
Continual Planning and Acting in Dynamic Multiagent
Environments

Michael Brenner and Bernhard Nebel

Albert-Ludwigs-Universität
Freiburg, Germany

{brenner, nebel}@informatik.uni-freiburg.de

Abstract. In highly dynamic environments, e.g. multiagent systems, finding op-
timal action plans is practically impossible since individual agents lack important
knowledge at planning time or this knowledge has become obsolete when a plan
is executed. It is often more practical in such environments to enable agents to ac-
tively extend their knowledge as part of their plans and then revise their decisions
in light of these update. In this paper, we describe a new principled approach to
Continual Planning, i.e. the integration of Planning, Execution and Monitoring.
The algorithm deliberately postpones parts of the planning process to later stages
in an agent’s plan-act-monitor cycle and automatically determines when to switch
back to refining or revising a partly executed plan.
To evaluate our (and others’) Continual Planning techniques we have developed
a simulation environment where formal MA Planning domains are not only used
by planning agents but also as the basis of the simulation model such that agents
can not only plan, but execute actions and perceive their environment. Our exper-
iments show that, using continual planning techniques, deliberate action planning
can be used efficiently even in complex multiagent environments.

1 Introduction

Agents acting in the real world usually face a highly dynamic and only partially ob-
servable environment. Consequently, their beliefs about the current state of the world
are limited, uncertain or simply incorrect. Traditionally, AI Planning research has ad-
dressed planning under such circumstances in the subfields of conditional planning [21,
3] and probabilistic planning [5, 18]. Conditional and probabilistic planning algorithms
search for plans that succeed not only for a given initial state but under all potential
circumstances, a fact that makes the problem computationally hard [18, 21]. Consider-
ing the large number of unobservable features and of possible contingencies in dynamic
multi-agent environments it is clear that even small-sized problems will be hard to solve
in practice by such planners. More importantly, realistic environments usually do not
provide agents with a model of possible contingencies, let alone their probabilies, at all.

In this paper, we therefore advocate an alternative planning approach for dynamic
environments, namely the integration of Planning, Execution and Monitoring, i.e. Con-
tinual Planning. The term is often used to describe interleaving of these three aspects of
deliberative behavior. We argue, however, that only a more principled, more tightly in-
tegrated approach to Continual Planning can answer questions like the following: How



can a planner decide which parts of the problems solving process it should postpone?
Can agents plan their later replanning? How are early plans that include knowledge
gathering actions related to their later revisions that achieve the actual goal? How does
a planner realize which kind of knowledge gathering is necessary in the first place?

For agents with limited perceptions and knowledge, even continual planning does
not help in determining how to get going in the first place when crucial information
for finding a plan is unknown. It is therefore necessary to explicitly model the agents’
sensing capabilities as part of the planning domain [12, 17, 13, 20]. Agents can then
actively seek to extend their knowledge. In contrast to similar approaches in conditional
planning, however, we want to let a planner postpone the decision of what to do with
that knowledge to later planning phases when the perceptions have actually been made.
In other words, we want to “hide” a conditional subplan until the agent has enough
information to resolve the contingency. For this purpose, we introduce the concept of
an assertion. During planning, the agent uses assertions like normal actions in order
to find a plan for his goals. However, when during execution assertions would actually
become executable, they are instead expanded, i.e. a new planning phase is triggered
in which the information gained during the last execution phase is used to replace the
assertion with concrete, executable actions. The algorithm deciding about the inclusion
of assertions into plans and about the switching between acting and (re)planning is
described in detail in Section 3.

Dynamic systems (in particular: multiagent environments) can be stunningly com-
plex, both as a whole and from the individual agents’ perspective. In such systems,
ignorance can indeed often become the proverbial bliss: using “lightweight” represen-
tations of their domain of action that are extended only when necessary and possible,
agents can act efficiently without being overloaded with information and possibilities
for action. We will illustrate how our approach to planning with sensing and assertions
realizes this concept by allowing agents to extend their planning domain during the
continual planning cycle. More philosophically, one could say that the approach en-
ables agents to recognize new affordances while acting, i.e. to realize new possibilities
for action in light of their current goals. A more practical side effect of this work was the
development of generic simulation environment for evaluating multiagent planning ap-
proaches. It allows to describe “realistic” domain models, their abstractions to planning
domains as well as agents that continually plan and act in this environment. We have
used this testbed to evaluate some basic forms of collaborative action in MA systems.
Furthermore, we hope that others may find it useful for modeling their own scenarios,
thereby providing a set of benchmarks for MA planning techniques.

In the remainder of the paper, we first define the planning formalism used, then
describe the basic algorithm for planning with assertions. Afterwards we present our
environment for the empirical study of continual planning with different agent designs.
Finally, we discuss current and future applications of our approach.

2 Planning Framework

In most multiagent systems, agents have limited knowledge of the environment and
limited perceptive capabilities. Even if at some point an agent has perfect knowledge of



the world, it cannot be certain of its beliefs at later time points, since actions by other
agents may change the world without those changes being perceived by the agent. It
is therefore indispensable for planning and acting in MA environments to be able to
represent ignorance about facts in addition to propositional truth and falsity. To enable
this, we move from STRIPS-like propositional planning to the SAS+ formalism [2] that
allows non-boolean state variables instead of propositions1.

For the sake of clarity, we will first define classical sequential planning in the SAS+

formalism. A planning domain D = (V, C,O) consists of state variables V , constants
C, and operators O2. Each variable v from the set of state variables V is associated with
a finite domain domv ⊆ C. The set of constants will usually include the unique values
true and false; a proposition is a variable v with domv = {true, false}.

A partial variable assignment (PVA) over V is a function s on some subset of V
such that s(v) ∈ domv wherever s(v) is defined. defs (undefs) is the set of defined
(undefined) variables in s. If a PVA s(v) is defined for all v ∈ V then s is called
a (complete) state. If s(v) is defined (with value x), then the pair (v, x) is called an
assignment (also written v

.=x). Two PVAs s and s′ are called consistent if the following
holds: if both s(v) and s′(v) are defined, then s(v) = s′(v). In the following, we will
use set notation (as known from STRIPS-like planning) in a straightforward way to
refer to assignments. For example, we we will denote the completely undefined PVA by
∅ and also write (v .=x) ∈ s instead of s(v) = x. We define the union of two consistent
PVAs s1 and s2 as the PVA s = s1 ∪ s2 in which if s1(v) = x or s2(v) = x, then also
s(v) = x.

A planning task is a triple (A, I,G) consisting of an action set A, a completely
defined initial state I and a (possibly incomplete) goal state G. Actions a are pairs
(pre(a), eff (a) where pre(a) and eff (a) are PVAs. An action a is applicable in a state
s if, whenever (v .=x) ∈ prea, then also (v .=x) ∈ s. Applying an applicable action a
in a state s results in state app(s, a) where (v .= x) ∈ app(s, a) iff (v .= x) ∈ effa or
[(v .=x) ∈ s and v ∈ undefeffa

]. The execution of a sequence of actions can be defined
inductively in the usual recursive manner: res(s, 〈〉) := s, and res(s, 〈a1, ..., an〉) :=
app(res(s, 〈a1, ..., an−1〉), an) if an is applicable in res(s, 〈a1, ..., an−1〉); otherwise
res(s, 〈a1, ..., an〉) is undefined.

Definition 1. An action sequence P = 〈a1, ..., an〉 is a sequential plan for planning
task (A, I,G) if res(I, P ) ⊇ G.

We will now extend the basic planning formalism in order to represent limited
knowledge of the planning agent, sensor models, and replanning conditions (the lat-
ter will allow the planning algorithm to switch between planning and execution).

1 Compiling SAS+ to the STRIPS subset of PDDL is easy which currently enables us to use
state-of-the-art PDDL planners for MA planning. However, as shown by Helmert, classical
planning can also benefit greatly from using SAS+ [15]. It might thus be more reasonable to
use a SAS+ planner in the first place, thereby saving the costs for translating to PDDL and
back again. We will start experimenting with Helmert’s FDD planner, the winner of the 2004
Planning Competition, as soon as an official release is available.

2 Throughout this paper, we will assume ground actions, i.e. fully instantiated operators. Our
implementation, though, allows to specifiy operator schemas exactly as in PDDL.



To describe limited knowledge of a planning agent, we relax the requirement of the
initial state I being completely defined. In particular, this means that a planner can no
longer assume that all facts not explicitly stated are false; instead unspecified values of
state variables are regarded as unknown. For every state variable v ∈ V we introduce a
new boolean knowledge variable kv . If v is defined (undefined) in I , then kv := true
(kv := false) is added to I . Note that, in this paper, all definitions in a planning task
implicitly refer to the knowledge and goals of the planning agent. In another paper, we
will show how this model can be further extended to allow the planning agent to reason
about the (common) knowledge of multiple agents.

Sensor models are actions a = (pre(a), eff (a) where eff (a) = {(kv
.= true)}.

The set of all sensor models is denoted by As ⊆ A. Intuitively, sensor models describe
the circumstances (pre(a)) under which the planning agent will perceive the value of
a specific state variable v. At planning time, what exactly will be perceived during
execution is likely to be unknown; however, knowing the conditions for gathering the
missing knowledge is the key to proactive information seeking (see below). Again, more
complicated sensor models can be defined when reasoning about (joint) perceptions of
multiple agents. The model presented here implicitly assumes that all sensors modelled
will actually provide data to the planning agent during execution; therefore, the sensor
model also assumes a direct effect on the knowledge of planning agent.

To enable an agent to autonomously determine when to switch between planning
and execution, we now introduce the concept of assertions. Conceptually, assertions
describe conditions under which the domain designer guarantees that an agent may
achieve certain effects. While in this respect assertions resemble actions, they are also
similar to planning goals because they do not specify how to achieve this effect, but
instead describe which information the agent must gather before it can find a way to
achieve the effect on its own by replanning. So assertions provide an agent with the
means to postpone parts of its planning process, but also force it to change the world in
such a way that replanning of the postponed parts becomes possible.

Formally, an assertion is an action a with a distinguished, non-empty set of precon-
ditions repl(a) ⊆ pre(a), called the replanning conditions. Preconditions p 6∈ repl(a)
are called the ordinary preconditions of a. If repl(a) = ∅, then a is an ordinary action.
We denote the set of assertions among the actions A with Ar ⊆ A. Assertions become
interesting to continual planning through a change in the semantics of plans:

Definition 2. An action sequence P = 〈a1, ..., an〉 is an assertional plan for the task
(A, I,G) if (1) res(I, P ) ⊇ G, and (2) repl(a) 6⊆ I for all assertions a ∈ P .

This definition needs some explanation: Assertions are meant to be used to de-
scribe subproblems that cannot be be solved with the information currenlty at hand and
therefore must be postponed. If, on the other hand, the missing information becomes
available, the assertion shall be expanded, i.e. be planned for. Def 2 ensures both the
postponement and the expansion of assertions: because of condition (2) the first exe-
cuted action of a plan can never be an assertion; as soon as the agent has executed the
prefix of the plan that achieves the replanning condition, condition (2) is violated and
the plan as whole becomes invalid. Failure, however, is interpreted as the trigger for
replanning in the continual planning algorithm (cf. Alg. 1). When replanning the agent



is not allowed to use the assertion again because of condition (2), thus it is forced to
use the additional information gathered since the original plan was made for coming up
with a more precise plan suffix or a new solution.

The multiagent plan representation we use here is simplest one we could imagine
because the focus of this paper is on continual planning with assertions in general.
The framework will be extended significantly in extended versions of this work. The
version presented here can be regarded as a simplification of the model of Boutilier
and Brafman [4]. However, in future work we will depart from their approach towards
including more complex intentional modalities [14].

Definition 3. An action a interferes with an action b if a affects a state variable assign-
ment that b relies on or affects, too. Formally a interferes with b if there are v, o, o′ such
that (v, o)∈eff (a) ∧ (v, o′)∈pre(e2) ∪ eff (e2).

Actions a and b are mutex if a interferes with b or b interferes with a.

Definition 4. An asynchronous plan is a pair P = (A,C) where A is a set of actions
and C ⊆ A × A is a set of ordering constraints among the actions. If two unequal
action a and b are unordered in P , i.e. (a, b) 6∈ C and (b, a) 6∈ C, then a and b must
not be mutex.

Note how the definition of mutual exclusitivity resembles its origins, the specifi-
cation of Distributed Systems: actions that are mutex have a read-write conflict over a
shared resource, so they must be prevented to occur concurrently. In this view a MA
plan is a very basic form of a distributed algorithm automatically synthesized by one or
several agents.

Corollary 1. Let P1, P2 be sequential plans corresponding to different total orderings
of an asynchronous plan P . Then res(I, P1) = res(I, P2) for all possible states I .

As a result of Corollary 1, we can define:

Definition 5. An asynchronous plan P is a solution for a planning task T = (A, I,G)
if any total order PTO of P is a solution of T . We define res(I, P ) = res(I, PTO for
some total order PTO of P .

Based on these results, we can use sequential planners to find asynchronous multi-
agent plans, as described in the next section.

3 Continual Planning with Assertions

Algorithm 1 shows the basic algorithm for continuous planning with assertions. It uses
calls to a generic sequential planner PLANNER as a subroutine. In order to allow this
modularization and still be compliant with the semantics of plans with assertions, the
algorithm removes all expandable assertions from the set of possible actions before
calling the PLANNER subroutine. However, it may be more convenient to modify the
planner (as we have done in our implementation) so that it assures itself that expandable
assertions are not included in a plan.



Algorithm 1 Continual planning agent using assertions
function CONTINUAL-PLANNING-AGENT(S, G)

while S 6⊇ G do
if res(S, P ) 6⊇ G or

repl(a) ⊆ S for any assertion a ∈ P then
A = A \ {a ∈ Ar | repl(a) ⊆ S}
REMOVEOBSOLETESUFFIXFROM(P)
P ′ = PLANNER(A, res(S, P ), G)
P = MAKEASYNCPLAN(CONCAT(TO(P ), P ′))

if P = ∅ then
return “cannot achieve goal G”

a = REMOVEFIRSTLEVELACTION(P )
S′ = app(S, a)
EXECUTE(a)
exp = EXPECTEDPERCEPTIONS(S′, As)
perc = GETSENSORDATA()
S = app(S′, perc)
if perc 6⊇ exp then

S = STATEESTIMATION(S′, exp, perc)
return “goal reached”

The first part of Algorithm 1 is the core of continual planning with assertions,
whereas the second half shows the execution and how plan monitoring can be used
to provide “high-level” input for sensor interpretation and state estimation. We will
concentrate on the planning part here. After the agent has determined that its current
plan is no longer valid (either it becomes clear that the plan cannot reach the goals or
replanning is triggered by an assertion in the plan), it first determines the prefix of the
asynchronous plan that is still executable. Of course, this step can be omitted if plan
stability is not an issue. It is also possible to evaluate both full replanning and repairing
the old plan. However, especially in collaborative settings where agents need to reach
agreement over their plans, breaking plan stability is costly since it may lead to asyn-
chronous backtracking, i.e. plan revision recursively concerning other agents[23]. Since
in this paper we deliberately set aside the issue of communication and, consequently,
also the sharing of plans, we will not discuss plan stability further. Cf. Section 6 for
further discussion of collaboration.

We assume that the generic planner produces sequential plans like most state-of-
the-art planners. In order to convert such a plan into an asynchronous one, and in order
to combine it with the existing plan stump, the algorithm uses MAKEASYNCPLAN,
specified in Algorithm 2. For an analysis of Alg. 2 and its relation to the techniques
discussed by Backstrom [1] we must, for lack of space, again refer the reader to the
extended paper.

Definition 6. A state variable v is written by a if (v, o) ∈ eff (a) for some o. v is
read-only in a if (v, o) ∈ pre(a) for some o, but v is not written by a. By written(a)
[readOnly(a)] we denote the set of variables v that are written by [read-only in] a.



Algorithm 2 Converting TO plans to asynchronous plans
function MAKEASYNCPLAN(PTO)

initialize P with dummy action root
readers(v) = ∅, provider(v) = root for all variables v
for a ∈ PTO do

for v ∈ readOnly(a) do
add a to P as successor of provider(v)
add a to readers(v)

for v ∈ written(a) do
for prev ∈ readers(v) do

add a to P as successor of prev
add a to P as successor of provider(v)
provider(v) = a
readers(v) = ∅

return P

Theorem 1. Let PTO be a sequential plan. Then P = MAKEASYNCPLAN(PTO) is an
asynchronous plan of which PTO is a total ordering. Thus, res(PTO) = res(P ).

As already mentioned, AP lends itself to particular way of describing and extending
domains “on demand”. Consider the example of a household robot who, for the first
time, is told to clean the dishes. The robot knows that the dishwasher in the kitchen
may be used to achieve that goal, but has never operated it yet and does not know how
to do so. In other words, the robot knows of some affordance of the dishwasher, but
not of concrete actions to realize these. This knowledge can be expressed using the
following assertion. Its syntax should be intuitive for readers familiar with PDDL [19].
In particular, since boolean state variables can be expressed propositionally as seen in
the example, the STRIPS subset of PDDL is also a subset of the MA planning language.

(:action operate_dishwasher
:parameters ?robot
:precondition (pos ?robot : kitchen)
:replan (canOperate ?robot dishwasher)
:effect (dishesClean))

Using this assertion, the robot can come up with an initial plan to achieve its goal
(sensor rules and assertions are set in italics):

1 move livingroom kitchen
2 senseBrandOf dishwasher
3 downloadManual dishwasher

4 operate dishwasher

As demanded by the semantics of assertional plans, the first action in this plan
is exectuable. Its purpose is to bring the robot in a position where it can gather more
information, namely find out the brand of the dishwasher. In our example, senseBrandOf
is not only a sensor rule, but also an assertion: it hides possible conditional branches



for finding out the brandname, depending on the information the robot will have once
it is in the kitchen. For example, the robot might automatically be provided with the
brand information through RFID information sent by the dishwasher or it may have to
actively query the dishwasher (which of course is another intelligent household agent).
Let us assume, that the former is the case: as soon as the robot starts executing its plan
and enters the kitchen, it receives the RFID information that the dishwasher is of some
brand X. As shown below, this knowledge is the replanning condition for assertion
downloadManual.

(:action downloadManual ?tool
:parameters ?robot
:precondition ()
:replan (K ?robot (brandOf ?tool))
:effect (canOperate ?robot ?tool))

The assertion will be replaced a number of concrete actions (e.g. connecting to the
web site of company X and querying some web service there). What’s most interesting
here is that, as a result, the robot will not only have a changed belief state, but also
extended capabilities, i.e. the planning domain will be extended with actions to operate
the dishwasher. In other words, this process can be described as recognition (or even ac-
tive determination) of the affordances of the dishwasher that are pertinent to the robot’s
task. To conclude the example: since (canOperate dishwasher) has been made
true by the download action, operate dishwasher must now be expanded. Using
its newly learned actions, the robot is, hopefully, able to achieve its goal now.

4 Empirical Evaluation

We have developed a simulation environment for Continual Multiagent Planning ap-
proaches, called MAPSIM, that allows to easily describe the relation between a formal
Planning domain and the “realistic” model that the simulation itself uses to execute
actions and to provide perceptions to agents. Thus, planning agents can directly use
actions from their plans and “execute” them in the simulation; they make “perceptions”
described using the ontology defined by the planning domain, so that they can used as
input for plan monitoring or replanning immediately.

For evaluating our approach, we have devised a simple gridworld domain (similar to
the grid domain in the Internal Planning Competitions) that allows automatic generation
of arbitrary complex tasks for arbitrary numbers of agents3. We have created a test
suite of 50 random problems varying in the number of agents (2 to 10), the grid size
and the number of blocked cells. Fig. 1 shows one such problem from an omniscient
perspective, i.e. the initial and goal position for all agents are shown in the same grid.
Each agent, implemented as an individual MAPSIM process, knows only about its own
goal state and its own perceptions. For a centralized planner with complete knowledge,
each problem would be solvable, i.e. there is a sequential or asynchronous plan leading
each agent into its goal position.

3 The basic form of the domain discussed here was chosen for investigating problem scalabil-
ity; more complex extensions include object transportation tasks in the gridworld as well as
collaborative tasks where the set of actions includes speech acts between agents.



Fig. 1 A multiagent planning problem in the gridworld

1 2 3 4 5 6

1

2

3

4

5

6 0

1

2

3

Initial state
1 2 3 4 5 6

1

2

3

4

5

6

3 1

2

0

Goal state

The purpose of our experiments was to study the success rate of agents planning
and acting distributedly under different configurations. We have run the simulation for
each problem under 70 different configurations (explained below) for a total of 3500
test runs. In each run, each individual agent received perceptions from the simulator,
checked whether its former plan was still valid, replanned if necessary, and executed
one of the possible first-level actions. The planning domain contains the single assertion
shown below. It describes the fact that before attempting to move to some position an
agent needs to know whether it is occupied:

(:assertion move
:parameters (?a - agent ?op ?np - position)
:replan (K ?a (occupant ?np))
:precondition (and (occupant ?op : ?a) (connected ?op ?np))
:effect (and (occupant ?op : empty) (occupant ?np : ?a)))

The generic planner used by the agents in our experiments is a modified version
of FF [16] that prevents application of assertions enabled in the initial state. The ex-
periments were run on a 1.8 GHz Intel Pentium using 512 MB of its RAM. If after at
most 10 minutes all agents had achieved their goals, the run was counted as succesful,
otherwise as a failure. Since each run consisted of many planner calls by several agents,
individual planner calls were timed out after 10s. (It is instructive to compare these time
constraints to the 5 minute limit for a single planner call in the International Planning
Competition to see the different constraints for Continuals MA planning!)

M0 M5 Mperm
S1 37 62 54
S2 84 88 83
Shalf 96 99 90
Sfull 100 - -

Table 1. Memory span vs. sensor range. Entries show success rate in %.



For lack of space, in this first presentation of our approach we will describe only
one basic experiment in this setting that confronts two important dimensions of agent
design, namely sensing restrictions and memory decay/memory span of agents. When
sensing is limited, agents have to rely on their memory for things they cannot currently
see. However, when several agents act in the same environment old beliefs may have
become obsolete by the time they are used by the planner. In such situations, agents
may do better to rely on AP, i.e. treat the information as unknown and plan to replan
based on information gathering actions. In our experiment, we investigated the relation
between sensing limits and the use of AP by providing agents with different rates of
memory decay. In Tab. 1, Mperm indicates that agents never “forget” perceptions and
treat them as valid as long as they are not replaced by a newer one. M0 indicates that
only the current perceptions are used as initial state for the planner and forgotten imme-
diately afterwards. M5 indicates a “memory span” of 5 executed actions: all perceptions
that were made within the last 5 execution steps are kept as valid, everything before is
forgotten, i.e. treated as unreliable. In Tab. 1, Si indicates that agents can see all grid-
cells in a maximum distance of i cells. Sfull is full observability of the whole grid, and
Shalf means that agents could see to a distance of k in a 2k × 2k grid.

With full observability, remembering old perceptions is unnecessary; we have there-
fore restricted the test to Sfull/M0 there. It comes as no surprise that this setting provides
the best results. Since we are not interested in other configuration aspects in this exper-
iment, we use the Sfull/M0 as a normalized success rate of 100%. The main result of
this experiment is that AP with sensing restricted to only a quarter of the total grid cells
(half the grid both horizontally and vertically) and memory span limited to 5 cycles is
almost as good. In fact, relying on memory instead of AP turns out to be a drawback
in all settings with limited sensing. This is particularly interesting since all agents do
replanning as soon as new perceptions violate their old plans; but the proactive infor-
mation gathering strategy induced by AP seems to be more appropriate in a dynamic
MA domains as this one. For all sensing limits, the best results are always obtained
with M5, i.e. a limited memory span that is able to compensate somehow for the limit
sensing range, yet enforces information gathering instead of relying on dated beliefs.

5 Related Work

Relations of our approach to conditional and probabilistic have already been discussed
in Sec. 1. The focus of this paper has been on single-agent planning in MA environ-
ments, with only indirect consideration of other agents; we therefore only briefly men-
tion Distributed and MA Planning methods that will become relevant for studying co-
operation in our framework. An survey of techniques for Distributed Planning that are
relevant to this work is given by desJardins et. al. [8]. Most work within this field is
based on hierarchical representations of multiagent plans [10, 9, 7]. Indeed, the expan-
sion of assertions is similar to the decomposition of HTN schemata [22, 11]. In our
approach, however, the abstraction hierarchy need not be explicitly given by the do-
main designer, but is resolved by the planner itself. Also the purpose of the abstraction
is different from HTN planning: while HTN decompositions embody knowledge about
how to solve subtasks, assertions essentially represent a way to postpone parts of the



planning process. Thus AP produces a sequence of flat plans, whereas HTN produces
one abstraction hierarchy. While it has been proposed in textbooks that HTN planners
may leave parts of the plan hierarchy unexpanded until a plan has been partially ex-
ecuted, we are not aware of work that describes how an HTN planner should make
such decisions. A more in-depth comparison of AP and HTN planning will be the topic
of a future paper. An interesting practical feature of AP is, however, that in its main
loop it can include any general-purpose Planning algorithm. Thus, we can make use of
performant state-of-the-art Planning systems, as shown in Sec. 4.

6 Current and Future Work

We have presented a new principled approach to Continual Planning in dynamic sys-
tems. For lack of space, we could not present some extensions we have already devel-
oped and implemented:

Richer Language: To enable agents to reason about their peers we extended the
model to include beliefs about other agents and mutual beliefs among agents. Similarly,
copresence models are generalizations of sensor models that describe when a common
perception becomes commonly known. Based on these extensions we can model speech
acts in our planning language.

Learning Assertions: Since assertions are syntactically and semantically very sim-
ilar to normal actions, it should be possible to learn them automatically from past plan-
ning episodes or derive them from a planning domain. For some very basic cases we
have already managed to do this.

Collaboration: As presented, our framework specifies only a limited form of MA
plans. In particular, intentional modalities that are necessary for joint activity can not
be represented [14]. However, even in its limited form our explicit modeling of sensing
and communication complements BDI-inspired MAP models by describing how and
why agents plan actions changing the beliefs of other or of their own. AP provides the
additional perspective of describing how goals can be exchanged and adopted during
a collaborative planning process. We have already developed agents for MAPSIM that
use Joint Continual Planning to develop basic collaborative plans.

Most importantly, our continual planning approach is currently being integrated into
a robot where it is used not only for action planning, but also, e.g., for disambiguation of
natural language utterances, behavior prediction of other agents. First results of the use
of the planner for interpretation and execution of action commands in natural language
have been published[6]. We expect similarly interesting results when using the planner
for continual human-robot interaction.

7 Acknowledgments

This work has been supported by the EC under contract number FP6-004250-CoSy.

References

1. Christer Bäckström. Computational aspects of reordering plans. JAIR, 9:99–137, 1998.



2. Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Computa-
tional Intelligence, 11(4):625–655, November 1995.

3. Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning in
nondeterministic domains under partial observability via symbolic model checking. In Proc.
IJCAI-01, pages 473–478, 2001.

4. Craig Boutilier and Ronen Brafman. Partial order planning with concurrent interacting ac-
tions. JAIR, 2001.

5. Craig Boutilier and David Poole. Computing optimal policies for partially observable de-
cision processes using compact representations. In Proc. AAAI-96, pages 1168–1175. MIT
Press, July 1996.

6. M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt. Mediating between qualitative and quanti-
tative representations for task-orientated human-robot interaction. In Proc. of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 2007.

7. Bradley Clement and Edmund Durfee. Top-down search for coordinating the hierarchical
plans of multiple agents. New York, NY, USA, 1999. ACM Press.

8. M. DesJardins, E. Durfee, Jr. C. Ortiz, and M. Wolverton. A survey of research in distributed,
continual planning. AI Magazine, 2000.

9. Marie DesJardins and Michael Wolverton. Coordinating a distributed planning system. The
AI Magazine, 20(4), 1999.

10. E. Durfee and T. Montgomery. Coordination as distributed search in hierarchical behavior
space. IEEE Transactions on Systems, Man, and Cybernetics, 1991.

11. Kutluhan Erol, James A. Hendler, and Dana S. Nau. Complexity results for hierarchical
task-network planning. Annals of Mathematics and Artificial Intelligence, 18:69–93, 1996.

12. Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and Mike Williamson.
An approach to planning with incomplete information. In Proc. KR-92, pages 115–125,
1992.

13. Keith Golden. Leap before you look: Information gathering in the puccini planner. In Proc.
AIPS-98, pages 70–77, 1998.

14. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269–357, 1996.

15. Malte Helmert. A planning heuristic based on causal graph analysis. In Proc. ICAPS 2004,
pages 161–170, 2004.

16. Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. JAIR, 14:253–302, 2001.

17. Hector J. Levesque. What is planning in the presence of sensing? In Proc. AAAI-96, pages
1139–1146. MIT Press, July 1996.

18. Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity
of probabilistic planning. JAIR, 9:1–36, 1998.

19. D. McDermott. PDDL – the planning domain definition language. Technical Report TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

20. Ronald Petrick and Fahiem Bacchus. A knowledge-based approach to planning with incom-
plete information and sensing. In P. Traverso M. Ghallab, J. Hertzberg, editor, Proceedings
of the 6th International Conference on Artificial Intelligence Planning Systems (AIPS-02),
pages 212–221, Toulouse, France, 2002. AAAI Press, Menlo Park.

21. Jussi Rintanen. Constructing conditional plans by a theorem-prover. JAIR, 10:323–352,
1999.

22. Qiang Yang. Intelligent Planning: A decomposition and abstraction based approach. 1997.
23. Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction:

a review. 3(2), 2000.


