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Abstract

Recently, Helmert and Geffner proposed the context-enhan-
ced additive heuristic, where fact costs are evaluated relative
to context states that arise from achieving first a pivot condi-
tion of each operator. As Helmert and Geffner pointed out,
the method can be generalized to consider contexts arising
from arbitrary precedence constraints over operator condi-
tions instead. Herein, we provide such a generalization. We
extend Helmert and Geffner’s equations, and discuss a num-
ber of design choices that arise. Drawing on previous work
on goal orderings, we design a family of methods for auto-
matically generating precedence constraints. We run large-
scale experiments, showing that the technique can help sig-
nificantly, depending on the choice of precedence constraints.
We shed some light on this by profiling the behavior of all
possible precedence constraints, using a sampling technique.

Introduction
Helmert and Geffner (2008) devise a powerful new heuristic
for satisficing planning (no optimality guarantee), called the
“context-enhanced additive heuristic” hcea. That heuristic is
based on a formulation of the additive heuristic hadd (Bonet
and Geffner 2001) where fact costs are evaluated relative to
particular context states. These states arise from achieving
first a “pivot condition” of each operator, namely the condi-
tion referring to the same variable as the operator’s effect.
Helmert and Geffner (2008) show that hcea generalizes the
causal graph heuristic hCG (Helmert 2004), and that it gen-
erally outperforms its competitors, i.e., hadd, hCG, and hFF

(Hoffmann and Nebel 2001).
As Helmert and Geffner (2008) point out, there is no rea-

son to limit context states to pivot conditions. Intuitively,
the context for a condition q should be taken from another
condition p if achieving p may affect the cost of achieving
q. Such dependencies can be captured in the form of prece-
dence constraints (arbitrary partial orders) over the condi-
tions. Helmert and Geffner give the following example. In
a Grid-like domain, an operator that “unlocks a door D at
a location L with key K” could have the form “locked(D),
at(L), have(K) → unlocked(D)”. If K is currently at a differ-
ent location L’, then the cost of applying this operator should
include the cost for moving from L’ to L. This corresponds
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to first achieving “have(K)” and then “at(L)”, i.e., we should
have the precedence constraint “have(K) < at(L)”.

We herein devise what we call the precedence constraints
contexts heuristic hpcc, which determines precedence con-
straints in a pre-process to planning, and generalizes hcea to
make use of them. In this way, hpcc realizes Helmert and
Geffner’s idea. We answer several research questions:

How to determine the precedence constraints? A nat-
ural answer is to draw on previous work on goal orderings.
Koehler and Hoffmann (2000) define a “reasonable order”
p <r q if, to achieve p, one must delete q. Hence it is
“reasonable” to achieve p first (so as to avoid having to
re-achieve q). For our purposes, achieving p increases the
cost of achieving q, which clearly is relevant to the heuris-
tic. Note that “have(K) <r at(L)” in the above example. We
also consider known generalizations (Hoffmann, Porteous,
and Sebastia 2004; Richter, Helmert, and Westphal 2008),
resulting in a family of 7 automatic pre-processing methods
deriving precedence constraints.

How exactly to extend hcea? Extending Helmert and
Geffner’s equations is non-trivial, and involves a number of
design decisions, which we discuss. Most importantly, we
identify a possible pathological behavior. Due to the inter-
play of the approximations made, it may happen that the cost
estimate for achieving just the pivot, from the original state,
is more than the cost estimate for achieving all conditions
(including the pivot), from their respective context states.
We devise two alternative fixes avoiding this behavior.

How does the extended heuristic perform in practice?
We run a large set of experiments evaluating the various pa-
rameters of our design, and the performance compared to
hcea. It turns out that the scale of the effect on performance
is generally not dramatic, below or within 1 order of magni-
tude. However, the method can help significantly, and leads
to improved coverage in several domains. The choice of
precedence constraints is highly critical. The strength of our
7 variants varies considerably across, and often even within,
domains. To shed some light on this, we sample from the
space of all possible sets of precedence constraints. We ex-
amine the distribution of search space size. Amongst other
things, this provides a picture of “where we are” and what
further advantages could potentially be achieved by design-
ing alternative methods for deriving precedence constraints.



Planning Formalism and Notations
Our notations follow those of Helmert and Geffner (2008).
A planning task is a tuple (V, s0, s∗, O). Here, V is a set of
variables v with finite domains Dv; s0 is the initial situation,
given as a state over V , i.e., a function that maps each v into
a value s(v) ∈ Dv; s∗ is the goal, in the form of a partial
state over V ; and O is a set of operators, mapping between
states. For convenience, we use some specialized notations
for states. A fact is an assignment v = d. The set of all facts
is denoted with P . We often interchange variable values
with facts, and we treat (partial) states as sets of facts. For
a fact p, by var(p) and val(p) we denote the variable and
value associated with p, respectively. By s(p) we denote the
fact q ∈ s where var(p) = var(q) (intuitively, “the value
of var(p) in s”). By s[p] we denote the state that is like s
except that var(p) is assigned to val(p).

Our notation for operators is slightly unusual, but con-
venient for our purposes herein. In terms of PDDL ter-
minology, the operators are obtained by moving the action
precondition into the effect conditions, and by generating
a separate effect for each effect literal. Hence, each oper-
ator o ∈ O consists of a set of rules r : Zr → xr. In
each rule, the effect xr is a fact, the condition Zr is a set of
facts, and there is exactly one pivot condition x′′r ∈ Zr where
var(x′′r ) = var(xr). The latter assumption is not limiting
because, if x′′r is not present in Zr, then the rule can be re-
placed with a set of rules, one for each value in Dvar(xr).
We denote the set of all rules (of all o ∈ O together) with R.

The application of an operator o in a state yields a new
state s′ that is like s except that variable v is assigned value
d whenever r : Zr → v = d is a rule of o and Zr ⊆ s. We
assume that operators are not self-contradictory, i.e., that s′

is always well-defined. A plan is a sequence of operators
that maps the initial state into a final state sG with s∗ ⊆ sG.

Context-Enhanced Additive Heuristic
As mentioned, our approach extends the context-enhanced
additive heuristic hcea, which in turn extends the additive
heuristic hadd. We introduce both hadd and hcea, in a
slightly changed notation which is useful to establish more
directly the connection to our extended heuristic hpcc.

We set hadd(s) := Σx∈s∗h
add(x|s) where hadd(x|s′) :={

0 if x ∈ s′

1 + minr:xr=x[Σy∈Zr hadd(y|s′)] if x 6∈ s′
(1)

This definition of hadd anticipates the use of a context
state s′ relative to which the cost value of the conditions y ∈
Zr is computed. Since s′ is never modified in the recursion,
it is always equal to the actual state s. This is not so for hcea,
defined by hcea(s) := Σx∈s∗h

cea(x|s) where hcea(x|s′) :={
0 if x ∈ s′

1 + minr:xr=x[hcea(x′′r |s′)+ if x 6∈ s′

Σy∈Zr\{x′′
r }h

cea(y|s[scea(x′′r |s′)(y)])]
(2)

In this definition, the cost value for x′′r – the pivot condi-
tion – is evaluated relative to the same context state s′. How-
ever, the other conditions y ∈ Zr \ {x′′r} are evaluated rel-
ative to the state that results from achieving x′′r in s′. More
precisely, scea(x′′r |s′) (defined below) is an approximation

of that state. To ensure that only a small number of differ-
ent context states is generated, scea(x′′r |s′) is projected onto
var(y): it is only considered how the context differs from s
with respect to var(y). Note that projection is an additional
approximation. Using it, every context state ever considered
differs from s in at most one variable value. Precisely, in
every recursive instance of hcea(x|s′) and scea(x|s′) either
s′ = s or s′ differs from s at most in the value of var(x).1

It remains to define scea(x|s′), i.e., to specify the approx-
imation of the state that arises when achieving a fact x from
a context state s′. We set scea(x|s′) :={

s′ if x ∈ s′

scea(x′′rm |s′)[rm] if x 6∈ s′
(3)

where rm is the rule that yields the minimum in Eq. 2, and
s[rm] denotes s modified by, in this order, Zrm , xrm , and the
set of “side effects” of rm, i.e., the effects of those rules r′ of
the same operator where Zr′ ⊆ Zrm . In words, we recurse
to approximate the state resulting from achieving the pivot
of the “best” rule rm as per Eq. 2, and we apply to that state
an approximation of the changes made by rm itself.

Precedence Constraints Contexts Heuristic
We define the hpcc heuristic function, extending hcea to han-
dle arbitrary precedence constraints. We first give an impor-
tant notation, then we introduce the extended equations, then
we discuss some alternative definitions. We analyze the re-
lation to hadd and hcea.

Context Functions
We will consider in the next section how to generate prece-
dence constraints. More precisely, we will define strategies
that construct, in a pre-process, a context function. This is
a partial function ctx : R × P 7→ P , where ctx(r, q) = p
indicates that the context of condition q ∈ Zr should be the
state that results from achieving p ∈ Zr.

For defining hpcc, it does not matter how the context func-
tion is constructed. Our only assumption is that the function
does not have cycles in the corresponding graph of prece-
dence constraints, i.e., the graph with nodes Zr and edges
{(p, q) | ctx(r, q) = p}. Each node in this graph has at
most one parent (ctx is a function), so this graph is a for-
est. We denote with ZL

r := {y | y ∈ Zr, not ex. y′ ∈
Zr s.t. ctx(r, y′) = y} the leaves of that forest, and with
ZR

r := {y | y ∈ Zr, ctx(r, y) is undef.} its roots.
The ctx function is called trivial if it is not defined for any

r and q; ctx is called pivot-based if, for all r ∈ R, ctx(r, x′′r )
is undefined and, for all y ∈ Zr \ {x′′r}, ctx(r, y) = x′′r . We
will see that, for trivial respectively pivot-based ctx func-
tions, hpcc coincides with hadd respectively with hcea.

Definition of hpcc

The overall heuristic function hpcc is defined by hpcc(s) :=
Σx∈s∗h

pcc(x|s), with hpcc(x|s′) :={
0 if x ∈ s′

1 + minr:xr=x[Σy∈Zr hpcc(y|cpcc(s′, r, y))] if x 6∈ s′
(4)

1Accordingly, Helmert and Geffner (2008) define equations
hcea(x|x′) and scea(x|x′) instead, where var(x) = var(x′). Our
definition is more explicit about the use of projection.



The structure of this equation corresponds in a straight-
forward way to Eq. 2. The only difference is that we do
not explicitly distinguish between the context states for the
pivot condition x′′r vs. all other conditions. Indeed the equa-
tion does not immediately give any hint on how the context
states are defined, leaving this to the function cpcc(s′, r, y).
That function defines the context state from which y should
be achieved, given that r is applied to achieve x from context
state s′. This new context state does not depend on x (the
effect of r is not relevant to achieving its conditions), which
is why the function takes only s′, r, and y as its arguments.
Formally, we define cpcc(s′, r, y) :={

s[s′(y)] if ctx(r, y) is undef.
s[spcc(p|cpcc(s′, r, p))(y)] if ctx(r, y) = p

(5)

Notice first that, as for hcea, the context state is projected
onto y, ensuring a small number of different context states.

If ctx(r, y) is undefined – the first case of Eq. 5 – then the
context state for y should be the same as the context state
for r, namely s′. If, on the other hand, ctx(r, y) = p then
the context state for y should be the state that results from
achieving p, in its respective context state. The context state
for p is captured by recursing to cpcc(s′, r, p).2 The role of
the spcc function is similar to the role of scea for hcea. The
way it is used here, it defines an approximation of the state
that results from achieving p in its context state.

More generally, spcc has as arguments some fact x and
context state s′. Recall that the context function can be un-
derstood as a forest over Zr, whose leaves are denoted with
ZL

r . We define spcc(x|s′) :={
s′ if x ∈ s′

spcc(y0|cpcc(s′, rm, y0))[r
m], where y0 ∈ ZL

rm if x 6∈ s′
(6)

with rm being the rule that yields the minimum in Eq. 4.
As for the first case, if x is already true in s′ then there
is nothing to do (x is already achieved in its context). In
the other case, we consider the “best” rule rm for achiev-
ing x, according to Eq. 4. What is the outcome state of
applying this rule? We need to (1) achieve its conditions
in the order dictated by ctx (by the precedence constraints),
and then (2) apply the changes made by rm itself. (1) is
captured by spcc(y0|cpcc(s′, rm, y0)): this is the state that
results from achieving a leaf condition in its respective con-
text state. Since y0 is a leaf, it is achieved “last”. Of course,
there may be several leaves, with no order enforced by the
precedence constraints. We choose an arbitrary one.3 (2) is
then captured in the same way as for hcea.

Example 1 Reconsider the Grid example mentioned in the
introduction. We have r : locked(D), at(L), have(K) →
unlocked(D). In the current context state s′, the key is
at L′ 6= L. We wish our heuristic to account for the cost
of moving from L′ to L. This should be accomplished by
achieving first have(K), yielding a new context state in
which we then achieve at(L). We can reflect this by set-
ting ctx(r, at(L)) = have(K). Consider the cost estimate

2This recursion terminates because ctx does not have cycles.
3Since there are several other and more important design de-

cisions (to be discussed shortly), we did not yet experiment with
alternative solutions to this issue.

for at(L). By Eq. 4, this is hpcc(at(L)|cpcc(s′, r, at(L))).
By Eq. 5, cpcc(s′, r, at(L)) arises from achieving have(K)
in cpcc(s′, r, have(K)). Clearly, the best rule rm here is
the rule that picks K up at L′, so according to Eq. 6,
which enforces the conditions of rm, we get at(L′) ∈
spcc(have(K)|cpcc(s′, r, have(K))). So cpcc(s′, r, at(L))
= s[at(L′)]; and hpcc(at(L)|s[at(L′)]) yields the cost for
moving from L′ to L.

Note here that the ability to account for the cost for mov-
ing from L′ to L is quite remarkable, and well beyond the
capabilities of, e.g., the relaxed plan heuristic.

Alternative Definitions
We have given above the most straightforward and intuitive
versions of the extended equations. Having a closer look,
one finds that there are several noteworthy alternatives.

First, note in Eq. 6 the following departure from hcea. In
Eq. 3, the effect of rm is applied to the state in which the
pivot condition x′′r was achieved. In our terms, this is a root
condition, rather than a leaf as taken by Eq. 6 – hcea orders
the pivot before all other conditions (which is formally re-
flected in pivot-based context functions).

Computing spcc based on a root condition does not make
much sense intuitively. Presumably this point was over-
looked in hcea, where the “context functions” are very sim-
ple. Still, this being the configuration of our direct predeces-
sor heuristic, we consider it as an option:

use y0 ∈ ZR
rm in Eq. 6 (6B)

For hpcc to “strictly” generalize hcea, the two heuristics
should coincide whenever the ctx function is pivot-based.
Theorem 2 below shows that this holds true for hpcc based
on Eq. 6B. It is not true for Eq. 6:
Proposition 1 There exist a task (V, s0, s∗, O) with pivot-
based context function ctx, and a state s, so that hpcc(s)
based on Eq. 6 is different from hpcc(s) based on Eq. 6B.
Proof Sketch: It is easy to construct an example where
achieving a leaf condition has a side effect overlooked when
computing spcc according to Eq. 6B.

Hence hpcc based on Eq. 6 does not strictly generalize hcea.
We will show later that the empirical difference between
Eqs. 6 and 6B is moderate, with a slight advantage for Eq. 6.

Our next observation may come as somewhat of a shock.
It may happen that the heuristic cost of the pivot element x′′r ,
relative to the original context state s′, is higher than the sum
of the heuristic costs of all conditions y together (including
x′′r itself), relative to their actual context states cpcc(s′, r, y):
Proposition 2 There exist a task (V, s0, s∗, O), context
function ctx, and state s, so that recursion on hpcc(s) re-
sults in an instance of hpcc(x|s′) where hpcc(x′′r |s′) >
Σy∈Zr

hpcc(y|cpcc(s′, r, y)).
Proof Sketch: We construct an example where x′′r is much
harder to achieve from s′ than from s, in particular s(x) 6=
s′(x). The construction has ctx(r, x′′r ) = y, i.e., the con-
text of x′′r , cpcc(s′, r, x′′r ), is computed from cpcc(s′, r, y). In
the latter, s′ is projected onto var(y), losing the distinction
between s(x) and s′(x). We get cpcc(s′, r, x′′r )(x) = s(x),
from which the claim follows.



In other words, due to the approximations that we inherit
from hcea – projection, specifically – it may yield a bet-
ter estimate to simply achieve the pivot in s′, rather than
to achieve the whole condition in the contexts derived from
the precedence constraints! Clearly, such behavior is patho-
logical. A simple remedy is:

max over given expression and hpcc(x′′r |s′) in Eq. 4 (4B)

Here we insert the pivot as a kind of fallback option. Alter-
natively, we can set:

max over given expression and hpcc(x′′r |s′)+
Σy∈Zr\{x′′

r }h
pcc(y|cpcc(s′, r, y)) in Eq. 4 (4C)

This alternative “tries the pivot both ways”, max’ing over its
use with context state s′ vs. context state cpcc(s′, r, x′′r ).

All three alternatives have merits. Eq. 4 is most natural.
Eq. 4B is the least intrusive fix for the pathological behav-
ior identified by Proposition 2. Eq. 4C makes use of addi-
tional information (the cost of the other conditions) ignored
by Eq. 4B. In our experiments, we try all these options.

Relation to hadd and hcea

We build on the following observation: (*) in any recursive
instance of hpcc(x|s′) and spcc(x|s′), s′ is either identical
to s or differs from s only in var(x). This can easily be seen
by induction on the recursion structure. We get:
Theorem 1 Let (V, s0, s∗, O) be a task, and ctx be the triv-
ial context function. Then, regardless whether Eq. 4 or 4B
or 4C is used, and regardless whether Eq. 6 or 6B is used,
hpcc coincides with hadd.
Proof Sketch: Given that ctx(r, y) is undefined for all y, we
can insert the first case of Eq. 5 into the second case of Eq. 4,
obtaining the expression Σy∈Zr

hpcc(y|s[s′(y)]). With (*),
for y = x′′r the context state s[s′(y)] simplifies to s′, and for
all other y that state simplifies to s. The resulting equation
is obviously equivalent to Eq. 1. Eq. 6 and 6B are irrelevant
to this argument. As for Eq. 4B and 4C, the contexts on both
sides of the maximization are the same.

Theorem 2 Let (V, s0, s∗, O) be a task, and ctx be the
pivot-based context function. Then, regardless whether
Eq. 4 or 4B or 4C is used, hpcc based on Eq. 6B coincides
with hcea, provided the tie breaking for the choice of the
rules rm is identical.
Proof Sketch: We simplify the definitions of hpcc and spcc

so that they coincide with those of hcea and scea. Consider
first Eq. 4. With (*) and since ctx(r, x′′r ) is undefined, the
context state for x′′r is s′, like in Eq. 2. For all other y, since
ctx(r, y) = x′′r , by Eq. 5 and (*) we get cpcc(s′, r, y) =
s[spcc(x′′r |cpcc(s′, r, x′′r ))(y)] = s[spcc(x′′r |s′)(y)]. As de-
sired, this is identical (modulo function names) to the
context s[scea(x′′r |s′)(y)] used in Eq. 2. Consider now
Eq. 6B, returning spcc(y0|cpcc(s′, rm, y0))[rm] where y0 ∈
ZR

rm . By prerequisite, ZR
rm = {x′′rm} so we ob-

tain spcc(x′′rm |cpcc(s′, rm, x′′rm))[rm]. Since ctx(r, x′′rm)
is undefined, and with (*), like above this simplifies
to spcc(x′′rm |s′)[rm]. The latter corresponds exactly to
scea(x′′rm |s′)[rm] because, by prerequisite, ties in the choice
of rm (if several rm yield the minimum) are broken in the
same way. As for Eq. 4B and 4C, the contexts for x′′r on both
sides of the maximization are the same.

Generating Precedence Constraints
Given a planning task, how should we automatically gen-
erate precedence constraints (and thus a context function)?
Clearly, the choice of constraints will determine the qual-
ity of the heuristic function. But what are “good” con-
straints? On which basis should we order action conditions?
Herein, we pursue a natural answer suggested directly by
Helmert and Geffner’s (2008) Grid example: we leverage on
previous work in the area of goal (and sub-goal) orderings
(Koehler and Hoffmann 2000; Hoffmann, Porteous, and Se-
bastia 2004; Richter, Helmert, and Westphal 2008).

Consider again the rule “locked(D), at(L), have(K) → un-
locked(D)”, and the desired precedence constraint have(K)
< at(L). This is exactly what Koehler and Hoffmann (2000)
term a reasonable order. Two goals p and q are reason-
ably ordered p <r q if achieving p involves, as a side ef-
fect, deleting q. In this situation, achieving q first results
in wasted effort because, once p is achieved, q must be re-
established. Hence the “reasonable” order. From our per-
spective here, the order is also entirely appropriate, since
achieving p may affect the cost of achieving q, making it
more costly. In the Grid example, to achieve have(K) we
must delete at(L). Informing the heuristic of this fact enables
it, as we have seen in Example 1, to account for the cost of
moving from K’s current position to L.

Given the above, a natural question to ask is whether we
can also leverage on the known generalizations of Koehler
and Hoffmann’s goal orderings. Hoffmann et al. (2004) and
Richter et al. (2008) order landmarks, facts that must be true
at some point in any plan. Beside (an adaptation of) reason-
able orders, such facts can be necessarily ordered p <n q if
any plan that achieves q must achieve p beforehand. Note
that, in this setting, p is a support’for q, unlike the conflicts
underlying reasonable orders: ordering p before q may de-
crease the cost of q. Since the heuristic is not admissible,
such a cost decrease may yield a more accurate estimate.

Although the connections discussed above are intuitive,
one should keep in mind that goal orders were developed in
a very different context and with very different intentions.
A priori we have no idea how they affect performance when
used for the generation of context functions. Hence our gen-
eral rationale is to try every possible configuration, as long
as it has at least some (perhaps far-fetched) motivation. Our
implementation is based on that of Richter et al., which is
recent and features rich techniques for detecting sound nec-
essary orders. We experiment with the following variants:

1. Aorg: In this variant we detect reasonable and necessary
orders between arbitrary pairs of facts (regardless whether
or not they are landmarks or goals). This is the most
straightforward technique and matches well the intuitions
given above. Note that, in our setting, the contexts con-
cern facts participating in the same operator condition, so
that it does not matter whether they are goals/landmarks.

2. Ainv: Like Aorg except that we invert the necessary or-
ders: if the landmarks analysis returns an ordering p <n q
then we set q < p. This is motivated by an observation in
the Grid example. If L lies on the best path towards K, we
get at(L) <n have(K), the opposite of the order we desire.



3. Lorg: Like Aorg except that we order only pairs of land-
marks, hence using exactly the orderings generated by the
code of Richter et al. While there is no reason to em-
phasize on landmarks, this version is of a generic interest
and serves to show whether the distinction between land-
marks/no landmarks makes an empirical difference.

4. Linv: Like Lorg except that necessary orders are inverted
as in Ainv.

5. INorg: Like Aorg except that we use only necessary or-
ders p <n q. This serves to test the effect of necessary
orders in isolation.

6. INinv: Like INorg but inverting the orders.

7. IR: Like INorg but taking only reasonable orders p <r q,
hence testing their effect in isolation.

One of these options is chosen by the user. The orderings
are then computed in a pre-process to planning, resulting in
a partial order “<” over the facts.4

To generate the ctx function, we look at each rule r and
each q ∈ Zr in turn. We construct the set C which contains
all p ∈ Zr where p <∗ q and there does not exist p′ ∈ Zr

with p <∗ p′ <∗ q; “<∗” here denotes the transitive closure
of “<”. We set ctx(r, q) := p where p ∈ C. If |C| > 1, then
a choice needs to be made. We choose p arbitrarily, moti-
vated by the observation that this situation rarely occurs: in
tests with all seven strategies and 31 planning benchmark
domains, |C| > 1 happened at all only in about half of the
217 combinations of strategy/domain, and where it did hap-
pen, the fraction of such cases was mostly below 5%.

Experiments
We run experiments in all 31 domains from the International
Planning Competitions up to 2006 (IPC 1–5), apart from
those solved trivially (Movie and Gripper). The experiments
were conducted on a heterogeneous cluster of Intel Xeon and
AMD Opteron CPUs, ranging from 2.2 GHz to 2.83 GHz.
(The magnitude of the experiments precluded experiments
on homogeneous machines.) To allow fair comparisons, for
each given planning task, all planner configurations were
run on the same CPU. The memory limit was 1.75 GB in
all cases. All heuristic functions are implemented within
Fast Downward (Helmert 2006), and all were run in exactly
the same search algorithm, greedy best-first search with de-
ferred evaluation and (sometimes, depending on the experi-
ment) preferred operators. We examine three questions:

1. How does the configuration of hpcc – Eq. 4 vs. Eq. 4B vs.
Eq. 4C, and Eq. 6 vs. Eq. 6B – affect performance?

2. How does the variant of precedence constraints – Lorg
vs. Linv vs. Aorg vs. Ainv vs. INorg vs. INinv vs. IR –
affect performance?

3. How does hpcc perform compared to hcea?

If we vary all parameters in combination, we get 3 ∗ 2 ∗ 7 =
42 versions of hpcc, which is too much for a comprehensive

4Reasonable orderings may cause cycles; these are broken by
removing the culprit pairs p <r q.

IR Linv
Domain Eq. 4 Eq. 4B Eq. 4C Eq. 4 Eq. 4B Eq. 4C
Airport +2/−1 +3/−2 +2 +5 +4
Depot −2 −1
FreeCell −2 +1 +3/−2 −1
Grid −1 +1
Logistics-1998 −1 −2 −1 −1
Miconic-ADL +1 +1
MPrime −1 +1
Openstacks +1 +1 +12
Philosophers +1
Pipesworld-NoTankage −1 −1
Pipesworld-Tankage −1 −1 +1 −2
PSR-Large +1
Trucks −1 −1 +1
total −3 −4 +7 +2 +4 +10

Table 1: Improvement in coverage when using Eq. 6 rather
than Eq. 6B. An entry like “+2/−1” means that two in-
stances are solved with Eq. 6 but not with Eq. 6B, and the
opposite is true for one instance. For all empty entries and
all IPC 1–5 domains not shown, the same set of instances
was solved with Eq. 6 and Eq. 6B.

analysis within the given space. Instead, we separate ques-
tion 1 from questions 2 and 3. We first examine the effect
of different configurations, fixing just 2 possible variants of
precedence constraints. Based on the outcome, we fix a best
configuration, which we then use for answering questions 2
and 3, where we compare all 7 variants of precedence con-
straints against hcea. We will see that we can often improve
on hcea. However, the extent of the improvement is moder-
ate, and behavior is usually not consistent across the 7 vari-
ants. We shed some light on this with an analysis based on
sampling from all possible sets of precedence constraints.

Which configuration of hpcc to use?
We evaluate the effect of using the different variants of our
equations. We do not use preferred operators since we are
exclusively concerned with the relative behavior of the dif-
ferent variants. We restrict the third parameter of hpcc – the
method for generating precedence constraints – arbitrarily to
the 2 options IR and Linv. For each combination of domain
and setting of two parameters, we examine what happens as
we change the value of the free parameter. Precisely, we
consider pairs of possible values x and y of the free param-
eter, and examine how performance gets better/worse when
using x rather than y. We summarize this performance delta
in terms of coverage.

Table 1 presents our data for the use of Eq. 6 rather than
Eq. 6B. Observe first that this choice affects coverage in less
than half of our domains (13 out of 29). For the affected do-
mains, the results are not entirely conclusive, but there is an
advantage for Eq. 6, i.e., for defining context states based on
tree leaves rather than tree roots. The advantage is most con-
sistent for IR and Eq. 4C; overall (see bottom row), Eq. 6 has
an advantage in four of the six possible settings of the other
parameters. We hence choose Eq. 6 for our experiments in
the subsequent section.

For the three different variants of Eq. 4, we need to com-
pare all three pairs of values. First, we consider the pair
Eq. 4B vs. Eq. 4, i.e., we consider the advantage of using our
straightforward fix for the pathological behavior identified in
Proposition 2. This is a story quickly told: in 120 combina-
tions of domain and surrounding parameter settings, there is
only a single instance that is solved with Eq. 4 but not with



IR Linv
Domain Eq. 6 Eq. 6B Eq. 6 Eq. 6B
Airport +5/−1 +4/−1 +12/−1 +15
Blocks +2 +2
Depot +2 +1
Driverlog +2 +2
FreeCell +2/−1 +1/−1 +2/−1 +1/−1
Grid −1
Miconic-ADL −1
MPrime +1 +1
Openstacks −1 +15 +4
Pathways +1/−2 +1/−2
Philosophers −37 −38
Pipesworld-NoTankage +1/−1 −1 −2 −1
Pipesworld-Tankage +2 +1/−1 +1/−2 +1/−2
PSR-Small +1 +1
Rovers +3/−1 +3/−1 −1 −1
Storage −1 −1
Trucks +2 +1/−1
total −20 −31 +22 +16

Table 2: Improvement in coverage when using Eq. 4B rather
than Eq. 4C (notation as in Table 1).

Eq. 4B, namely in Pipesworld-NoTankage when using IR
and Eq. 6; but even there, Eq. 4B is better overall, solving
two instances not solved with Eq. 4.

Somewhat surprisingly perhaps, Eq. 4C – our slightly
more involved fix to Eq. 4 – does not fare nearly as well
compared to Eq. 4. In 15 combinations of domain and sur-
rounding parameter settings, a total of 63 instances is solved
with Eq. 4 but not with Eq. 4C. This clearly indicates that
Eq. 4B is the more reliable fix.

Table 2 compares the two fixes to Eq. 4 directly and in
detail. Note that this parameter setting has more impact,
with 17 affected domains rather than the 13 for Table 1. For
IR, Eq. 4C has a big advantage overall (bottom row). Note,
however, that this is almost exclusively due to a single do-
main, Philosophers, which has a rather particular structure.
Counting the number of individual domains where one or
the other method is in the advantage, we get 10 vs. 3 do-
mains for Eq. 4B with IR and Eq. 6, and 6 vs. 4 domains
for Eq. 4B with IR and Eq. 6B. Focussing on Linv, we get
significant overall advantages for Eq. 4B, based on several
domains rather than just a single one. That said, the number
of “winning” domains is almost equal, with 4 vs. 4 in Linv
with Eq. 4 and 3 vs. 4 in Linv with Eq. 4B.

Our choice for the subsequent experiments is to go with
Eq. 4B, motivated in part by its slight superiority over Eq. 4C
as per Table 2, and motivated more strongly by its much
more reliable behavior vs. Eq. 4, as outlined above.

How does hpcc perform compared to hcea?
We now fix the configuration to use Eqs. 4B and 6. We
examine the performance of the 7 variants for generating
precedence constraints. Since preferred operators yield a
huge improvement for overall performance (for any of the
heuristics tested), we switch them on.

We provide at the end of this subsection a brief summary
of a direct comparison between hpcc and hcea. Our more de-
tailed results compare against what we call hsim: the heuris-
tic function that results from feeding pivot-based ctx func-
tions into hpcc using Eq. 6B. The functions hcea and hsim

are, in principle, identical. However, due to practical dif-
ferences, for an accurate assessment of how hpcc fares com-
pared to hcea, it is more sensible to compare to hsim.

First, Theorem 2 is conditioned on having identical tie

Domain Lorg Linv Aorg Ainv INorg INinv IR BestOf
Airport +5/−4 +10 −5 +6 +1/−5 +10 +6/−1 +14
Assembly +1 +1 +1 +1 +1 +1 +1 +1
Depots +1/−1 +1 +1/−2 +1/−1 +1/−2 +1/−1 +2/−1 +3
FreeCell +2 +3/−2 +2 +2/−1 +2 +3 +2 +4
Mystery −3 −3 −3 −3 −3 −3 −3 −3
Optical-T −1 −1 −1 −1 −1 −1 −1 −1
Pathways +1 +1 +1 +1/−1 +1 +1 +1/−1 +1
Philos. −37 −32 −32 −38
Pipe-NoT +3/−4 +3/−6 +3/−2 +4/−2 +3/−3 +4/−5 +3/−4 +4/−1
Pipe-T +6/−1 +6/−1 +8/−1 +10/−2 +6 +7/−2 +5/−2 +11/−1
PSR-L −1
Rovers −1
Schedule +1 +1 +7/−1 −1 −1 +1/−1 −1 +8
Storage −1 −1 −1 −1 −1 −1
TPP +6 +6 +7 +8 +7 +8 +6 +8
Trucks +3 +2 +4 +2 +2 +6
total +14 +21 −24 −8 +6 −9 −25 +54

Table 3: Improvement in instances solved when using vari-
ants of hpcc rather than hsim (notation as in Table 1). BestOf
returns, for each instance, the best result obtained with any
of the variants for generating precedence constraints.

breaking for choosing the rules rm, which is not the case in
our independent implementation of hpcc. Hence the search
spaces incurred by hcea and hsim may differ. We measured,
for every instance solved by both hcea and hsim, what we
call the expansions improvement for hcea vs. hsim: the num-
ber of states expanded with hcea, divided by the number of
states expanded with hsim. We take the geometric mean
over all instances of each domain. The results range be-
tween 0.356 (Driverlog, hcea in the advantage) and 1.486
(Trucks, hsim in the advantage). The geometric mean over
all domains is 0.963, indicating a slight advantage for hcea.

Second, node expansion is around 5 times faster for hcea

than for hsim. This is very likely to be only due to a lack
of optimization: the implementation of hcea is quite sophis-
ticated, and in principle there is no reason why hsim should
be slower than hcea. The only runtime overhead of hpcc

should result from the use of more complex ctx functions.5
Comparing to hsim allows to account for exactly that.

Table 3 shows, in analogy to Tables 1 and 2, the coverage
improvement one gets from using a variant of hpcc rather
than hsim. Table 4 complements this in terms of the aver-
age expansions improvement, showing the geometric mean
for each domain and variant. We provide data also for a
hypothetical BestOf version that returns, for each instance,
the best result obtained with any of the hpcc variants. This
shows the potential of hpcc when abstracting from the need
to choose one of our 7 variants of precedence constraints. It
also nicely illustrates how very complementary these vari-
ants are, with greatly varying benefits even for individual
instances within the same domain.

From a quick glance at Tables 3 and 4, one can draw the
following main conclusions:
• The choice of precedence constraints is a critical one,

with particular variants yielding advantages in some cases
but disadvantages in others.

• The scale of the effect on performance is generally not
dramatic, below or within one order of magnitude.

• In about half of the domains, hpcc can bring significant
improvements.
5Note that the maximization used in Eqs. 4B and 4C may con-

tribute to such an overhead; but not for pivot-based ctx functions
as in hsim, where both sides of the maximization are the same.



Domain Lorg Linv Aorg Ainv INorg INinv IR BestOf
Airport 0.706 1.360 0.716 1.187 0.743 1.028 0.879 2.182
Assembly 0.835 0.835 1.082 0.850 1.082 0.851 0.835 1.268
Blocks 0.996 1.141 0.997 1.154 0.996 1.049 1.127 1.374
Depots 0.882 2.048 1.499 1.194 0.787 1.633 1.042 2.624
Driverlog 1.197 1.197 1.100 1.100 1.245 1.114 1.090 1.269
FreeCell 0.946 1.007 1.004 1.000 0.948 0.985 0.928 1.455
Grid 0.994 0.987 1.025 2.521 1.513 1.212 2.189 2.647
Log 0.802 0.858 0.805 0.858 0.800 0.812 0.858 0.890
Mic-ADL 0.999 0.996 1.061 1.045 1.000 1.003 1.082 1.186
Mic-Sim 1.209 1.198 1.602 3.554 1.018 1.126 3.554 3.554
Mic-STR 2.591 2.843 1.451 2.843 1.083 1.118 2.843 2.846
MPrime 0.818 0.818 0.813 0.818 0.795 0.795 0.818 0.818
Mystery 0.871 0.871 0.860 0.871 0.826 0.826 0.871 0.871
Openst 1.028 1.029 1.036 1.030 1.017 1.030 1.057 1.063
Optical-T 0.596 0.596 0.662 0.434 0.688 0.600 0.358 0.688
Pathways 1.042 1.042 1.042 1.000 1.042 0.999 1.044 1.060
Philos. 0.722 0.722 0.054 0.133 0.671 0.146 0.041 0.759
Pipe-NoT 0.856 0.647 0.737 0.960 0.853 0.734 0.745 1.807
Pipe-T 0.752 0.846 0.723 0.839 0.899 0.688 0.789 1.770
PSR-L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001
PSR-M 1.008 1.000 1.000 1.000 1.000 1.000 1.000 1.010
PSR-S 1.007 0.994 1.012 1.003 1.016 1.005 1.020 1.043
Rovers 1.000 0.992 0.878 0.991 0.994 0.979 1.004 1.216
Satellite 1.028 1.024 0.920 1.146 1.036 1.011 1.225 1.272
Schedule 0.956 1.052 1.942 1.044 0.993 1.035 1.026 2.262
Storage 0.882 0.699 0.929 0.785 0.909 0.781 0.958 1.025
TPP 2.742 2.815 2.814 2.519 2.702 2.707 2.905 3.381
Trucks 1.160 1.161 0.785 2.526 0.674 1.686 1.564 3.634
Zenotravel 0.848 0.848 0.848 0.848 0.848 0.848 0.848 0.848

Table 4: Average expansions improvement, i.e., number of
expansions for hsim divided by number of expansions for
hpcc, per domain and variant of hpcc.

• Except in the rather exceptional Philosophers domain, to-
tal coverage increases for all variants (Lorg +14, Linv
+21, Aorg +13, Ainv +24, INorg +6, INinv +23, IR +13).

• The relative strength of the variants depends considerably
on individual instances even within domains. BestOf has
better coverage resp. better average expansion than that of
any of the single variants in 7 resp. 24 of the 29 domains.

A rough grouping of the domains is as follows:
No major effect. In Miconic-ADL, Openstacks, all versions
of PSR, and Rovers, hpcc vs. hsim does not make much of a
difference (to varying extents).
Much worse. In Philosophers and Optical-Telegraph, hpcc

fares much worse. Note that these are domains of a rather
specialized structure, encoding automata transition rules
into life-cycles of planning actions.
Slightly worse. In Logistics, MPrime, Mystery, Storage,
and Zenotravel, hpcc fares slightly worse. In the 4 trans-
portation variants, the scale of the disadvantage is almost
constant across variants and even across domains. This is an
interesting contrast to Miconic, whose transportation struc-
ture is quite similar. We get back to this shortly.
Slightly better. In Assembly, Blocksworld, Driverlog, Free-
Cell, Pathways, and Satellite, hpcc fares slightly better.
Much better. In Grid, Miconic-Simple, Miconic-STRIPS,
Pipesworld-Tankage, TPP, and Trucks, hpcc fares much bet-
ter (in Trucks, 2 variants are worse in average expansion, but
this does not yield lower coverage whereas all other variants
increase coverage). For our motivating example Grid, the
improvement is somewhat expected. For the Miconic do-
mains, an explanation is the presence of reasonable orders

boarded(p) <r lift-at(f). This is a useful ordering of condi-
tions for actions releasing a passenger p to her destination
floor f, accounting for the cost of moving to f from p’s ori-
gin floor. In other transportation domains (c.f. above) these
orders are less likely to be found because transportables may
be picked up from several locations (not only their origin).
Mixed. In Airport, Depots, Pipesworld-NoTankage, and
Schedule, significant gains or losses are possible depending
on hpcc variant and individual instance.

In Assembly, FreeCell, and the Pipesworld domains,
sometimes coverage improvement looks better than that of
average expansions. This is partly due to a few instances
solved by everyone where hsim has the smallest search
space. Another factor is heuristic function runtime. We mea-
sured the ratio between expanded nodes per second for hsim,
divided by that number for each variant; we took the median
from every domain, ignoring trivial instances. The geomet-
ric mean across variants is 1.055 for Assembly (indicating a
slight slowdown), but 0.583 for FreeCell and 0.214 for the
two Pipesworlds, indicating a significant speed-up (the rea-
son for the latter is not clear to us, at the time of writing).

Comparing directly to hcea, we can solve 13 instances
more. BestOf has better coverage in Depots, FreeCell,
Pathways, both Pipesworlds, Schedule, Storage, TPP, and
Trucks; hcea has better coverage in Miconic-ADL, Mystery,
Optical-Telegraph, and Satellite. Recall, however, that Be-
stOf chooses the configuration on a per-instance basis. This
hypothetical ability plays a big role here. No single variant
has better coverage than hcea. Of the individual domains,
the ones where improvements are achieved are: Pathways
(all variants); Schedule (Aorg); Storage (Linv); TPP (all
variants); and Trucks (Ainv).

Can we do better than this?
The primary purpose of this research is to improve on hcea

search space size through more complex ctx functions. That
has been achieved, but only to a relatively moderate extent.
Is this due to the limitations of the approach, or due to our
particular instantiation? Could we do better by design-
ing different methods for generating precedence constraints?
Towards answering this question, we sample from the space
of all possible sets of precedence constraints, for some fixed
benchmark instances. From each of our domains we selected
1 instance and ran hpcc 100000 times using in each run a ran-
domly generated set of precedence constraints. For 13 of the
domains, the results were interesting (feasible in runtime but
not trivial in number of expansions). In only 2 of these 13
domains did some of the 100000 samples yield considerably
better performance than the best among our variants of hpcc.
This is no proof, but gives some indication that we are close
to the limitations of the approach.

It is interesting to consider the results in more detail;
see Table 5. Our instances from Airport, Blocksworld,
Pipesworld-Tankage, and Rovers all behave similarly to the
plots shown in Table 5 (a),(b),(c): the range of performance
is large, and BestOf is among the best runs while hadd and
hcea are more in the middle. In Philosophers and TPP, the
picture is similar except that hcea (which after all is also a
variant of hpcc) does better than the more complex versions.
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In Openstacks, there is a large range of performance but all
hpcc variants do perfectly. In Storage, the range of perfor-
mance is insignificant, i.e., all 100000 samples are close to-
gether. Driverlog and Assembly, finally, are the 2 domains
where there is considerable room for improvement.

We have in the meantime re-designed the experiment, run-
ning 5 different instances from each domain. At the time of
writing, only 5000 runs per instance were finished. From
this preliminary data, we can see that there often is a lot of
variance across instances within a domain. For example, in
the new Pipesworld-NoTankage instances BestOf is supe-
rior to hcea half the time, and vice versa on the other half.
Apart from this, the results largely confirm our observations
above, with BestOf being in the lead in many domains, and
a large fraction of random samples doing several orders of
magnitude worse than any of the heuristics. The latter in-
dicates that there is significant potential for any modified
methods to deteriorate performance – more so, it seems, than
for improving it.

Discussion
We answer the question how to extend hcea to general prece-
dence constraints, and how this performs when leveraging
on goal ordering techniques. We obtain moderate improve-
ments in a number of benchmarks. We have given some
indication that improving this based on different techniques
for generating precedence constraints will be difficult.

In our view, the most exciting line of future research is
trying to obtain an understanding of why particular kinds
of orders yield good/bad performance in particular domains.

One option might be to characterize the common properties
of random orders underlying particular regions of the plots
shown in Table 5.
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