Cooperative Sensing in Dynamic Environments*

Markus Dietl

Jens-Steffen Gutmann**

Bernhard Nebel

Institut für Informatik Universität Freiburg 79110 Freiburg, Germany {dietl,gutmann,nebel}@informatik.uni-freiburg.de

Abstract

This work presents methods for tracking objects from noisy and unreliable data taken by a team of robots. We develop a multi-object tracking algorithm based on Kalman filtering and a single-object tracking method involving a combination of Kalman filtering and Markov localization for outlier detection. We apply these methods in the context of robot soccer for robots participating in the middle-size league and compare them to a simple averaging method. Results including situations from real competition games are presented.

1. Introduction

Mobile robots usually can only perceive a limited area of their environment at a time. In general, sensors such as laser range finders (LRFs), ultrasonic sensors or cameras have a limited field of view, so an agent cannot sense all objects around him from one sensor frame. Furthermore, a robot does not know about objects that are occluded by other objects, e.g. by walls in an office environment.

There are two ways to overcome these limitations. For one, an agent can keep a history of sensor frames (or interpretations thereof) to reason about possible objects and their locations in the environment. For example, a robot can map an environment by maintaining an occupancy grid [14] where the grid cells represent possible object locations. However, if the environment is dynamic, the grid cells only reflect snapshots of situations when the data was recorded.

Another possibility is to deploy multiple robots in the environment, each with its own sensors, and to communicate their sensor informations to a module for multi-agent sensor fusion. This approach is especially useful for dynamic environments where moving objects are present that cannot be reliably tracked by a single robot.

This work addresses the second class of methods where multiple agents gather data about their environment, exchange them with a module for multi-agent sensor fusion, and extend their own view of the world with the information obtained from the sensor fusion module. We develop methods for two different kinds of scenarios in dynamic environments. One, where an unknown number of multiple objects have to be tracked by a group of robots under the assumption that the sensed data is noisy but reliable, and second, the tracking of a single object by a group of robots where sensor readings are noisy and unreliable.¹ In both cases we assume that each robot in the team knows its own position with high accuracy and that all sensor information is acquired by on-board sensors only.

We apply these methods to the RoboCup domain [10] for the middle size league where in our approach a team of robots maintains a consistent and accurate world model of team mates, opponents and the ball. Note, however, that the methods are general enough to apply to other domains, too, under the assumptions given above.

The paper is organized as follows. The next section presents our approach for tracking multiple and single objects by employing Kalman filtering and Markov localization methods. Results using this approach are reported in Section 3. In Section 4 we discuss related work and Section 5 concludes.

2. Multi Sensor Fusion

When developing an object tracking method, one usually has to deal with track initiation, track update including prediction and data association, and track deletion [1, 3, 4]. This section describes the steps in our system necessary for tracking objects in the RoboCup environment.

^{*}This work has been partially supported by *Deutsche Forschungsge*meinschaft (DFG), by Medien- und Filmgesellschaft Baden-Württemberg mbH (MFG), and by SICK AG.

^{**}New address: Sony Corporation, Digital Creatures Laboratory, Tokyo 141-0001, Japan. Email: gutmann@ieee.org

¹By reliable we mean that there are usually no incorrect measurements, that is, no false positives, whereas unreliable means that a robot might sense objects that are actually not present.

Fig. 1 depicts our perception module which is at the core of each robot. We refer to [7] for a complete description of this system. Briefly, a robot first localizes itself by matching a scan obtained by the LRF with an *a priori* line model of the RoboCup environment. Experiments show that this localization technique is very accurate (usually < 2 cm and $< 1^{\circ}$) and that it is faster and more robust than competing methods [8].

Fig. 1. Perception module running on each robot.

After estimating its own position, the robot extracts other players that are present in the field by discarding all scan points belonging to field walls and clustering the remaining ones. For each cluster the center of gravity is assumed to correspond to the center of another robot. Inherent in this approach is the systematic error due to the different robot shapes. However, it can be noted that measurements are usually reliable (no false positives).

Since our lasers are mounted at a level that prohibits the detection of the ball, we use a camera for obtaining information about where the ball is. Unfortunately our vision system has a limited quality and colors are difficult to train. Thus, ball observations are noisy and unreliable.

All players send their own position, the position of observed other players and the position of the ball (if detected) to a global sensor integration unit which in our case runs on a central computer outside the soccer field. Here the measurements are fused in the following way.

For a player's own position, no further actions have to be carried out since the robots already determined their own position with high accuracy. However, for each player a track is initiated for fusing player observations coming from its team mates.

For each player detected by a robot, a new track is initiated or, if the player can be associated with an already existing track, it is fused with this track. We use a geometric method for data association and Kalman filtering for data fusion. Tracks containing measurements from an own player are marked as *team mate*, all others as *opponent*.

The ball position is determined by a probabilistic integration of all ball measurements coming from the players. We use a combination of Kalman filtering and Markov localization for achieving maximum accuracy and robustness.

If no measurements can be associated with a track for a certain amount of time (e.g. 5 secs in our implementation), the track is deleted.

The fused positions of players and ball are sent back to all robots on a regular basis where they are integrated into each robot's world model. This enables a player to extend its own view with objects it does not currently perceive and also to know about which player is friend or foe. As a result, our players have a much greater knowledge of the world than when using local perception only. Especially knowing where the ball is, appears to be useful in almost all situations and we use the sharing of this information for developing sophisticated skills [22].

2.1. Multi-Object Tracking from Reliable Data

Consider the tracking of an *a priori* unknown number of objects by a team of robots under the assumption that the measurements are reliable but might be corrupted by Gaussian noise. This scenario occurs in the RoboCup environment when players extracted from the robot's range finders are fused in the global sensor integration module.

Each of our robots detects other players in the field from data recorded by the LRF and computes heading and velocity information based on the last few observations belonging to this player using differentiation. Position, heading and velocity of each object are then communicated to the multi-sensor integration module. Thus, the observation model is a random variable $\mathbf{x}_s = (x_s, y_s, \theta_s, v_s, \omega_s)^T$ with mean $\hat{\mathbf{x}}_s$ and covariance Σ_s where (x_s, y_s) is the position, θ_s the heading and v_s and ω_s are the translational and rotational velocities of the object respectively.

As our robots know their own position with high accuracy and the LRF provides accurate data, we assume that for player observations Σ_s is a constant diagonal matrix

$$\Sigma_s = diag(\sigma_{x_s}^2, \sigma_{y_s}^2, \sigma_{\theta_s}^2, \sigma_{v_s}^2, \sigma_{\omega_s}^2)$$
(1)

where diag(...) is a square matrix with its diagonal elements set to the given arguments and all other elements set to 0, and σ_{x_s} , σ_{y_s} , σ_{θ_s} , σ_{v_s} and σ_{θ_s} are constant standard deviations for position, heading and velocity which we determined through experiments.

Whenever a robot sends information about a player for which no already existing track can be found, i.e. if the distance to all existing tracks exceeds a certain threshold, a new track is initiated. Tracks are modeled as Gaussian variables \mathbf{x}_r with mean $\hat{\mathbf{x}}_r$ and covariance Σ_r . Thus, when initiating a new track, it is set to

$$\hat{\mathbf{x}}_r = \hat{\mathbf{x}}_s, \qquad \Sigma_r = \Sigma_s$$
 (2)

For predicting the state of a track over time, we use a simple motion model where we assume that the object moves and rotates with constant speed. Given a certain time interval t, the track is projected according to

$$\hat{\mathbf{x}}_{r} \leftarrow F_{s}(\hat{\mathbf{x}}_{r}, t) = \begin{pmatrix} \hat{x}_{r} + \cos(\hat{\theta}_{r})\hat{v}_{r}t \\ \hat{y}_{r} + \sin(\hat{\theta}_{r})\hat{v}_{r}t \\ \hat{\theta}_{r} + \hat{\omega}_{r}t \\ \hat{v}_{r} \\ \hat{\omega}_{r} \end{pmatrix}$$
(3)
$$\Sigma_{r} \leftarrow \nabla F_{s}\Sigma_{r}\nabla F_{s}^{T} + \Sigma_{a}(t)$$
(4)

where ∇F_s is the Jacobian of F_s and $\Sigma_a(t)$ is the covariance of some additive Gaussian noise with zero mean:

$$\Sigma_a(t) = diag(\sigma_{x_a}^2 t, \sigma_{y_a}^2 t, \sigma_{\theta_a}^2 t, \sigma_{v_a}^2 t, \sigma_{\omega_a}^2 t)$$
(5)

with σ_{x_a} , σ_{y_a} , σ_{θ_a} , σ_{v_a} and σ_{ω_a} being some constant standard deviations which we estimated through experiments.

Now, when a new measurement $\hat{\mathbf{x}}_s$ arrives from one of our robots which corresponds to a track \mathbf{x}_r , we fuse observation and track according to:

$$\hat{\mathbf{x}}_r \leftarrow (\Sigma_r^{-1} + \Sigma_s^{-1})^{-1} (\Sigma_r^{-1} \hat{\mathbf{x}}_r + \Sigma_s^{-1} \hat{\mathbf{x}}_s) \quad (6)$$

$$\Sigma_r \leftarrow (\Sigma_r^{-1} + \Sigma_s^{-1})^{-1} \tag{7}$$

Note, that since our sensor model does directly observe the system state, we can utilize the simplified Kalman filter equations found in Maybeck [13].

The success of a Kalman filter depends on a reliable data association method. A greedy method for finding a correspondence partner for each player observed by our robots is to search the global world model for the track whose predicted mean is closest to the observation. However, such an approach does not always yield optimal results. Since players are extracted from a range scan and sent to the sensor integration module all at once, one can do better by simultaneously matching all players observed by a robot.

Fig. 2 illustrates this. On the left, two observed players s_1 and s_2 are matched one after another to the tracks r_1 and r_2 in the global world model using the greedy method. If we assume that multiple assignments of players to a track are not allowed then, after matching s_1 to r_2 , the second observation s_2 either has to be matched to track r_1 producing a large error or, if this distance exceeds the threshold for object assignment, a new track is initiated. On the other hand, an optimal solution is possible as shown on the right side of Fig. 2 where s_1 and s_2 are simultaneously assigned to r_1 and r_2 respectively.

In our implementation we use a geometric method developed by Veloso *et al.* [21] that assigns measurements to tracks by minimizing the sum of squared error distances between observations and tracks. To be more precise, we search for a set of pairs (s_i, r_i) where observation s_i is assigned to track r_i , and where the sum of squared distances

$$\sum_{i=1}^{n} dist(s_i, r_i)^2 \tag{8}$$

Fig. 2. Solving the correspondence problem. Greedy method (a) and optimal solution (b).

is minimal. This is done by first computing a distance table of all (s_i, r_i) pairs. This table is then searched for a combination where no two observations correspond to the same track, the number of assignments is maximal, and where (8) is minimized.

This is the *weighted matching* problem which could be solved using an algorithm with polynomial time. However, in practice, it turns out that a simple generate and test method with a straight-forward heuristics can be applied. The reason is that only a few different pairs are possible when a distance threshold for object assignment is employed. In our experiments and in real game situations we observed usually no more than 4 or 5 possible combinations.

Although this geometric method already yields reasonable results in practice, we want to note that the application of a probabilistic method such as joint probabilistic data association filters (JPDAF) [1, 4, 17] might still improve our results.

2.2. Single-Object Tracking from Noisy Data

Often the task is not to track multiple objects but a single object where observations are both noisy and unreliable. Consider the case of keeping track of the ball in the RoboCup scenario. There can only be one ball in the field during a game. However, since for ball recognition one usually employs vision, accuracy and robustness are in general low compared to LRFs which – in our case – are mounted above a height where they can detect the ball.

Again we use a Kalman filter as described in Section 2.1 for accurately tracking the ball. Each of our agents regularly sends ball observations to the global sensor integration module. However, the vision sensor is only able to determine the heading to the ball with good accuracy but fails to provide accurate range data, especially if the ball is far away from the robot. For a ball observation $\hat{\mathbf{x}}_b$ we cannot assume a constant covariance Σ_b due to this characteristics.

Given the range $\hat{r}_b = \sqrt{(\hat{x}_b - \hat{x}_{rob})^2 + (\hat{y}_b - \hat{y}_{rob})^2}$ and heading $\hat{\phi}_b = \tan^{-1}(\hat{y}_b - \hat{y}_{rob})/(\hat{x}_b - \hat{x}_{rob})$ of the ball with respect to the robot located at position $(\hat{x}_{rob}, \hat{y}_{rob})$, we model the uncertainty $\Sigma_{r\phi}$ of the ball position as

$$\Sigma_{r\phi} = diag(\hat{r}_b \sigma_{r_b}^2, \sigma_{\phi_b}^2) \tag{9}$$

where σ_{r_b} and σ_{ϕ_b} are some constant standard deviations we empirically determined. From this, we can compute the observation error as

 $\Sigma_b = \nabla P \Sigma_p \nabla P^T$

(10)

where

$$P(\hat{r}_{b}, \hat{\phi}_{b}, \hat{\theta}_{b}, \hat{v}_{b}, \hat{\omega}_{b}) = \begin{pmatrix} \hat{x}_{rob} + \hat{r}_{b} \cos(\hat{\theta}_{b} + \hat{\phi}_{b}) \\ \hat{y}_{rob} + \hat{r}_{b} \sin(\hat{\theta}_{b} + \hat{\phi}_{b}) \\ \hat{\theta}_{b} \\ \hat{v}_{b} \\ \hat{\omega}_{b} \end{pmatrix}$$
$$\Sigma_{p} = diag(\hat{r}_{b}\sigma_{r_{b}}^{2}, \sigma_{\theta_{b}}^{2}, \sigma_{\theta_{b}}^{2}, \sigma_{v_{b}}^{2}, \sigma_{v_{b}}^{2})$$

and σ_{θ_b} , σ_{v_b} and σ_{ω_b} are further constant standard deviations we estimated by experiments.

For track initiation we create a new track \mathbf{x}_r and set it to the last ball observation:

$$\hat{\mathbf{x}}_r = \hat{\mathbf{x}}_b, \qquad \Sigma_r = \Sigma_b$$
 (11)

For predicting the ball state over time we use a similar function as for player movements but assume that the ball rolls in a straight line and slows down with deceleration a_b ,

$$\hat{\mathbf{x}}_{r} \leftarrow F_{b}(\hat{\mathbf{x}}_{r}, t) = \begin{pmatrix} \hat{x}_{r} + \cos(\hat{\theta}_{r})(\hat{v}_{r} - a_{b}t')t' \\ \hat{y}_{r} + \sin(\hat{\theta}_{r})(\hat{v}_{r} - a_{b}t')t' \\ \hat{\theta}_{r} \\ \hat{v}_{r} - a_{b}t' \\ \hat{\omega}_{r} \end{pmatrix}$$
(12)
$$\Sigma_{r} \leftarrow \nabla F_{b}\Sigma_{r}\nabla F_{b}^{T} + \Sigma_{a}'(t)$$
(13)

where $t' = \min(t, \hat{v}/a_b)$ and $\Sigma'_a(t)$ is a similar constant covariance matrix as $\Sigma_a(t)$ to flatten the Gaussian distribution over time. Finally, fusing new observations to this track is analogous to equations (6) and (7).

It should be noted that a Kalman filter with this sensor model produces more accurate results when fusing observations from different viewpoints than e.g. a simple averaging method. This can be seen from Fig. 3 where the ball estimates of two players (indicated by grey circles) are integrated. Even though there is a large range error, the Kalman filter can effectively triangulate measurements from two separate viewpoints to localize the object much more precisely, because the angular error is small.

The Kalman filter for ball tracking presented in this section assumes noisy but reliable data, that is, no outliers are integrated. However, in our system we sometimes observed completely wrong ball measurements by one of our robots due to reflections on walls or poorly trained colors. One possibility to filter out such outliers is to use a validation gate that discards measurements whose Mahalanobis distance is larger than a certain threshold d, where d is chosen from a χ^2 distribution.

Fig. 3. Kalman filter for integrating ball observations.

Such a validation gate, however, has the problem that when one robot is constantly sending out wrong observations and the Kalman filter for some reasons is tracking these wrong observations and filters out all others, the global ball position becomes unusable. Furthermore, when the robot stops sending wrong observations it takes several cycles until other observations are taken into account again. For these reasons we decided to develop a more sophisticated filter method described in the next section.

2.3. Markov Localization as Observation Filter

In localization experiments carried out on the mobile robot *Rhino* [19], Gutmann, Fox, Burgard and Konolige found out that Markov localization is more robust, while Kalman filtering is more accurate when compared to each other [6]. They propose to use a combination of both methods to get a maximum robust and accurate system.

In this paper, we follow the same idea and show how to use a Markov process as an observation filter for our Kalman filter. We use a grid-based approach with a 2dimensional (x, y) grid where each cell z reflects the probability p(z) that the ball is in this cell. We initialize this grid with a uniform distribution before any observation is processed. The integration of new ball measurements is then done in two steps: prediction and update.

In the prediction step, ball motion is modeled by a conditional probability $p(z \mid z')$ which denotes the probability that the ball is at position z given that it was at position z'. Upon ball motion, the new ball position is calculated as:

$$p(z) \quad \leftarrow \quad \sum_{z'} p(z \mid z') p(z') \tag{14}$$

Grid-based Markov localization can be computational expensive if the size and especially the dimension of the grid is large. For efficiency, we only use a 2-dimensional grid that does not store any heading or velocity information of the ball, which means that we cannot accurately estimate the position when the ball moves. For the motion model $p(z \mid z')$ we assume that all directions are equally possible and velocities are normally distributed with zero mean and

covariance σ_v^2 . Therefore, $p(z \mid z')$ can be expressed as a Gaussian distribution around z':

$$p(z \mid z') \sim N(z', diag(\sigma_v^2 t, \sigma_v^2 t))$$
 (15)

where t is the time passed during ball motion.

In the update step, a new ball observation z_b is fused into the probability distribution according to Bayes' law:

$$p(z) \leftarrow \frac{p(z_b \mid z)p(z)}{\sum_{z'} p(z_b \mid z')p(z')}$$
(16)

The sensor model $p(z_b \mid z)$ determines the likelihood of observing z_b given the ball is at position z. We model it according to:

$$p(z_b \mid z) \sim N(\hat{z}_b, \Sigma'_b)$$
 (17)

where \hat{z}_b are the (x, y) components of ball observation $\hat{\mathbf{x}}_b$ as defined in Section 2.2 and Σ'_b is the upper left 2×2 sub matrix of Σ_b as calculated in equation (10).

Maintaining the multi-modal probability grid makes it very easy to distinguish which ball measurement should be integrated by the Kalman filter and which not. After updating the grid with a new measurement we determine the most likely ball position, that is, the cell with the highest probability. Only measurements that are close to the most likely position are fused into the Kalman filter and all others are considered as outliers. Furthermore, if the current state of the Kalman filter does not correspond to the most likely ball position in the grid, we re-initialize the Kalman filter using this position. By using this dual probabilistic localization method we achieve high accuracy through Kalman filtering together with high robustness through Markov localization. Experimental results using this technique are presented in the next section.

3. Results

The methods presented in the previous section have been implemented on our mobile robot soccer team (see Fig. 4) and have been successfully employed since our participation in the RoboCup 1999 world competition. For our first participation in 1998 we developed a similar but much simpler approach for fusing measurements from different robots [7]. In this approach, a greedy nearest-neighborhood method handled data association. For computing object positions, a weighted averaging of observations from the different players was used. In this section we compare this simple averaging method to our new probabilistic approach from Section 2.

In the case of multi-object tracking, we generally observed a more consistent world model for the new tracking method with a slightly higher run time due to the more

Fig. 4. CS Freiburg players. Each one is a *Pioneer I* robot equipped with *SICK* LRF, *Cognachrome* vision system, *Libretto* notebook, *WaveLan* wireless ethernet, and semi-professional kicking device developed by *SICK AG*. For an overview, see [7, 22].

sophisticated data association method. However, the differences in the world model were only marginal which we attribute to the fact that after solving the correspondence, the methods are very similar.

On the other hand, we got much better results for our new single-object tracking algorithm compared to the simple algorithm. Therefore, our main focus in this section is on results obtained by the single-object tracker.

3.1. An Ambiguous Situation

We now show how the algorithm for tracking single objects performs in an ambiguous situation. Fig. 5 displays a setup where two robots, Player 1 and 3, see the ball at the true location in front of the goal but one robot, Player 2, gets it all wrong and thinks the ball is somewhere on the center line.

Fig. 5. Player 2 observes a false positive on the center line.

If we assume that all three players send their ball observations to the global sensor integration module on a regular basis, we get the probability distributions as shown in Fig. 6.

When integrating the first three measurements, all of them are fused by the Kalman filter since none of them has been detected to be an outlier yet. Note that after updating the grid with the 2nd measurement, the probability distribution has a sharp peak at the center line caused by the low uncertain measurement of Player 2 which thinks the ball is close. After integrating more measurements, the probabil-

Fig. 6. Evolution of the position probability grid.

ity distribution concentrates more and more on the true location of the ball and further measurements from Player 2 (left graph on bottom row in Fig. 6) cannot out-weigh the true location of the ball anymore. Thus, after the first integration of observations from all players, subsequent readings from Player 2 are filtered out and the Kalman filter tracks the ball based on observations from Player 1 and 3 only.

3.2. Real Game Scenarios

Another example is shown in Fig. 7. This situation has been recorded in the final game against the CoPS Stuttgart team [15] during the German national *VisionCup* competition held in October 1999.

Fig. 7. Simple averaging method for fusing ball observations.

Depicted is a situation where the ball is at the wall close to Player 3, Player 3 and 5 observe the ball approximately at the right location but Player 4 thinks the ball is right in front of the opponent goal. The simple averaging method computes a global ball position somewhere between all these measurements which is shown as a white circle in Fig. 7. It is obvious that this global ball position is unusable and - if taken seriously by Player 3 – could lead to a disadvantageous situation where, after Player 3 moving towards the global ball position, the opponent player close to Player 5 could take over ball control.

Using our single-object tracking method, the measurements from Player 5 are reliably filtered out and the global ball position actually represents the true location of the ball (see Fig. 8). Taking this information into account, Player 3 can safely approach the ball and clear the situation by pushing the ball towards the opponent's half.

Fig. 8. Single object tracking using combination of Markov localization and Kalman filtering.

In a further investigation, we examined data from the RoboCup 2000 competition held in Melbourne, Australia. During this competition, our robots recorded a total of about 120,000 ball observations in 10 games with a total playing time of more than 2 hours.² It turns out that in only about 0.7% of all ball observations (about 50 secs) our Markov localization approach detected an outlier. This low number can be explained by the fact that false positive measurements are rare and simultaneous observations by 2 or more robots do not occur all the time. If we compare our dual approach to one where a Kalman filter alone integrates all measurements then in 72% of the filtered cases the ball position changes by more than 30 cm. Of course it is hard to tell which method is closer to the real world as there is no ground truth information from the games.

3.3. Accuracy

In order to find out about the accuracy of our methods we conducted several experiments in our laboratory. We did three experiments each employing three robots observing the ball: one where both, ball and robots, are stationary, one were the ball is stationary but robots move, and one were robots are stationary and the ball rolls over the field.

Fig. 9 displays the setup for the stationary ball together with the measurements of the individual robots. Shown are the position of the robots for the static situation. For the experiment with moving robots we used the same setup but let the robots rotate at constant speed or joysticked them

²See http::/www.informatik.uni-freiburg.de/~robocup for watching log files of CS Freiburg's competition games in a Java applet.

Fig. 9. Setup for determining accuracy for stationary ball: the ball is placed at the center of the field with 3 robots observing it. Small crosses, squares and diamonds indicate the ball measurements of the individual robots.

around in the soccer field. From a total of 2000 measurements we computed the mean distance error to the true ball position using the simple averaging method and our new Kalman filter approach.

Furthermore, Fig. 10 shows the setup for the rolling ball situation. The ball was kicked from the lower left corner to the upper right one. In this experiment we computed the mean distance error to the actual ball trajectory.

In all of these experiments there were no unreliable ball measurements, thus all observations were integrated into the Kalman filter.

Fig. 10. Setup for determining accuracy for rolling ball: the ball is kicked from the lower left corner to the upper right one. The individual measurements of 3 robots are displayed by small crosses, squares and diamonds respectively.

Results are printed in Fig. 11. If both, ball and robots, are stationary, the Kalman filter computes a significantly better estimate (10 cm) of the ball position than the simple averaging one (49 cm).

If the ball stays stationary but robots move, the accuracy of the Kalman filter degrades (30 cm) but still stays ahead of the averaging one (46 cm). One reason why the accuracy degrades comes from the fact that when robots move (e.g. rotate) the ball is not visible to all robots at all times anymore, thus the ball state sometimes is computed from observations originating from one or two robots only.

Finally, in the rolling-ball situation, our Kalman filter approach reports a mean error of 38 cm to the true ball trajectory whereas the error of the simple averaging one is 48 cm.

In short, our Kalman filter method is a more accurate ap-

Fig. 11. Mean error obtained using the simple averaging method and our Kalman filter approach. Error bars indicate the 95% confidence interval of the mean.

proach than the simple averaging one with a mean distance error of 10-40 cm depending on the state of ball and robots.

4. Related Work

Our work is related to two research areas: object tracking and multi-robot systems.

Kluge *et al.* [11] track multiple moving objects around a wheelchair by employing a maximum-flow algorithm for data association. We use a similar geometric method but also probabilistically integrate the measurements using motion and sensor models.

Schulz *et al.* [17] use JPDAFs [4] for tracking multiple moving targets around their robot and employ particle filters for achieving robust state estimation. However, they report a running time of 2 scans per second which is infeasible on our system where each robot sends all of its observations every 100ms.

Multi-robot systems gained significant attraction in recent years. For all different aspects of mobile robot navigation, multi-robot solutions have been developed that make use of the exchange of information about the robots' beliefs and their intentions [2, 5, 12, 20].

Algorithms for multi-robot mapping have been presented in [12, 20] where the task is to map an unknown environment with multiple robots by simultaneous localization and mapping (SLAM). While this is a challenging research area, current methods are limited to almost static environments. In our approach, we take the much simpler assumption that all robots know their position at all times, thus the problem is reduced to cooperatively estimating the positions of other objects in the world.

Probably, the most related work to ours is that of other teams in the RoboCup middle size league. The CMU Hammerheads RoboCup team also uses Kalman filters for object state estimation and reports promising results on the accuracy of this method [18]. However, they do not apply a motion model to the states, thus observations have to be taken at the same time. Furthermore, they do not consider data association and use validation gates for detecting outliers. We use a more sophisticated outlier detection method which is superior to simple validation gates.

A similar probabilistic approach to ours is that of the Agilo team [16]. They use an iterative optimization technique for estimating object positions [9] and employ JPDAFs for data association [16]. However, they do not deal with outliers in the way we do.

5. Conclusion

We developed new methods for tracking multiple and single objects from noisy and unreliable sensor data and compared them to a simple averaging method. Experiments results show that the methods are more robust and more accurate than the simple averaging one due to better probabilistic modeling of motion and sensing of objects, and a dual sensor integration approach involving Markov localization and Kalman filtering. The accuracy of our balltracking approach lies within 10-40 cm depending on the situation of ball and robots.

Our approach is very similar to a decentralized filter with feedback to local filters [3, pp. 371-377]. As decentralized filters can be sub-optimal, it would be interesting to compare our results to a central filter that reads all sensor data from our robots.³ This is part of future work.

References

- Y. Bar-Shalom and T. Fortmann. *Tracking and Data Association*. Academic Press, 1988.
- [2] M. Bennewitz, W. Burgard, and S. Thrun. Optimizing schedules for prioritized path planning of multi-robot systems. In *Int. Conf. on Robotics and Automation (ICRA'01)*, Seoul, Korea, 2001.
- [3] R. G. Brown and P. Y. Hwang. Introduction to Random Signals and Applied Kalman Filtering. Wiley & Sons, 1996.
- [4] I. Cox. A review of statistical data association techniques for motion correspondence. *Int. Journal of Computer Vision*, 10(1):53–66, 1993.
- [5] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-robot localization. *Autonomous Robots*, 8(3), 2000.
- [6] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of localization methods. In *Proc. International Conference on Intelligent Robots and Systems* (*IROS'98*), Victoria, Oct. 1998.
- [7] J.-S. Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor, and T. Weigel. The CS Freiburg team: Playing robotic soccer on an explicit world model. *AI Magazine*, 21(1):37–46, 2000.
- [8] J.-S. Gutmann, T. Weigel, and B. Nebel. Fast, accurate, and robust self-localization in polygonal environments. In *Proc. International Conference on Intelligent Robots and Systems* (*IROS*'99), Kyongju, Oct. 1999.

- [9] R. Hanek and T. Schmitt. Vision-based localization and data fusion in a system of cooperating mobile robots. In *Int. Conf. on Intelligent Robots and Systems*, 2000.
- [10] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. RoboCup: A challenge problem for AI. *AI Magazine*, 18(1):73–85, 1997.
- [11] B. Kluge, C. Köhler, and E. Prassler. Fast and robust tracking of multiple moving objects with a laser range finder. In *Int. Conf. on Robotics and Automation*, Seoul, Korea, 2001.
- [12] K. Konolige, J.-S. Gutmann, D. Guzzoni, R. Ficklin, and K. Nicewarner. A mobile robot sense net. In *Proc. SPIE* 3839 Sensor Fusion and Decentralized Control in Robotic Systems II, Boston, Sept. 1999.
- [13] P. S. Maybeck. The Kalman filter: An introduction to concepts. In I. Cox and G. Wilfong, editors, *Autonomous Robot Vehicles*, pages 194–204. Springer-Verlag, 1990.
- [14] H. Moravec and A. Elfes. High resolution maps from wideangle sonar. In Proc. International Conference on Robotics and Automation (ICRA'85), Mar. 1985.
- [15] N. Oswald, M. Brecht, T. Buchheim, G. Hetzel, G. Kindermann, R. Lafrenz, P. Levi, M. Muscholl, M. Schanz, and M. Schule. CoPS-team description. In M. Veloso, E. Pagello, and H. Kitano, editors, *RoboCup-99: Robot Soccer World Cup III*, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2000.
- [16] T. Schmitt, S. Buck, and M. Beetz. Agilo RoboCuppers 2001: Utility- and plan-based action selection based on probabilistically estimated game situations. In *RoboCup* 2001: Robot Soccer World Cup V, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.
- [17] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In *Int. Conf. on Robotics and Automation (ICRA'01)*, Seoul, Korea, 2001.
- [18] A. Stroupe, M. Matrin, and T. Balch. Distributed sensor fusion for object position estimation by multi-robot systems. In *Int. Conf. on Robotics and Automation (ICRA'01)*, 2001.
- [19] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, *AI-based Mobile Robots: Case studies of successful robot systems*. MIT Press, Cambridge, MA, 1998.
- [20] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In *Int. Conf. on Robotics and Automation* (*ICRA'00*), 2000.
- [21] M. Veloso, M. Bowling, S. Achim, K. Han, and P. Stone. The CMUnited-98 champion small-robot team. In M. Asada and H. Kitano, editors, *RoboCup-98: Robot Soccer World Cup II*, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.
- [22] T. Weigel, W. Auerbach, M. Dietl, B. Dümler, J.-S. Gutmann, K. Marko, K. Müller, B. Nebel, B. Szerbakowski, and M. Thiel. CS Freiburg: Doing the right thing in a group. In P. Stone, G. Kraetzschmar, and T. Balch, editors, *RoboCup* 2000: *Robot Soccer World Cup IV*, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

³We did not consider this approach due to the amount of data that would have to be transmitted through wireless communication during a game.