5), 100 intersections is a remarkable
number. The road length is3, and we use local rewards and all observations.

5.3 Setup of the Experiments

On all five test scenarios, we run NAC, OLPOMDP and the three baselines and
report the best result achieved by each algorithm within restricted run time. The
parameters for the two PG algorithms are hand-tuned for best performance. As
explained in Section 4.5, our goal is to minimise the total travel time of vehicles in
the system, even if our algorithms optimise this quantity indirectly. Performance is
hence measured in terms of travel time.

In a second set of experiments, we compare the convergence properties of the
two PG algorithms by showing the average performance over several runs in two
of the scenarios. In this case, our parameters are tuned for maximum speed of
convergence rather than best performance. Thirdly, we evaluate the usefulness of

5.3. SETUP OF THE EXPERIMENTS 67

our observation features by training with several different subsets of the full set of
features, comparing the resulting performances.

5.3.1 Particular Design Decisions

The tuning of the parameters is a critical task. If the step sizes, for example, are
small, learning takes a very long time. On the other hand, if the step sizes are
too big, the PG algorithms may quickly get stuck in a suboptimal solution. Be-
cause of the difficulty of determining an efficient rate of decrease for the step sizes,
we followed common practice and used constant step sizes in our experiments.
However, setting this parameter is still a trade-off between rapid convergence and
quality of the achieved results. For comparing the best performances of NAC and
OLPOMDP we therefore use conservative step sizes, while we experiment with
bigger step sizes to compare the convergence properties of the two algorithms.

Following standard RL practice [12], a reward baseline is used for both PG al-
gorithms (see Section 3.4.5), i. e., instead of feeding the learners the actual rewards
obtained at every step, they receive the difference between the reward obtained and
the estimated average reward. This is known as an additive control variate method
and has the effect of reducing the variance in gradient estimates. Intuitively, a
positive difference between a reward and the baseline is “good” and a negative
difference is “bad” [12]. This baseline is reset every 1000 – 100,000 iterations, de-
pending on the overall run time of the algorithms for a given scenario. Especially
for NAC this baseline improves the results considerably.

We noticed that sometimes the PG algorithms produce policies that block cars.
As described in Section 4.2, we assume a limited road capacity, so that cars that
would enter the system on a certain road are not permitted to enter if that road is
already full. Controllers may thus block cars by giving, for example, minimum
possible green time to a certain phase. This leads to queues building up at the
intersection, until the incoming road is full. Because blocked cars never enter the
system, they never count towards the travel time. Our rewards are closely linked to
the travel time and are affected similarly. Cars that do not enter the system result
in a lower number of total cars, our global reward. Blocking cars can also lead
to an increase in local rewards, because a controller may be able to maximise the
throughput of an intersection by always preferring a phase with heavy traffic over
a phase with little traffic.

One way to avoid this problem in the case of global rewards would be to not
let the simulator ignore cars that cannot enter the system, but instead accumulate
them in a queue and enter them as soon as possible at some later point in time
(while counting them towards the number of cars in the system). However, this
significantly impedes learning. In the beginning, while our algorithms follow a
near-random policy, long queues of waiting cars build up in such a system, and it
may take a long time for the system to reach a state of “normal” traffic volume, hin-
dering the ability of the algorithms to learn a correct policy. An alternative solution
(which also works for local rewards) is to immediately punish the algorithms for

68 CHAPTER 5. EXPERIMENTS

Scenario Random Uniform SAT NAC OLPOMDP
Fluctuating 250.0 102.0 21.5 14.3 13.4
Sudden Influx 197.0 35.0 18.4 13.4 13.5
Offset 17.9 15.0 12.0 8.0 8.0
Adaptive Driver 251.0 74.2 17.2 15.8 16.0
Large Scale 60.5 54.7 35.1 29.8 27.9

Table 5.1: Travel times for PG and the baseline algorithms.

each blocked car with a high negative reward. We chose this approach, using a pun-
ishment of−100 for everycontroller whenever a car was blocked. This is because
it is usually not possible to identify a single intersection that causes a blocked road
– it is rather the whole network that does not work well. This approach led to the
desired effect of mostly producing policies that do not block cars. With unfortunate
parameter settings (e. g., a big step size), the problem may still occur. However, for
the results reported in this work we took care to use only parameter settings that
did not produce such unwanted policies.

Finally, in the Large Scale scenario our algorithms had difficulties to learn be-
cause of a “fill-up” effect of the system. Even if blocked cars do not accumulate
outside the system, a bad initial policy leads to over-saturated traffic conditions,
which in a large system may persist for a long time. We thereforebiased the
policy in this scenario by adding a constant (of 4) to each output of the function
approximator that represents the policy. Hence, instead of using a completely ran-
dom policy in the beginning, we bias the policy towards uniformity. The function
approximator can still learn to completely overrule this bias by increasing its pa-
rameters accordingly, but profits from the bias in the beginning of learning. This
helped to overcome the learning problems in the Large Scale scenario and would
be a sensible trick in a real world problem.

5.4 Results and Analysis

Our results quote the average travel time (TT) of vehicles in the system. Table
5.1 contains the results for the three baselines and the best results for NAC and
OLPOMDP that could be obtained within restricted run time. The table quotes
single runs with tuned parameters. The parameters used are given in Table 5.3. In
Appendix A, we also show the graphs of the PG runs for all quoted results.

The results in Table 5.1 show that NAC and OLPOMDP both improve upon
the uniform controller and SAT in all scenarios. The two PG algorithms mostly
achieve similar travel times. NAC sometimes shows slightly worse performance,
which may however be due to the time restriction (see the detailed discussion in
the following section). Table 5.2 contains the computation time and the number
of iterations needed by both algorithms to arrive at the travel time quoted in Table

5.4. RESULTS AND ANALYSIS 69

NAC OLPOMDP
Scenario TT n secs TT n secs
Fluctuating 14.3 4.5 · 106 860,549 13.4 1.1 · 109 491,298
Sudden Influx 13.4 4.4 · 106 25,454 13.5 9.7 · 108 35,572
Offset 8.0 2.1 · 106 1,973 8.0 6.3 · 108 8,546
Adaptive Driver 15.8 9.3 · 107 867,267 16.0 2.2 · 109 807,496
Large Scale 29.8 2.9 · 105 1,077,151 27.9 3.0 · 108 1,029,428

Table 5.2: Run times and iterations for all scenarios for the PG algorithms. Opti-
misation was performed forn iterations of the algorithm. ‘Secs’ is wall-clock time.
Cut-off time was, in order, 887,150, 45,264, 15,967, 888,388, 1,077,151 seconds
for the 5 scenarios. Experiments were run on a 3.2 GHz AMD Athlon 64 processor.

5.1, and also specifies our cut-off limit, i. e., the maximum allowed run time, for
each scenario. SAT always found its policies very fast, i. e. within a few thousand
iterations, which is why we did not include run times for SAT in the table. As can
be observed, NAC can require more computation time as OLPOMDP, but achieves
its results in up to 3 orders of magnitude fewer learning steps. In a real-world de-
ployment, both NAC and OLPOMDP would have no difficulty of keeping up with
real-time. This is because each iteration (and hence decision on the next phase)
corresponds to a few seconds of real-time. Furthermore, in a real deployment each
intersection policy would be calculated in parallel instead of sequentually. In our
simulation NAC only required fractions of a second (about0.03 seconds) for each
iteration per controller. The results for NAC are thus very appealing, because it
needs fewer learning steps and hence fewer interactions with the environment for
good performance, which in a real system would mean faster adaption to shifting
traffic patterns.

The parameters in Table 5.3 are very similar across all scenarios. In accor-
dance with theory, lowering the discount factorβ for OLPOMDP achieved faster
learning, but worse end results as the responsibility for rewards is not propagated
as far back to earlier states than with a high discount factor 3.4.3. For NAC,λ
andγ both discount the eligibility trace, which explains why high values for both
parameters lead to good results. As the critic discountγ also indicates how related
neighbouring states are, lowering this value could sometimes lead to more stable
convergence. This was the case in scenarios where observations could change dras-
tically from one time step to the next. Overall, we found that NAC’s critic discount
did not have a very big influence, such that NAC is not much harder to tune than
OLPOMDP, even though it requires one parameter more.

5.4.1 Results Per Scenario

Fluctuating. As can be seen in Table 5.1, NAC and OLPOMDP both achieve
good travel times of14.3 and13.4 respectively, which is close to the theoretically

70 CHAPTER 5. EXPERIMENTS

NAC OLPOMDP
Scenario ε λ γ ε β

Fluctuating 10−5 0.9 0.95 10−3 0.9
Sudden Influx 10−4 0.9 0.95 10−4 0.9
Offset 5 · 10−5 0.98 0.9 5 · 10−6 0.98
Adaptive Driver 10−7 0.98 0.95 10−6 0.98
Large Scale 10−4 0.9 0.95 10−5 0.9

Table 5.3: Optimisation parameters for all scenarios for the PG algorithms.

optimal time of12. These performances are far better than those of the uniform
controller and SAT.

The result of NAC, however, is notably worse than that of OLPOMDP. This
may be due to the fact that NAC would have needed more run time, while we ter-
minated the runs after ten days. As can be observed in Figure 5.4, NAC was still
improving notably at that point and had not reached a “quasi steady-state” (i. e., a
level of performance from where improvement is substantially slower than before).
However, the learning rate had slowed down, so that it was hard to predict just how
long we would have needed to continue the runs in order to achieve the same result
for NAC as for OLPOMDP. Given restricted time we thus opted to terminate the
experiments, but point the reader to the graph in Figure 5.4 for a visual estimate of
NAC’s learning rate. The effect that NAC does not manage to reach the same per-
formance as OLPOMDP within the limited time of our experiment is also present
in the Large Scale scenario. It can be attributed to the fact that we are using all
observation features in these two scenarios, while using considerably less features
in the other scenarios. One iteration of OLPOMDP is linear in the number of ob-
servation features, but NAC needs quadratic time (see Sections 3.4.3 and 3.4.7).
The rather long computation time was also the reason for using local rewards in
this scenario and most others (see Section 4.5).

Sudden Influx. Both NAC and OLPOMDP learned a good policy in terms of
travel time using local rewards (see Table 5.1). When examining the learned poli-
cies, we noted in particular that for both algorithms the centre intersection con-
troller had learned to switch to the north-south-straight phase just in time to let the
group of cars from the north pass without waiting. This is something that SAT and
SCATS cannot do.

Offset. Both PG algorithms learned an optimal policy in this scenario using
global rewards. SAT performed badly because it has no means of implementing
an offset. We discovered, however, that learning an optimal policy is difficult. For
a road length of3, for example, we failed to do so (given limited time). We also had
to lower the maximum cycle length from its usual value of 16 down to 8, and to set

5.4. RESULTS AND ANALYSIS 71

Figure 5.4: Quoted run for NAC in the Fluctuating scenario.

the maximum phase length to 5 accordingly. Otherwise our controllers always pre-
ferred to stay in the east-west-straight phase for the maximum time possible, which
is not an optimal policy. Our local reward measure also did not lead to the optimal
policy in this case. What makes this scenario difficult is that intersectionn+ 1 can
only begin to learn its part of a network-wide optimal policy when intersectionn
has already converged to an approximately correct policy.

Adaptive Driver. Although the average travel time of the PG algorithms was
only slightly better than that of SAT, their policies were radically different. SAT
routed cars equally north and east at the critical intersection F (see 5.3). The PG
algorithms, on the other hand, routed most cars north. In this scenario a slightly
larger volume of vehicles made SAT cause permanent traffic jams, while the PG
algorithms still found the correct policy. To verify our claim that routing cars north
is advantageous in this scenario, we hand-coded a corresponding optimal static
policy. Although a static policy has the restriction that it cannot spend a fractional
number of steps (on average) in any phase (see Section 5.1.1), this policy beat
SAT slightly, achieving a travel time of 17.1. The PG algorithms, in turn, beat this
hand-coded policy, achieving what we believe is near-optimal performance in this
scenario.

Large Scale Optimisation. OLPOMDP gave an average travel time improve-
ment of 20% over SAT even though this scenario was not tailored for our controller.
NAC also beat SAT notably, although the results quoted for it suffer again from the
fact that we cut NAC off after12 days, when it was still improving notably.

72 CHAPTER 5. EXPERIMENTS

Figure 5.5: Quoted run for NAC in the Large Scale scenario.

5.4.2 Convergence Rates

To check the reliability of convergence and compare the properties of the two algo-
rithms, Figures 5.6 and 5.7 display the results of30 runs for both algorithms in two
of our scenarios that demonstrates extremes of behaviour for NAC and OLPOMDP.
Here, we tuned the parameters for maximally fast convergence. As can be ob-
served, both algorithms achieve approximately the same policy quality, but their
relative convergence behaviour differs substantially in the two scenarios. In the
Fluctuating scenario, both algorithms reach a “quasi steady-state” at around 7000
– 8000 iterations. The OLPOMDP algorithm converges slightly faster in terms of
iterations, and within a fraction of the computation time needed by the NAC algo-
rithm. In the Offset scenario, on the other hand, NAC is far superior to OLPOMDP
both with regard to iterations and computation time. In the three remaining sce-
narios NAC always required orders of magnitude fewer iterations, but sometimes
more computation time than OLPOMDP (see Table 5.2).

5.4.3 Assessment of Observation Features

To examine the relative usefulness of the observation features, we analysed the re-
spective performances resulting from using various subsets of the features. We ran
tests with OLPOMDP on the Fluctuation scenario (which usually uses all features),
removing in each run of the algorithm one of the observation features. Removing
a single feature always resulted in a slight degradation of performance as opposed
to the full set, regardless of which feature was removed. Successively removing
features caused an initially smooth degradation of the policy performance, until
the performance suddenly deteriorated with the removal of the last two or three

5.4. RESULTS AND ANALYSIS 73

0.0 0.5 1.0 1.5 2.0
Iterations x1e4

15

30

45

60

75

A
v
g
.

T
ra

v
e
lt

im
e

Mean
Std. Dev.
Min
Max

0 899 1,798 2,698 3,597
Computation Time (s)

(a) Fluctuating NAC

0.0 0.5 1.0 1.5 2.0
Iterations x1e4

15

30

45

60

75

A
v
g
.

T
ra

v
e
lt

im
e

0 15 30 46 61

Computation Time (s)

(b) Fluctuating OLPOMDP

Figure 5.6: Convergence properties of NAC (top) compared to OLPOMDP (bot-
tom) over 30 runs in the Fluctuation scenario. Step sizeε is 5 × 10−4 for both
algorithms, the discount factorsβ andλ is 0.98, and NAC’s critic discountγ is 0.9.

74 CHAPTER 5. EXPERIMENTS

0.00 1.25 2.50 3.75 5.00
Iterations x1e5

8

9

10

A
v
g
.

T
ra

v
e
lt

im
e

Mean
Std. Dev.
Min
Max

0 99 198 297 396

Computation Time (s)

(a) Offset NAC

0.00 1.25 2.50 3.75 5.00
Iterations x1e6

8

9

10

A
v
g
.

T
ra

v
e
lt

im
e

0 696 1,392 2,088 2,785
Computation Time (s)

(b) Offset OLPOMDP

Figure 5.7: Convergence properties of NAC (top) compared to OLPOMDP (bot-
tom) over 30 runs in the Offset scenario. Step sizeε is1×10−4 for both algorithms,
the discount factorsβ andλ are0.98, and NAC’s critic discountγ is 0.9.

5.4. RESULTS AND ANALYSIS 75

Successively Removed Features Travel Time
none (using all features) 13.5
neighbours 13.8
cycle duration 14.2
detector active 14.3
current phase 16.8
current phase duration 17.0
phase durations 67.4
detector history (using no features) 70.4

Table 5.4: Performance degradation of the OLPOMDP algorithm when removing
observation features in the Fluctuation scenario.

features. Again, we noted that theorder in which observations are removed did
not matter much. Hence we can establish the fact that indeed all of our observation
features can be useful for learning. No feature can be singled out to be particularly
helpful, but all of them contribute to learning a good policy in this scenario. As
an example, we show in Table 5.4 one particular order of feature removal and the
resulting travel time values.

76 CHAPTER 5. EXPERIMENTS

Chapter 6

Conclusion and Outlook

In this thesis, we have used reinforcement learning techniques to learn the control
of traffic lights in a simulated traffic system. Our experiments show that policy-
gradient algorithms can learn to control large networks, while achieving a very
good network-wide performance. In particular, we have demonstrated that some
of the problems that saturation-balancing algorithms suffer from can be avoided
with our approach. As a saturation-balancing algorithm is the heart of SCATS, one
of the world’s most widely used traffic control systems, we have shown that our
methods can potentially improve traffic control in a real-world deployment.

We have examined the performance of the recently proposed Natural Actor
Critic (NAC) algorithm, and concluded that this algorithm can be especially useful
for traffic control. It reduces the number of learning iterations greatly as opposed
to a “classical” policy-gradient method, while retaining all the benefits of policy-
gradient methods. However, as NAC needs far more computation time per learning
iteration, a classical policy-gradient algorithm might be more suitable in environ-
ments that can be simulated quickly and where the number of learning iterations is
of secondary importance.

A practical next step will be to test the performance of our controllers in a
more realistic environment, using sophisticated commercial traffic simulations like
Paramics (see Section 4.2). This system is also used by the New South Wales
Roads and Traffic Authority for testing SCATS. Implementing the control protocol
used by SCATS, we hope to be able to directly compare the performance of our
controllers against SCATS in Paramics and other environments. Learning off-line
from real data could be a further step towards testing the appropriateness of our
approach for real-world deployment. An assessment of the robustness of our con-
trollers in unexpected conditions is important to answer the question whether rein-
forcement learning controllers are reliable enough to be deployed in a real world
system.

In future research, we would also like to further explore the topic of learning
policies in a distributed fashion. Ideally, we want to optimise the global perfor-
mance of a traffic network. However, because in large systems a global perfor-

77

78 CHAPTER 6. CONCLUSION AND OUTLOOK

mance criterion incurs very long learning times for the controllers, we have also
used local criteria in this work, optimising each controller independently. This can
lead to good global results if the local criteria are appropriate, as we have shown
to be the case for our criteria. However, there are no theoretical guarantees for
the global quality of policies resulting from such local optimisation. It has been
shown thatpropagationof local rewards across a network can lead to global opti-
misation, if the global performance criterion is the sum of the local criteria [21].
Such a propagation of local rewards thus leads to exactly the same result as using
a global reward: it guarantees global quality of the solution, but it also results in
the long learning time needed for a global criterion. By propagating local rewards
only partially through the network we might be able to find an intermediate solu-
tion between local and global rewards, a trade-off between quality of the solution
and learning time. It would be interesting to determine whetherdiscountedprop-
agation of local rewards, for example, could lead to a significant improvement of
performance, and whether theoretical bounds can be established for the quality of
the resulting solution.

Finally, comparing our policy-gradient techniques against other reinforcement
learning approaches for traffic control (see Section 3.5) would be interesting from
an algorithmic point of view, and could give further answers about the specific
advantages and disadvantages of policy-gradient methods in complex systems.

Appendix A

Detailed Results

Figure A.1: Fluctuating scenario. Quoted run for NAC (top) and OLPOMDP (bot-
tom).

79

80 APPENDIX A. DETAILED RESULTS

Figure A.2: Sudden Influx scenario. Quoted run for NAC (top) and OLPOMDP
(bottom). Note the different scale.

81

Figure A.3: Offset scenario. Quoted run for NAC (top) and OLPOMDP (bottom).

82 APPENDIX A. DETAILED RESULTS

Figure A.4: Adaptive Driver scenario. Quoted run for NAC (top) and OLPOMDP
(bottom).

83

Figure A.5: Large Scale scenario. Quoted run for NAC (top) and OLPOMDP
(bottom).

84 APPENDIX A. DETAILED RESULTS

Bibliography

[1] Douglas Aberdeen. Policy-Gradient Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Australian National University, Can-
berra, Australia, March 2003.

[2] Shun-ichi Amari. Natural gradient works efficiently in learning.Neural Com-
putation, 10(2):251–276, 1998.

[3] J. Andrew Bagnell and Andrew Y. Ng. On local rewards and scaling dis-
tributed reinforcement learning. InAdvances in Neural Information Process-
ing Systems, Proceedings of the 19th Neural Information Processing Systems
Conference (NIPS’2005), pages 91–98, 2006.

[4] Bram Bakker, Merlijn Steingr̈over, Roelant Schouten, Emil Nijhuis, and Leon
Kester. Cooperative multi-agent reinforcement learning of traffic lights. In
Proceedings of the Workshop on Cooperative Multi-Agent Learning, Euro-
pean Conference on Machine Learning (ECML’05), pages 24–36, Porto, Por-
tugal, 2005.

[5] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient esti-
mation.Journal of Artificial Intelligence Research, 15:319–350, 2001.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis.Neuro-dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[7] Léon Bottou and Yann Le Cun. Large scale online learning. InAdvances
in Neural Information Processing Systems, Proceedings of the 17th Neural
Information Processing Systems Conference (NIPS’2003), pages 217–224,
2004.

[8] Justin A. Boyan. Least-squares temporal difference learning. InProceedings
of the 16th International Conference on Machine Learning (ICML’99), pages
49–56, Bled, Slovenia, 1999.

[9] Bernhard Friedrich, Irina Matschke, Essam Almasri, and Jürgen M̈uck. Data
fusion techniques for adaptive traffic signal control. InProceedings of the
10th IFAC Symposium on Control in Transportation Systems, Tokyo, Japan,
2003.

85

86 BIBLIOGRAPHY

[10] Bernhard Friedrich and Mohamed Shahin. Adaptive traffic control in
metropolitan areas. InProceedings of the 4th International Conference on
the Role of Engineering Towards a Better Environment (RETBE’02), Alexan-
dria, Egypt, 2002.

[11] Nathan H. Gartner, Carroll J. Messer, and Ajay K. Rathi, editors.Traffic
Flow Theory: A State of the Art Report – Revised Monograph on Traffic
Flow Theory. U.S. Department of Transportation, Transportation Research
Board,Washington, D.C., June 1992.

[12] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduc-
tion techniques for gradient estimates in reinforcement learning.Journal of
Machine Learning Research, 5:1471–1530, 2004.

[13] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Rein-
forcement learning: A survey.Journal of Artificial Intelligence Research,
4:237–285, 1996.

[14] Sham Kakade. A natural policy gradient. InAdvances in Neural Information
Processing Systems, Proceedings of the 15th Neural Information Processing
Systems Conference (NIPS’2001), volume 2, pages 1531–1538, 2002.

[15] John Loch and Satinder Singh. Using eligibility traces to find the best memo-
ryless policy in partially observable Markov decision processes. InProc. 15th
International Conference on Machine Learning (ICML’98), pages 323–331.
Morgan Kaufmann, San Francisco, CA, 1998.

[16] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of
probabilistic planning and related stochastic optimization problems.Artificial
Intelligence, 147:5–34, 2003.

[17] Angelia Nedíc and Dimitri P. Bertsekas. Least-squares policy evaluation algo-
rithms with linear function approximation.Discrete Event Dynamic Systems:
Theory and Applications, 13(1–2):79–110, 2003.

[18] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov
decision processes.Mathematics of Operations Research, 12(3):441–450,
1987.

[19] Markos Papageorgiou. Traffic control. In R. W. Hall, editor,Handbook
of Transportation Science, pages 233–267. Kluwer Academic Publishers,
Boston, 1999.

[20] Markos Papageorgiou, Christina Diakaki, Vaya Dinopoulou, Apostolos Kot-
sialos, and Yibing Wang. Review of road traffic control strategies.Proceed-
ings of the IEEE, 91(12):2043–2067, 2003.

BIBLIOGRAPHY 87

[21] Mark Paskin and Carlos Guestrin. A robust architecture for distributed infer-
ence in sensor networks. Technical Report IRB-TR-03-039, Intel Research
Berkeley, 2003.

[22] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic.
In Proceedings of the 16th European Conference on Machine Learning
(ECML’05), pages 280–291, Porto, Portugal, 2005.

[23] R. A. Rescorla and A. R. Wagner. A theory of pavlovian conditioning: vari-
ations in the effectiveness of reinforcement and nonreinforcement. In A. H.
Black and W. F. Prokazy, editors,Classical Conditioning II, pages 64–99.
Appleton Century Croft, New York, NY, 1972.

[24] Jussi Rintanen. Complexity of probabilistic planning under average rewards.
In Proceedings of the 17th International Joint Conference on Artificial Intel-
ligence, pages 503–508, Seattle, Washington, 2001.

[25] Dennis I. Robertson. TRANSYT method for area traffic control.Traffic
Engineering & Control, 10:276–281, 1969.

[26] Dennis I. Robertson and R. David Bretherton. Optimizing networks of traffic
signals in real time — the SCOOT method.IEEE Transactions on Vehicular
Technology, 40(1):11–15, February 1991.

[27] Sheldon M. Ross.Introduction to Stochastic Dynamic Programming. Aca-
demic Press, New York, 1983.

[28] Nagui Rouphail, Andrzej Tarko, and Jing Li. Traffic Flow at Signalized In-
tersections. In Nathan H. Gartner, Carroll J. Messer, and Ajay K. Rathi,
editors,Traffic Flow Theory: A State of the Art Report – Revised Monograph
on Traffic Flow Theory, chapter 9. U.S. Department of Transportation, Trans-
portation Research Board, Washington, D.C., June 1992.

[29] Stuart Russel and Peter Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, New Jersey, 1995.

[30] A. G. Sims and K. W. Dobinson. The Sydney coordinated adaptive traffic
(SCAT) system – philosophy and benefits.IEEE Transactions on Vehicular
Technology, 29(2):130–137, May 1980.

[31] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Learning with-
out state-estimation in partially observable Markovian decision processes.
In Proceedings of the 11th International Conference on Machine Learning
(ICML’94), pages 284–292, 1994.

[32] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

88 BIBLIOGRAPHY

[33] Richard S. Sutton, David McAllester, Satinder P. Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing Systems, Proceedings of
the 13th Neural Information Processing Systems Conference (NIPS’1999),
pages 1057–1063, 2000.

[34] Thomas L. Thorpe and Charles W. Anderson. Traffic light control using
SARSA with three state representations. Technical report, IBM Corporation,
1996.

[35] Marco Wiering, Jilles Vreeken, Jelle van Veenen, and Arne Koopman. Sim-
ulation and optimization of traffic in a city. InIEEE Intelligent Vehicles Sym-
posium (IV’04), pages 453–458, Parma, Italy, 2004.

