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Abstract

Bondarenkoet al. have recently proposed an abstract framework for
default reasoning. Besides capturing most existing formalisms and prov-
ing that their standard semantics all coincide, the framework extends these
formalisms by generalising the semantics ofadmissibleandpreferred argu-
ments, originally proposed for logic programming only.

In this paper we analyse the computational complexity ofcredulousand
scepticalreasoning under the semantics of admissible and preferred argu-
ments for (the propositional variant of) the instances of the abstract frame-
work capturing theorist, circumscription, logic programming, default logic,
and autoepistemic logic. Although the new semantics have been tacitly as-
sumed to mitigate the computational hardness of default reasoning under the
standard semantics ofstable extensions, we show that in many cases reason-
ing under the admissibility and preferability semantics is computationally
harder than under the standard semantics. In particular, in the case of au-
toepistemic logic, sceptical reasoning under preferred arguments is located
at the fourth level of the polynomial hierarchy, whereas the same form of
reasoning under stable extensions is located at the second level.
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1 Introduction

Bondarenkoet al. [1] show that many logics for default reasoning, i.e., theorist
[25], (many cases of) circumscription [20], Default Logic (DL) [26], Nonmono-
tonic Modal Logic [21], Autoepistemic Logic (AEL) [22], and Logic Program-
ming (LP) can be understood as special cases of a single abstract framework. The
standard semantics of all these logics can be understood as sanctioning a set of
assumptions as astable extensionof a given theory, formulated in an underlying
monotonic logic, iff the set of assumptions does notattack itself and it attacks
every assumption not in the set. In abstract terms, an assumption can be attacked
if its contrarycan be proved, in the underlying monotonic logic, possibly with the
aid of other conflicting assumptions.

Bondarenkoet al. also propose two new semantics generalising, respectively,
the admissibility semantics [8] and the semantics of preferred extensions [8] or
partial stable models [27] for LP. In abstract terms, a set of assumptions is an
admissible argumentof a given theory, formulated in an underlying monotonic
logic, iff it does not attack itself and it attacks all sets of assumptions which attack
it. A set of assumptions is apreferred argumentiff it is a maximal (with respect
to set inclusion) admissible argument.

The new semantics are more general than thestability semanticssince every
stable extension is a preferred (and admissible) argument, but not every preferred
argument is a stable extension. Moreover, the new semantics are more liberal
because for most concrete logics for default reasoning, admissible and preferred
arguments are always guaranteed to exist, whereas stable extensions are not. Fi-
nally, reasoning under the new semantics appears to be computationally easier
than reasoning under the stability semantics. Intuitively, to show that a given sen-
tence is justified by a stable extension, it is necessary to perform a global search
amongst all the assumptions, to determine for each such assumption whether it
or its contrary can be derived, independently of the sentence to be justified.1 For
the semantics of admissible and preferred arguments, however, a “local” search
suffices. First, one has to construct a set of assumptions which, together with the
given theory, (monotonically) derives the sentence to be justified, and then one
has to augment the constructed set with further assumptions to defend it against
all attacks [18, 6, 7].

1See [18, 7] for a more general discussion of the problems associated with computing the
stability semantics.
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However, from a complexity-theoretic point of view, it seems unlikely that the
new semantics lead to better lower bounds than the standard semantics since all
the “sources of complexity” one has in default reasoning are still present. There
are potentially exponentially many assumption sets sanctioned by the semantics.
Further, in order to test whether a sentence is entailed by a particular argument,
one has to reason in the underlying monotonic logic. For this reason, one would
expect that reasoning under the new semantics has the same complexity as under
the stability semantics, i.e., it is complete for the first level of the polynomial
hierarchy for LP and on the second level for logics with full propositional logic
as the underlying logic [3]. However, previous results on the expressive power of
DATALOG¬ queries by Sacc̀a [28] suggest that this is not the case for LP. Indeed,
Sacc̀a’s results imply that reasoning under thepreferability semanticsfor LP is at
the second level of the polynomial hierarchy.

In this paper we extend this analysis and provide complexity results for rea-
soning in the propositional variants of theorist, circumscription, LP, DL, and AEL
under the new semantics. As it turns out, reasoning under the new semantics can
be much harder than reasoning under the standard semantics. In particular, we
show that sceptical reasoning in DL under the preferability semantics is on the
third level of the polynomial hierarchy, that credulous reasoning in AEL under
theadmissibility semanticsis on the third level of the polynomial hierarchy, and
that sceptical reasoning in AEL under the preferability semantics is on the fourth
level of the polynomial hierarchy.

The paper2 is organised as follows. Section 2 summarises relevant features
of the abstract framework of [1], its semantics and concrete instances. Section 3
gives complexity theory background and introduces the reasoning problems. Sec-
tion 4 gives generic upper bounds for credulous and sceptical reasoning, para-
metric with respect to the complexity of the underlying monotonic logics. The
generic results are instantiated to provide upper bounds for concrete instances of
the abstract framework. Section 5 gives then completeness results for theorist and
circumscription, Section 6 gives the completeness results for LP and DL, and Sec-
tion 7 gives the completeness results for AEL. Section 8 discusses the results and
concludes.

2This paper combines earlier papers [4, 5] by the same authors and it contains all formal proofs
of the results in full.

3



2 Default Reasoning via Argumentation

Assume adeductive system(L, R), whereL is some formal language with
countably many sentences andR is a set of inference rules inducing a mono-
tonic derivability notion`. Given a theoryT ⊆ L and a formulaα ∈ L,
Th(T ) = {α ∈ L | T ` α} is the deductive closure ofT . Then, anabstract
(assumption-based) frameworkis a triple〈T,A, 〉, whereT,A ⊆ L and is
a mapping fromA intoL. T , thetheory, is a set of beliefs, formulated in the un-
derlying language, and can be extended by subsets ofA, the set ofassumptions.
Indeed, anextensionof an abstract framework〈T,A, 〉 is a theoryTh(T ∪∆),
with ∆ ⊆ A (sometimes an extension is referred to simply asT∪∆ or ∆). Finally,
given an assumptionα ∈ A, α denotes thecontrary of α.

Theoristcan be understood as a framework〈T,A, 〉 whereT andA are both
arbitrary sets of sentences of classical (first-order or propositional) logic and the
contraryα of an assumptionα is just its negation.̀ is ordinary classical prov-
ability.

Many cases ofcircumscription3 can be understood similarly, except that the
assumptions are negations of atomic sentences¬p(t), for all predicatesp which
are minimised, and atomic sentencesq(t) or their negations, for all predicatesq
which are fixed.

LP is the instance of the abstract framework〈T,A, 〉 whereT is a logic pro-
gram, the assumptions inA are all negationsnot p of atomic sentencesp, and the
contrarynot p of an assumption isp. ` is Horn logic provability, with assump-
tions,not p, understood as new atomsp∗, as in [12].

DL is the instance of the abstract framework〈T,A, 〉 where the monotonic
logic is first-order logic augmented with domain-specific inference rules of the
form

α1, . . . , αm,Mβ1, . . . ,Mβn
γ

whereαi, βj, γ are sentences in classical logic.T is a classical theory andA
consists of all expressions of the formMβ whereβ is a sentence of classical
logic. The contraryMβ of an assumptionMβ is¬β.

AEL has, as the underlying languageL, a modal logic with a modal operator
L, but the inference rules are those of classical logic. The assumptions have the
form¬Lα orLα. The contrary of¬Lα is α, and the contrary ofLα is¬Lα.

3Namely, all cases where every model of the theory to be circumscribed is a Herbrand model
of the theory, see [1] for more details.
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Given an abstract framework〈T,A, 〉 and an assumption set∆ ⊆ A:

• ∆ attacks an assumptionα ∈ A iff α ∈ Th(T ∪∆);

• ∆ attacks an assumption set∆′ ⊆ A iff ∆ attacks some assumptionα ∈
∆′.

Given that an assumption set∆ ⊆ A is closed iff ∆ = A ∩ Th(T ∪ ∆),
the standard semantics of extensions of theorist [25], minimal models of circum-
scription [20], extensions of DL [26], stable expansions of AEL [22], and stable
models of LP [14] correspond to the stability semantics of abstract frameworks,
where an assumption set∆ ⊆ A is stable iff

1. ∆ is closed,

2. ∆ does not attack itself, and

3. ∆ attacks each assumptionα 6∈ ∆.

Assumption sets are always closed in the case of LP and DL. Frameworks
with this property are referred to asflat [1]. Assumption sets might not be closed
in the case of AEL. For example, given the theoryT = {¬Lp} in AEL, the
empty assumption set is not closed. Furthermore, assumption sets might not be
closed in the case of theorist and circumscription. For example, if a formula is
an assumption in theorist that is already derived by the theory, then the empty
assumption set is not closed.

A stable extensionis an extensionTh(T ∪∆) for some stable assumption set
∆. The standard semantics of circumscription [20] corresponds to the intersection
of all stable extensions of the abstract framework corresponding to circumscrip-
tion.

Bondarenkoet al. argue that the stability semantics is unnecessarily restric-
tive, because it insists that an assumption set should take a stand on every issue
(assumption). Thus, they define new semantics for the abstract framework, by
generalising the argumentation-theoretic reformulation of [17] for the semantics
originally proposed for LP by Dung [8]. The new semantics are defined in terms
of “admissible” and “preferred” sets of assumptions/extensions. An assumption
set∆ ⊆ A is admissibleiff

1. ∆ is closed,
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2. ∆ does not attack itself, and

3. for all closed sets of assumptions∆′ ⊆ A, if ∆′ attacks∆ then∆ attacks
∆′.

Maximal (with respect to set inclusion) admissible assumption sets are called
preferred. In this paper we use the following terminology: anadmissible (pre-
ferred) argument is an extensionTh(T ∪ ∆) for some admissible (preferred)
assumption set∆. Bondarenkoet al. show that preferred arguments correspond
to preferred extensions [8] and partial stable models [27] for LP.

Every stable assumption set/extension is preferred (and thus admissible) [1,
Theorem 4.6], but not vice versa, in general. However, if the framework isnor-
mal, i.e., if every maximal closed assumption set that does not attack itself is
a stable set, then the semantics of preferred and stable assumption sets coincide
[1, Theorem 4.8]. Theorist and circumscription are normal frameworks, which
implies that stability and preferability semantics are identical in these cases.

In the sequel we will use the following:

(Prop1): Every preferred assumption set is (trivially) admissible and every ad-
missible assumption set is a subset of some preferred assumption set;

(Prop2): The empty assumption set is always admissible, trivially, for all flat
frameworks;

(Prop3): Every preferred extension is stable and every stable extension is pre-
ferred, for all normal frameworks.

Moreover, for any given semantics amongst the stability, admissibility and
preferability semantics, we will use the terminology that “a set of assumptions is
sanctioned by a semantics” to mean that the set of assumptions is stable/admissible/preferred,
respectively.

3 Reasoning Problems and Computational Complex-
ity

We will analyse thecomputational complexityof the following reasoning prob-
lems for the propositional variants of the frameworks for theorist, circumscription,
LP, DL, and AEL under admissibility and preferability semantics:
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• the credulous reasoning problem, i.e., the problem of deciding for any
given sentenceϕ ∈ L whetherϕ ∈ Th(T ∪∆) for someassumption set∆
sanctioned by the semantics;

• the sceptical reasoning problem, i.e., the problem of deciding for any
given sentenceϕ ∈ L whetherϕ ∈ Th(T ∪ ∆) for all assumption sets
∆ sanctioned by the semantics.

Instead of the sceptical reasoning problem, we will often consider its complemen-
tary problem, i.e.

• the co-sceptical reasoning problem, i.e, the problem of deciding for any
given sentenceϕ whetherϕ 6∈ Th(T ∪ ∆) for someassumption set∆
sanctioned by the semantics.

Note that we are not advocating co-sceptical reasoning as interesting or useful
epistemologically. Rather, we use it to support our complexity analysis.

In addition, we will consider a sub-problem of all these problems, namely:

• the assumption set verification problem, i.e., the problem of deciding
whether a given set of assumptions∆ is sanctioned by the semantics.

We briefly revise fundamental notions from complexity theory.4 We assume fa-
miliarity with the complexity classesP, NP, and co-NP, and with the notions
of many-one-reductions, Turing reductions, andhardnessandcompletenesswith
respect to these reductions.

The complexity of the above problems for all frameworks and semantics we
consider is located at the lower end of thepolynomial hierarchy. This is a (pre-
sumably) infinite hierarchy of complexity classes aboveNP defined by usingor-
acle machines, i.e. Turing machines that are allowed to call a subroutine—the
oracle—deciding some fixed problem in constant time. LetC be a class of de-
cision problems. Then,PC denotes the class of problems that can be solved on
a deterministic oracle machine in polynomial time with an oracle that decides a
problem inC. In general, for any classX defined by resource bounds,X C denotes
the class of problems decidable on a Turing machine with a resource bound given

4Good textbooks covering the notions we introduce here have been written by Garey and John-
son [13] and Papadimitriou [24].
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byX and an oracle for a problem inC.5 Based on these notions, the sets∆p
k, Σp

k,
andΠp

k are defined as follows:6

Σp
0 = Πp

0 = ∆p
0 = P

Σp
k+1 = NPΣp

k , Πp
k+1 = co-NPΣp

k , ∆p
k+1 = PΣp

k

The “canonical” complete problems areSAT for Σp
1=NP andk-QBF for Σp

k

(k > 1), wherek-QBF is the problem of deciding whether the quantified boolean
formula

∃~p ∀~q . . .︸ ︷︷ ︸
k alternating quantifiers starting with∃

Φ(~p, ~q, . . .).

is true, for a formulaΦ. The above problems remain complete for their respective
classes when the innermost quantifier is∃ and the formulaΦ is in 3CNF, as well
as when the innermost quantifier is∀ and the formulaΦ is in 3DNF [30]. The
complementary of ak-QBF problem, denoted byco-k-QBF, is complete forΠp

k.
All problems in the polynomial hierarchy can be solved in polynomial time

iff P = NP. Further, all these problems can be solved by worst-case exponential
time algorithms. Thus, the polynomial hierarchy might not seem too meaning-
ful. However, different levels of the polynomial hierarchy differ considerably in
practice, e.g. methods working for moderately sized instances ofNP-complete
problems do not work forΣp

2-complete problems.
The complexity of the problems we are interested in has been extensively stud-

ied for existing logics for default reasoning under the standard, stability seman-
tics [3, 15, 23, 19, 29, 2, 10]. Table 1 gives a partial summary of these results
for the different logics. We note here that the semantics of circumscription has
been originally proposed with respect to sceptical reasoning only. In this case, as
shown in [1], reasoning in circumscription (restricted to Herbrand models) coin-
cides with sceptical reasoning in theorist under the stability semantics. Moreover,
we can naturally extend circumscription and define its credulous reasoning via a
one-to-one correspondence with credulous reasoning in theorist under the stabil-
ity semantics (see [1] for more details). Hence the complexity result for credulous
reasoning in circumscription is a direct consequence of the respective result for

5Note that because using an oracle for a problem fromC is identical to using an oracle for a
problem from co-C, we haveX C = X co−C . For this reason, one usually does not use the notation
X co−C .

6The super-scriptp is only used to distinguish these classes from the analogous classes in the
Kleene hierarchy.

8



theorist. The complexity results for reasoning in circumscription under the ad-
missibility semantics, presented later in the paper, can be understood in a similar
way.

credulous sceptical
reasoning reasoning

Logic Programming NP-complete co-NP-complete
Theorist Σp

2-complete Πp
2-complete

Circumscription Σp
2-complete Πp

2-complete
Default Logic Σp

2-complete Πp
2-complete

Autoepistemic Logic Σp
2-complete Πp

2-complete

Table 1: Existing computational complexity results for the stability semantics

4 Generic Upper Bounds

In this section we give a number ofgenericupper bounds for reasoning under the
admissibility and preferability semantics that are parametric on the complexity
of thederivability problemin the underlying monotonic logic. This allows us to
derive upper bounds for a wide range of concrete logics for default reasoning.

In the case of LP, the underlying logic is propositional Horn logic, hence the
derivability problem isP-complete (under log-space reductions) [24, p. 176]. In
the case of theorist, circumscription and AEL, the underlying logic is classical
propositional logic, hence the derivability problem isco-NP-complete. Finally,
in the case of DL, the underlying monotonic derivability is classical derivability
extended with domain-specific inference rules. However, these extra inference
rules do not increase the complexity of reasoning. Indeed, it is known (e.g. see
[16, p.90]) that for any DL-like propositional monotonic rule systemS, checking
whetherS 6|= ϕ is NP-complete. Therefore, the following proposition follows
immediately.

Proposition 1 Given a DL framework〈T,A, 〉, deciding for a sentenceϕ ∈ L
and an assumption set∆⊆A whetherϕ∈Th(T ∪∆) is co-NP-complete.

9



In order to decide the credulous and co-sceptical reasoning problems, one can
apply the following non-deterministic algorithm:

Algorithm 2

1. Guess an assumption set,

2. verify that it is sanctioned by the semantics, and

3. verify that the formula under consideration is derivable from the set of as-
sumptions and the monotonic theory or not derivable from it, respectively.

From this it follows that credulous reasoning and co-sceptical reasoning is in the
complexity classNPC, provided reasoning in the underlying logic is inC and the
verification that an assumption set is sanctioned by the semantics can be done with
polynomially many calls to aC-oracle. For the stability semantics, we need indeed
only polynomially manyC-oracle calls in order to verify that the assumption set
∆ is not self-attacking and that it is closed and attacks all assumptionsα 6∈ ∆.
However, for the admissibility and preferability semantics the verification step
does not seem to be so easy, as suggested by the following theorem.

Theorem 3 For frameworks with an underlying monotonic logic with a derivabil-
ity problem inC, theassumption set verification problemis

• in PC under the stability semantics,

• in co-NPC under the admissibility semantics, and

• in co-NPNPC under the preferability semantics.

Proof: The first claim follows from the argument above that polynomially many
C-oracle calls are sufficient to verify that an assumption set is stable.

In order to prove the second claim, we give the following nondeterministic,
polynomial-time algorithm that uses aC-oracle and decides whether∆ ⊆ A is not
admissible:

1. Check whether∆ is closed. If not, succeed, otherwise continue.

2. Guess an assumption set∆′ ⊆ A.
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3. Verify that∆′ is closed, using|A−∆′| C-oracle calls.

4. Verify that∆′ attacks∆, using|∆| C-oracle calls.

5. Verify that∆ does not attack∆′, using|∆′| C-oracle calls.

Obviously, this algorithm succeeds iff∆ is not admissible, i.e., it decides the
complement of the assumption set verification problem, thus proving the claim.

In order to prove the third claim, for any assumption set∆ ⊆ A that we want
to verify, we give the following nondeterministic, polynomial-time algorithm that
uses anNPC-oracle:

1. Check whether∆ is admissible, using oneNPC-oracle call (by the second
claim). If it is not, succeed. Otherwise continue.

2. Guess an assumption set∆′ ⊃ ∆.

3. Check whether∆′ is admissible, using oneNPC-oracle call (by the second
claim). If it is, succeed. Otherwise fail.

Obviously, this algorithm succeeds iff∆ is not preferred. This means it de-
cides the complement of the assumption set verification problem, thus proving
the claim.

Furthermore, in the general case, there does not appear to be more efficient
algorithms for the assumption set verification problems than the ones given in
Theorem 3. For the special flat and normal frameworks, however, more efficient
algorithms can be found, as demonstrated by the following two theorems.

Theorem 4 For flat frameworks with an underlying monotonic logic with a deriv-
ability problem inC, theassumption set verification problemis

• in PC under the admissibility semantics, and

• in co-NPC under the preferability semantics.

Proof: We prove the first claim by giving the following deterministic, polynomial-
time algorithm using aC-oracle, for any assumption set∆ ⊆ A that we want to
verify:
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1. Check whether∆ attacks itself, using polynomially manyC-oracle calls. If
it does, succeed. Otherwise continue.

2. ComputeA∗ = {α ∈ A−∆ | ∆ does not attackα}, using|A−∆| calls to
aC-oracle.

3. Check whetherA∗ ∪∆ attacks∆, using polynomially manyC-oracle calls.
If it does, succeed. Otherwise fail.

It is easy to see that if this algorithm succeeds then∆ is not admissible, asA∗∪∆
attacks∆ but, by (2),∆ does not attackA∗ and, by (1),∆ does not attack itself.7

Moreover, if the algorithm fails then∆ is admissible. Indeed, let∆′ be any attack
against∆. If ∆′ ⊆ A∗∪∆, then, by monotonicity of the underlying logic,A∗∪∆
attacks∆, thus contradicting that the algorithm fails. Therefore,∆′ 6⊆ A∗ ∪ ∆.
Let α ∈ ∆′ −A∗ −∆. By (2), ∆ attacksα. Thus,∆ attacks∆′, and, by (1),∆ is
admissible.

The second claim of the theorem follows by reconsidering the algorithm used
in the proof of Theorem 3 for the third claim, but usingPC-oracle calls at steps (1)
and (3).

Due to (Prop3), for normal frameworks the assumption set verification task
under the preferability semantics is easier, as it can be reduced to that under the
stability semantics. Therefore, the following result is a direct corollary of Theo-
rem 3.

Proposition 5 For normalframeworks with an underlying monotonic logic with
a derivability problem inC, the assumption set verification problemunder the
preferability semantics is inPC.

We could now apply directly algorithm 2 described above in combination with
the above results for deriving upper bounds for the credulous and sceptical reason-
ing problems. However, some of the upper bounds thus obtained can be reduced,
as follows.

Directly from (Prop1), we have the following result.

7Note that if the framework is not flat, then the assumption setA∗ ∪ ∆ might not be closed.
Therefore, even if (3) succeeds,∆ can still be admissible, as it may attack an assumption that is
derivablefromA∗ ∪∆.
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Proposition 6 Credulous reasoning under the admissibility semantics is equiva-
lent to credulous reasoning under the preferability semantics.

Thus, it follows directly that credulous reasoning under the admissibility se-
mantics has the same upper bound as credulous reasoning under the preferability
semantics. In particular, for normal frameworks we get the same upper bound for
credulous reasoning under the admissibility semantics as for the stability seman-
tics.

In addition, co-sceptical and sceptical reasoning under the admissibility se-
mantics is often much simpler than suggested by the upper bounds of the respec-
tive assumption set verification problem combined with algorithm 2. For example,
in flat frameworks〈T,A, 〉 the sceptical reasoning problem reduces to the clas-
sical derivability from the theoryT , because of (Prop2). This might be the case
even for non-flat frameworks. We call an assumption-based framework〈T,A, 〉
simple iff there is no admissible assumption set wheneverT is inconsistent in the
underlying monotonic logic8, and otherwise there exists a minimal (with respect
to set inclusion) admissible set∆m = A ∩ Th(T ).

Proposition 7 For flat frameworks and forsimpleframeworks with an underlying
monotonic logic with a derivability problem inC, thesceptical reasoning problem
under the admissibility semantics is inC.

All the results in this section combined with algorithm 2 give the next the-
orem, specifying upper bounds for the reasoning problems for all the types of
frameworks considered so far.

Theorem 8 Upper bounds for the different reasoning problems, types of frame-
works, and semantics are as specified in the following table:

Frameworks Stability Admissibility Preferability
cred. scept. cred. scept. cred. scept.

general NPC co-NPC NPNPC co-NPNPC NPNPC co-NPNPNPC

normal NPC co-NPC NPC co-NPNPC NPC co-NPC

flat NPC co-NPC NPC C NPC co-NPNPC

simple NPC co-NPC NPNPC C NPNPC co-NPNPNPC

8Note that not all deductive systems underlying an abstract framework are equipped with a
notion of inconsistency. For example, the instance of the framework for LP is not. Moreover, note
that the notion of inconsistency is a separate notion from that of contrary.
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Proof: The results for the stability semantics follow from applying algorithm 2,
with step (2) of the algorithm solvable by a call to aPC oracle (by Theorem 3), and
step (3) solvable by a call to aC-oracle. This gives an upper bound ofNPPC , which
coincides withNPC, for both the credulous and co-sceptical reasoning problems.

The results for the admissibility semantics in the first row and for sceptical
reasoning under the preferability semantics in the first row follow by the same
argument.

The result for credulous reasoning under the preferability semantics in the first
row follows from Proposition 6 and the corresponding result for the admissibility
semantics.

The results for admissibility and preferability semantics in the second row are
justified as follows. Credulous reasoning under admissibility and preferability
semantics as well as co-sceptical reasoning under the preferability semantics can
be shown to be inNPPC , which equalsNPC, by using algorithm 2 and applying
Propositions 6 and 5. Further, the upper bound for sceptical reasoning under the
admissibility semantics is the general upper bound given in the first row.

The results for admissibility and preferability semantics in the third row follow
by applying Proposition 7 for sceptical reasoning under admissibility and, for the
other columns, algorithm 2 and Theorem 4.

Finally, the results for admissibility and preferability semantics in the fourth
row are the general results in the first row, with the exception of the result for
sceptical reasoning under the admissibility semantics given by Proposition 7.

As shown in the table, the upper bounds derived for sceptical reasoning under
the admissibility semantics are sometimes lower than those derived for sceptical
reasoning under the stability semantics. However, in these cases it amounts to
deriving monotonic conclusions from the theoryT and ignoring the assumptions
completely. In other words, in these cases, default reasoning is trivialised.

5 Simple, Normal Frameworks: Theorist and Cir-
cumscription

The concrete frameworks for theorist and circumscription arenormal[1] andsim-
ple, as shown below.

Lemma 9 The frameworks for theorist and circumscription are simple.
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Proof: Circumscription is a special instance of theorist. Thus, we only need to
prove the theorem for theorist.

If the given theorist theoryT is inconsistent then the corresponding framework
admits no admissible argument, as any closed assumption set attacks itself.

Assume thatT is consistent. Then, we only need to prove that∆ = Th(T )∩A
attacks every closed assumption set∆′ which attacks∆. Now, if ∆ = ∅, then there
is no set∆′ that attacks∆. If ∆ 6= ∅, then∆′ attacks∆ iff T ∪∆′ is inconsistent
and, as∆′ is closed,∆′ = A. Thus, necessarily∆ attacks∆′.

For both frameworks, the credulous and sceptical reasoning problems reach
the respective upper bounds specified in Theorem 8. Indeed, due to Proposition 6
and (Prop3), credulous reasoning under admissibility and preferability semantics
is identical to credulous reasoning under the standard, stability semantics, lead-
ing to the result that the complexity is also identical. Thus, the next proposition
follows immediately from the results in Table 1.

Proposition 10 Credulous reasoning in theorist and circumscription under the
admissibility and preferability semantics isΣp

2-complete.

Directly by (Prop3), sceptical reasoning under the preferability semantics is
identical to sceptical reasoning under the stability semantics. Thus, the next
proposition follows immediately from the results in Table 1.

Proposition 11 Sceptical reasoning in theorist and circumscription under the
preferability semantics isΠp

2-complete.

Finally, sceptical reasoning under the admissibility semantics is trivial because
the frameworks are simple and sceptical reasoning reduces to monotonic deriv-
ability from the theory.

Proposition 12 Sceptical reasoning in theorist and circumscription frameworks
under the admissibility semantics isco-NP-complete.

In other words, for the concrete frameworks for theorist and circumscription,
we either get the same results as under the stability semantics or we get trivial
results.
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6 Flat Frameworks: Logic Programming and De-
fault Reasoning

As in the case of theorist and circumscription, in the case of LP and DL the upper
bounds specified in Theorem 8 are tight.

Since the concrete framework for LP is flat, sceptical reasoning under the
admissibility semantics reduces to reasoning in the underlying monotonic logic,
i.e., derivability in propositional Horn theories, which isP-complete.

Proposition 13 Sceptical reasoning in LP under the admissibility semantics is
P-complete.

From Theorem 8, again because the LP framework is flat, credulous reason-
ing under the admissibility and preferability semantics is inNPP, which equals
NP. NP-completeness can be obtained as a direct corollary of an earlier result
by Sacc̀a [28], that the expressive power of DATALOG¬ queries under the “pos-
sible M-stable semantics” (corresponding to credulous reasoning under the ad-
missibility and preferability semantics) coincides with DB-NP, i.e. the class of
all databases that are recognisable inNP. From this result the following theorem
follows immediately.

Theorem 14 Credulous reasoning in LP under the admissibility and preferability
semantics isNP-complete.

Again from Theorem 8, sceptical reasoning in LP under the preferability se-
mantics is in co-NPNPP

, which coincides withΠp
2. Πp

2-completeness can be ob-
tained again as a direct corollary of the result proven again by Saccà [28], that the
expressive power of DATALOG¬ queries under the “definite M-stable semantics”
(corresponding to sceptical preferability semantics) coincides with the class DB-
Πp

2, i.e. the class of all databases that are recognisable in DB-Πp
2. From this result

the following theorem follows immediately.

Theorem 15 Sceptical reasoning in LP under the preferability semantics isΠp
2-

complete.

Therefore, for LP, credulous reasoning under admissibility and preferability
semantics has the same complexity as under the stability semantics (see Table 1),
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whereas sceptical reasoning is either one level lower but trivial, under the admissi-
bility semantics, or one level higher, under the preferability semantics, than under
the stability semantics.

Since the instance of the framework for DL is flat, sceptical reasoning un-
der the admissibility semantics reduces to reasoning in the underlying monotonic
logic, i.e., derivability in propositional classical logic, which isco-NP-complete.

Proposition 16 Sceptical reasoning in DL under the admissibility semantics is
co-NP-complete.

By Proposition 6, credulous reasoning under the preferability semantics co-
incides with credulous reasoning under the admissibility semantics. From Theo-
rem 8, credulous reasoning under the admissibility and preferability semantics is
in NPNP, which coincides withΣp

2. Σp
2-hardness, and thereforeΣp

2-completeness,
can be proven by a reduction from 2-QBF.

Theorem 17 Credulous reasoning in DL under the admissibility and preferability
semantics isΣp

2-complete.

Proof: By Proposition 6, it suffices to prove the theorem for the admissibility
semantics. Membership follows from Theorem 8. To prove hardness, we use a
straightforward reduction from 2-QBF to the credulous reasoning problem under
the admissibility semantics.

Assume the quantified boolean formula∃p1, . . . , pn ∀q1, . . . , qmΦ, with Φ a
formula in 3DNF over the propositional variablesp1,. . ., pn, q1,. . ., qm. We con-
struct a DL theory(∅, D) such that the given quantified boolean formula is true iff
some admissible argument for the framework corresponding to(∅, D) containsΦ.

LetD consists of the default rules

Mpi
pi

;
M¬pi
¬pi

for eachi = 1, . . . , n, simulating the choice of a truth value for each propositional
variablepi in Φ. Obviously,(∅, D) can be constructed in log-space. Moreover, it
is easy to see that the given 2-QBF is true iff there exists an admissible extension
of the framework corresponding to(∅, D) containingΦ.

Again from Theorem 8, in DL, sceptical reasoning under the preferability se-
mantics is in co-NPNPNP

, which coincides withΠp
3. Πp

3-hardness, and therefore
Πp

3-completeness, can be proven by a reduction from 3-QBF.
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Theorem 18 Sceptical reasoning in DL under the preferability semantics isΠp
3-

complete.

Proof: Membership follows from Theorem 8. To prove hardness, we use a re-
duction from 3-QBF to the co-sceptical reasoning problem under the preferability
semantics.

Assume the quantified boolean formulaΨ = ∃p1, . . . , pn ∀q1, . . . , qm ∃r1, . . . , rkΦ,
with Φ a formula in 3CNF over the propositional variablesp1, . . . , pn, q1, . . . , qm,
r1, . . . , rk. We construct a DL theory(∅, D) such thatΨ is true iff some sentence
F is not contained in some preferred argument for the framework corresponding
to (∅, D).

The language of(∅, D) contains atomsp1,. . ., pn, q1,. . ., qm, andr1,. . ., rk as
well as atomst1,. . ., tn, s1,. . ., sm, intuitively holding true iff a truth value for the
variablesp1,. . ., pn, q1,. . ., qm, respectively, has been chosen.D consists of the
default rules

M(pi ∧ ti)
pi ∧ ti

;
M(¬pi ∧ ti)
¬pi ∧ ti

;
M(qj ∧ sj)
qj ∧ sj

;
M(¬qj ∧ sj)
¬qj ∧ sj

for eachi = 1,. . ., n, j = 1,. . .,m, simulating the choice of a truth value for each
pi andqj in Φ,

MΦ

∧j=1,...,m¬sj

to prohibit choices of truth values for all theqj ’s that renderΦ satisfiable,

M¬sj
∧h=1,...,m¬sh

;
M¬ti

∧h=1,...,n¬th ∧ ∧h=1,...,m¬sh

for eachi = 1, . . . , n, j = 1, . . . ,m, to enforce that truth value choices are made
either for allqj ’s or for noqj and that truth value choices are made either for all
pi’s or for none of thepi’s andqj ’s, and finally

MΦ

¬Φ
;
M¬ti
ti

;
M¬sj
sj

.

for eachi = 1, . . . , n, j = 1, . . . ,m to guarantee that no admissible assumption
set containsMΦ or any ofM¬ti andM¬sj.
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Obviously,(∅, D) can be constructed in log-space. Moreover, we prove that
Ψ is true iff there is a preferred argument not containingF =∧j=1,...,msj. In other
words, the 3-QBF Ψ can be reduced to co-sceptical reasoning in DL under the
preferability semantics.

In the sequel we will use the following terminology. Ifv is a truth assignment
to thepi’s, we denote by∆p

v the assumption set

{M(pi∧ti)|v(pi) = true, i = 1, . . . , n}∪{M(¬pi∧ti)|v(pi) = false, i = 1, . . . , n}.

Similarly, if u is a truth assignment to theqj ’s, we denote by∆q
u the assumption

set

{M(qj∧sj)|v(qj) = true, j = 1, . . . ,m}∪{M(¬qj∧sj)|v(qj) = false, j = 1, . . . ,m}.

First of all, it is obvious that no admissible assumption set can contain any of the
assumptionsMΦ,M¬si,M¬ti (as, if it did, it would attack itself). Furthermore,
it is easy to see that for any truth assignmentv to thepi’s, the set∆p

v is an admissi-
ble set. Moreover, every preferred assumption set must contain a set∆p

v for some
truth assignmentv to thepi’s. Finally, if ∆p

v is not preferred, then there exists a
truth assignmentu to theqi’s such that∆p

v ∪∆q
u is preferred.

Assume thatΨ is true under a particular truth assignmentv to thepi’s. Obvi-
ously,∆p

v does not deriveF =∧j=1,...,msj. We show that the set∆p
v is a preferred

assumption set.
Suppose that it is not, and that we can extend∆p

v by the set∆q
u, for some truth

assignmentu to theqi’s, thus obtaining an admissible set. Then,∆p
v ∪∆q

u counter
attacks the attack{MΦ}, i.e.¬Φ belongs to the extension given by∆p

v ∪∆q
u. As

a consequence,Ψ is not true under the truth assignmentv: contradiction.
Conversely, assume that the framework corresponding to(∅, D) admits a pre-

ferred argument∆ that does not deriveF =∧j=1,...,msj. We prove thatΨ is true.
Clearly there exists some truth assignmentv to thepi’s such that∆p

v ⊆ ∆.
Since∆ is preferred and it does not containF , none of the sets∆p

v ∪ ∆q
u, for

every possible truth assignmentu to theqi’s, is admissible. This means that none
of these sets of assumptions can counter attack the attack{MΦ} and derive¬Φ.
Therefore,Ψ is true.

Therefore, as in the LP case, in the DL case credulous reasoning under the
admissibility and preferability semantics has the same complexity as under the
stability semantics (see Table 1), whereas sceptical reasoning is either one level
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lower but trivial, under the admissibility semantics, or one level higher, under the
preferability semantics, than under the stability semantics.

Note that similar results to the one obtained above for DL have been recently
obtained for disjunctive logic programming [11].

7 General Frameworks: Autoepistemic Logic

AEL is neither flat, simple, nor normal. This means that we cannot expect any
simplifications when reasoning in AEL frameworks. As a matter of fact, the upper
bounds forgeneral frameworks, which apply of course, are also tight for AEL.

By Proposition 6, credulous reasoning under the preferability semantics co-
incides with credulous reasoning under the admissibility semantics. From Theo-
rem 8, since the reasoning problem in the underlying monotonic logic for AEL is
classical reasoning in propositional logic (coNP-complete), credulous reasoning
under the admissibility and preferability semantics is inNPNPNP

, which coincides
with Σp

3. Σp
3-hardness, and thereforeΣp

3-completeness, can be proven by a reduc-
tion from 3-QBF.

Theorem 19 Credulous reasoning in AEL under the admissibility and preferabil-
ity semantics isΣp

3-complete.

Proof: By Proposition 6, it suffices to prove the theorem for the admissibility
semantics. Membership follows from Theorem 8. To prove hardness, we use a
reduction from 3-QBF to the credulous reasoning problem under the admissibility
semantics.

Assume the following quantified boolean formulaΨ = ∃p1, . . . , pn ∀q1, . . . , qm
∃r1, . . . , rkΦ,with Φ a formula in 3CNF over the propositional variablesp1, . . . , pn,
q1, . . . , qm, r1, . . . , rk. We construct an AEL theoryT such thatΨ is true iff some
sentenceF is contained in some admissible argument for the framework corre-
sponding toT .

The language ofT contains atomsp1,. . ., pn, q1,. . ., qm, andr1,. . ., rk as well
as atomst1,. . ., tn, intuitively holding if a truth value for the variablesp1,. . ., pn
has been chosen, and an atoms used to prevent that any truth value for theqj ’s
can be chosen.T consists of the sentences:

¬L¬pi → pi ∧ ti,
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¬Lpi → ¬pi ∧ ti,
¬L¬Φ

¬L¬qj → qj ∧ s ∧ ¬Ls,
¬Lqj → ¬qj ∧ s ∧ ¬Ls,

for eachi = 1,. . ., n, j = 1,. . .,m.
Obviously,T can be constructed in log-space. Now we prove that the frame-

work corresponding toT admits an admissible extension containingF =
∧
i=1,...,n ti

iff Ψ is true. This means that the given 3-QBF can be reduced to credulous reason-
ing under the admissibility semantics.

Assume that the framework corresponding toT admits an admissible exten-
sion∆ derivingF . Then, for eachi = 1,. . ., n, either¬L¬pi or¬Lpi is part of∆,
for F to be derived by it. Further,¬L¬Φ must be part of∆, for ∆ to be closed,
and thus admissible. Finally, none of the assumptions¬L¬qi, ¬Lqi can be part of
∆, for otherwise∆, if closed, would attack itself and thus be non-admissible.

Consider any assumption setA that attacks∆. A must attack one of the as-
sumptions¬L¬pi, ¬Lpi, or¬L¬Φ. However, ifA attacked any of¬L¬pi, ¬Lpi,
then∆ would immediately counter-attackA. Therefore, forA to be an assumption
set that can possibly render∆ non-admissible, it must make the same choices on
thepi’s as∆, and attack¬L¬Φ. ForA to attack¬L¬Φ, thenA must derive¬Φ,
by including, in addition to the assumptions from{¬L¬pi,¬Lpi}i=1,...,n already
chosen by∆, assumptions from the set{¬L¬qj,¬Lqj}j=1,...,m. Such choices can-
not be counter-attacked by∆ without making it self-attacking. Therefore, since
∆ is admissible, no suchA exists. This means that, for the given choices on the
pi’s in ∆, no choices for theqj ’s exist that make¬Φ true. In other words, for the
given choice of thepi in ∆, and for all choices of the truth values for theqj ’s, there
exists an assignment of truth values to therl’s that makesΦ true, which implies
thatΨ is necessarily true.

Conversely, assume that there is no admissible extension of the framework
corresponding toT derivingF above. Then, regardless of the choices for thepi’s,
there is always an attack on¬L¬Φ, deriving¬Φ, that cannot be counter-attacked
while keeping the candidate set of assumptions non-self-attacking. Then, by the
arguments presented above, the given 3-QBF formulaΨ cannot be true.

Again from Theorem 8, sceptical reasoning under the admissibility and prefer-
ability semantics in AEL is inco-NPNPNP

, which coincides withΠp
3. Πp

3-hardness,
and thereforeΠp

3-completeness, can be proven by a reduction from 3-QBF.
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Theorem 20 Sceptical reasoning in AEL under the admissibility semantics isΠp
3-

complete.

Proof: Membership follows from Theorem 8. To prove hardness, we use a re-
duction from 3-QBF to the co-sceptical reasoning problem under the admissibility
semantics.

We use the reduction in the proof of the previous Theorem 19, but extend the
theoryT constructed there to the theoryT ′ = T ∪ {L∧i ti}.

Any admissible set∆ must contain the assumptions¬L¬Φ andL
∧
i ti in order

for ∆ to be closed. Furthermore, any admissible extension ofT ′ must contain
∧
i ti

because otherwise it is attacked by¬L∧i ti without having a counter-attack. From
this fact and the above observations it follows thatT ′ has an admissible extension
iff the given 3-QBF formulaΨ is true. Given that if no admissible extension exists
all co-sceptical queries will be answered negatively, the above is equivalent to
the fact that¬∧i ti is not a sceptical consequence ofT ′ iff Ψ is true, i.e., the
construction is a log-space reduction from 3-QBF to co-sceptical reasoning under
the admissibility semantics.

Again from Theorem 8, in AEL, sceptical reasoning under the preferability

semantics is in co-NPNPNPNP

, which coincides withΠp
4. Πp

4-hardness, and therefore
Πp

4-completeness, can be proven by a reduction from 4-QBF.

Theorem 21 Sceptical reasoning in AEL under the preferability semantics isΠp
4-

complete.

Proof: Membership follows from Theorem 8. To prove hardness, we use a re-
duction from 4-QBF to the co-sceptical reasoning problem under the preferability
semantics.

Assume the following quantified boolean formulaΨ = ∃p1,. . ., pn ∀q1,. . ., qm
∃r1,. . ., rk ∀s1,. . ., so Φ, with Φ a formula in 3DNF over the propositional vari-
ablesp1, . . . , pn, q1, . . . , qm, r1, . . . , rk, ands1, . . . , so. We construct an AEL the-
ory T such thatΨ is true iff a particular sentenceF is not contained in some
preferred argument ofT .

The language ofT contains atomsp1,. . ., pn, q1,. . ., qm, andr1,. . ., rk, s1,. . ., so
as well as atomst1,. . ., tm, the latter intuitively holding iff a truth value for the
variablesq1,. . ., qm has been chosen. Finally, we have atomsv andw. The atom
v is used to block the truth assignment to theqj ’s andw is used to prohibit any
choices on assumptions{¬L¬rh,¬Lrh} in the preferred argument.
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T consists of the following sentences:

¬L¬pi → pi, (1)

¬Lpi → ¬pi, (2)

¬L¬qj ∧ ¬Lv → qj ∧ tj, (3)

¬Lqj ∧ ¬Lv → ¬qj ∧ tj, (4)

¬Ltj → v, (5)

¬L¬rh → rh ∧ w ∧ ¬Lw, (6)

¬Lrh → ¬rh ∧ w ∧ ¬Lw, (7)

Φ → v, (8)

for eachi = 1,. . ., n, j = 1,. . .,m, h = 1,. . ., k.
Now we claim that there exists a preferred extension not containingF =

∧
ti

iff Ψ is true.
First, one notes that an assumption set containing non-conflicting assumptions

from the set{¬L¬pi,¬Lpi} is an admissible set. Let∆ be a maximal such set.
Secondly, it is obvious that∆ can be expanded (in a non-trivial way) only by

adding the assumption¬Lv and assumptions from the set{¬L¬qj,¬Lqj}. Let us
call this expanded set∆′. Such a set∆′ is only admissible if we make choices
for all qj ’s because otherwise∆′ can be attacked by¬Ltj (using¬Ltj → v) for
which there is no counter-attack from∆′.

Thirdly, the set∆′ cannot be further expanded using assumptions from{¬L¬rh,¬Lrh},
because these assumptions lead to an immediate self-attack.

Fourthly, an assumption set∆′ containing assumptions from{¬L¬qj,¬Lqj}
together with¬Lv can only be admissible if¬Lv cannot be attacked by any as-
sumption set.

The only way to construct an attackA against¬Lv in ∆′, which is not im-
mediately counter-attacked by∆′, would be to use all assumptions in∆′ and as-
sumptions from{¬L¬rh,¬Lrh}. Note that such assumptions cannot be counter-
attacked by∆′. Now the only way to attack¬Lv would be to makev true, and in
order to do so, one has to makeΦ true.

Assuming now that∆′ is admissible means that for all possible choices for
the rh’s, Φ is not derivable, i.e., there is always a truth assignment to thesk’s
that makes¬Φ true. This means that∆ cannot be expanded by assumptions from
{¬L¬qj,¬Lqj} together with¬Lv, if under the truth assignment to thepi’s cor-
responding to the assumptions in∆, for all truth assignments to theqj ’s, there is
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always an truth assignment to therh’s that makesΦ true. In other words, if there
exists a preferred assumption set that does not render

∧
tj true underT , Ψ is true.

Conversely, let us assume thatΨ is true. Let∆ be an assumption set containing
assumptions from{¬L¬pi,¬Lpi} corresponding to a truth assignment to thepi’s
that makes∀q1,. . ., qm∃r1,. . ., rk∀s1,. . ., soΦ true. This assumption set cannot be
expanded to∆′ by assumptions from{¬L¬qj,¬Lqj} together with¬Lv, because
for any such expansion there exists a value assignment to therh’s which makes
Φ true, corresponding to a set of choices from{¬L¬rh,¬Lrh} which together
with ∆′ is an assumptions set that leads together withT to the derivation ofΦ
andv, hence attacking∆′. For this reason, there exists a preferred extension not
containing both¬Lv and choices from{¬L¬qj,¬Lqj}, and hence this preferred
extension does not contain

∧
tj.

Therefore, all reasoning problems are harder in AEL under the admissibility
and preferability semantics than under the stability semantics (see Table 2). In-
deed, credulous reasoning under admissibility and preferability semantics is one
level higher than under the stability semantics (Theorem 19); sceptical reason-
ing under the admissibility semantics is one level higher than under the stability
semantics (Theorem 20); sceptical reasoning under the preferability semantics is
two levels higher than under the stability semantics (Theorem 21).

Moreover, whereas reasoning under the stability semantics has the same com-
plexity in AEL as in DL, reasoning under the admissibility and preferability se-
mantics is harder in AEL than in DL. Indeed, sceptical reasoning under the prefer-
ability semantics and credulous reasoning under the admissibility and preferability
semantics are one level harder for AEL than for DL, and sceptical reasoning under
the admissibility semantics is two levels harder.

We note that various complexity results for theparsimoniousandmoderately
groundedsemantics for AEL are presented in [9]. It would be interesting to see
how the semantics for AEL provided by preferred/admissible arguments (for the
instance of the abstract framework for AEL) relate to the semantics of [9]. This is
however outside the scope of the present paper.

8 Conclusion and Discussion

We have studied the computational complexity of the credulous and sceptical rea-
soning problems under the new admissibility and preferability semantics for the
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abstract framework for default reasoning proposed in [1], for a number of con-
crete instances of the abstract framework, namely theorist, circumscription, logic
programming (LP), default logic (DL) and autoepistemic logic (AEL). These new
semantics are presented in [1] as “simpler” alternatives to the conventional stabil-
ity semantics for all instances of the framework (see Section 1 for a discussion of
this issue).

Table 2 summarises the results we have proven (for the admissibility and
preferability semantics) as well as existing results in the literature (for the sta-
bility semantics). In the table, “X -c.” stands for “X -complete.” We have proven
the results by appealing to properties of the frameworks, whenever possible. In
particular, we have used the properties (proven in [1]) that default logic and logic
programming are flat frameworks and that theorist and circumscription are normal
frameworks. In addition, we have introduced the new property that frameworks
are simple, and proven that theorist and circumscription satisfy such property.
Autoepistemic logic is a general framework in that it does not satisfy any special
property amongst the ones considered.

Framework Property Admissibility Preferability Stability
cred. scept. cred. scept. cred. scept.

AEL general Σp
3-c. Πp

3-c. Σp
3-c. Πp

4-c. Σp
2-c. Πp

2-c.
DL Σp

2-c. co-NP-c. Σp
2-c. Πp

3-c. Σp
2-c. Πp

2-c.
LP

flat
NP-c. P–c. NP-c. Πp

2-c. NP-c. co-NP–c.
Theorist simple & Σp

2-c. co-NP-c. Σp
2-c. Πp

2-c. Σp
2-c. Πp

2-c.
Circumscription normal Σp

2-c. co-NP-c. Σp
2-c. Πp

2-c. Σp
2-c. Πp

2-c.

Table 2: Overview of complexity results

The table shows that reasoning under the new semantics can be much harder
than reasoning under the conventional stability semantics. In particular, for AEL,
sceptical reasoning under the admissibility and preferability semantics is one and
two level harder, respectively, than under the stability semantics, whereas credu-
lous reasoning under both new semantics is one level harder than under the sta-
bility semantics. Also, for DL and LP, sceptical reasoning under the preferability
semantics is one level harder than under the stability semantics, whereas sceptical
reasoning under the admissibility semantics is one level simpler than under the
stability semantics, but it reduces to monotonic reasoning in the logic underlying
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the framework, thus becoming a trivial form of non-monotonic reasoning.
There appears to be a clash between these results and the intuition spelled out

in Section 1, that admissibility and preferability arguments are seemingly easier to
compute than stable extensions. However, our results are not as surprising as they
might at first appear. Since the admissibility and preferability semanticsdo not
restrict the number of extensions, one would expect that default reasoning under
these semantics is as hard as under the stability semantics. The higher complexity
of the sceptical reasoning problem under the preferability semantics is due to the
fact that in order to verify that an assumption set is preferred, one needs to check
thatnoneof its supersets is admissible.

Of course, our results do not contradict the expectation that in practice con-
structing admissible arguments is often easier than constructing stable extensions.
For example, given the propositional logic programP ∪ {p}, with P any set of
clauses not defining the atomp, the empty set for the queryp that can be con-
structed “locally”, without accessingP . Moreover, ifP ∪ {p} is locally strat-
ified or order-consistent [1],p is guaranteed to be a credulous consequence of
the program under the stability semantics. Indeed, in all cases where the stabil-
ity semantics coincides with the preferability semantics (e.g. for stratified and
order-consistent abstract frameworks) any sound (and complete) computational
mechanism for the admissibility semantics is sound (and complete) for the stabil-
ity semantics.

The “locality” feature of the admissibility semantics renders it a feasible alter-
native to the stability semantics in the first-order case, when the propositional ver-
sion of the given abstract framework is infinite. For example, given the (negation-
free) logic program:{q(f(X)); p(0)}, the empty set of assumptions is an admis-
sible argument for the queryp(0) that can be constructed “locally”, even though
the propositional version of the corresponding abstract framework is infinite.

The complexity results in this paper show that sceptical reasoning under ad-
missibility and preferability semantics is trivial and highly complex, respectively.
However, this does not seem to matter for the envisioned applications of this se-
mantics, because credulous reasoning only is required for these applications [18].
For example, in argumentation in practical reasoning in general and legal reason-
ing in particular, unilateral arguments are put forwards and defended against all
counterarguments, in a credulous manner. Indeed, these domains appear to be par-
ticularly well suited for credulous reasoning under the admissibility semantics. In
general, the results presented in this paper indicate that reasoning under the new
semantics is harder. On the positive side, they indicate that the new semantics
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allows us to encode more complex reasoning patterns than when reasoning with
the stability semantics.
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