
Simulating Spatial Reasoning Using ACT-R

Jona Boeddinghaus (jona@informatik.uni-freiburg.de)
Department of Computer Science, Georges-Köhler-Allee

79110 Freiburg, Germany
Marco Ragni (ragni@informatik.uni-freiburg.de)
Department of Computer Science, Georges-Köhler-Allee

79110 Freiburg, Germany
Markus Knauff (markus.knauff@cognition.iig.uni-freiburg.de)

Center for Cognitive Science, Friedrichstraße 50
79098 Freiburg, Germany

Bernhard Nebel (nebel@informatik.uni-freiburg.de)
Department of Computer Science, Georges-Köhler-Allee

79110 Freiburg, Germany

Abstract

We present an ACT-R model of spatial reasoning based on
the SRM model (Spatial Reasoning by Models). This model
maps spatial working memory to a two-dimensional array and
uses a spatial focus to place objects in the array, manipulate
the position of objects, and inspect the array to find spatial
relations that are not given in the premises. Since the SRM
explains many experimental findings only on a qualitative
level, we implemented it into an ACT-R model. Not only does
the model show some well-known effects in spatial reasoning
and offers a good insight into the processes in the SRM
model, but in addition it also allows us to predict reasoning
times. The Model is accessible through a Java interface,
which can be found and run from the following website
http://www.informatik.uni-freiburg.de/~srm.

Introduction
Spatial reasoning is fundamental for the human species. It is
not only important for navigating through small or large-
scale environments, but also for navigation through the
internet. It describes the deduction process of individuals for
a given set of premises consisting of spatial relations.
Consider, for example, the binary spatial relations

The hammer is to the right of the pliers
The screwdriver is to the left of the pliers
The wrench is in front of the screwdriver
The saw is in front of the pliers

and the question “which relation holds between the
wrench and the saw?”, one can conclude that “the wrench is
to the left of the saw”. The latter sentence is accordingly
called the conclusion while the former four sentences are
the premises. These reasoning processes can be
accomplished by applying formal rules of inference to the
linguistic representation of the premises or – based on the
mental model theory (MMT) (Johnson-Laird & Byrne,
1991; Johnson-Laird, 2001) – by constructing and
inspecting a spatial array representing the relations of the
objects to each other as described in the premises. Here an
ACT-R 5.0 model is presented. It simulates spatial
reasoning by using the MMT. While we explain the models
architecture, the specific implementation of such a spatial

array that acts as the spatial working memory will be the
main focus.

The SRM Model
The SRM model (Spatial Reasoning by Models), which this
ACT-R simulation is based on (Ragni, Knauff, & Nebel,
2005), provides a view of how mental models of spatial
relations are constructed from premises and offers an easy
to apply complexity measure that fits many experimental
findings. There are two basic assumptions from which the
grounds for the SRM model are derived.

First the spatial working memory containing the
representation of the premises as objects with their relations
is conceptualized as a spatial array. In this spatial array the
spatial information is represented only in relational – not
metrical – terms, thus following the line of spatial
representations (Schlieder, 1995) and rejecting concepts of
visual mental images. Binary spatial relations are defined as
a triplet (X, r, Y) in which

X is the referent,
r is a binary relation, and
Y is the relatum.

X is called the “to be located object” (LO) and Y the
“reference object” (RO) (Miller & Johnson-Laird, 1976). As
relations “r” we use only the most parsimonious one: “left
of”, “right of”, “in front of”, or “behind”. We interpret these
relations uniquely, i.e. no two of these relations interfere
with one another so that “left of”, for instance, indicates that
the considered objects (the RO and the LO) are in the same
horizontal line with any number of (zero to many) empty or
filled cells between them.

Second, all operations on the spatial array – namely the
reasoning processes – are considered as moves of a spatial
focus. This focus can place an element into the model or
inspect the model to find new information (Schaeken et. al.,
1996), or write annotations to objects in cases of ambiguity
(Vandierendonck et al., 2004). We assume that the
reasoning process proceeds in three steps. In the
construction phase, reasoners construct a mental model that
reflects the information from the premises. For the

http://www.informatik.uni-freiburg.de/~srm

preceding example, they, for instance, construct the
following model:

screwdriver pliers hammer
wrench saw

In agreement with many experimental findings, we
assume that if new information is encountered during the
reading of the premises, it is immediately used in the
construction of the model (Johnson-Laird & Byrne, 1991).
In the inspection phase, this model is inspected to find new
information that is not explicitly given in the premises.
From this model it follows: the wrench is to the left of the
saw. In the variation phase, alternative models are
constructed from the premises that refute this putative
conclusion. In our example no such model exists and thus
the conclusion is valid. The formal reason for this phase is
that a conclusion “follows” from a set of premises if the
conclusion is true in all models of the premises. There are
two concepts that explain how all these models can be
checked – by a repeated iteration of the first two phases
without using the prior constructed model, (Johnson-Laird
& Byrne, 1991), or following our own account by saying
that there is no iteration process but rather a process that
starts from the preferred mental model (PMM) and then
varies this model to find alternative interpretations of the
premises (Rauh, Hagen, Knauff, Kuß, Schlieder, & Strube,
2005). There is a great number of arguments favoring the
latter approach, the most important argument is of
representational economy, i.e. most relational aspects can be
reused – there is no need for them to be generated from
scratch. The term PMM refers to a phenomenon
encountered during reasoning with multiple-model
problems in which reasoners often construct only one single
model – the PMM. This model is the one that is easier to
construct and to maintain in working memory than other
possible models (Knauff, Rauh, Schlieder, & Strube, 1998).
As it is known from many studies indeterminate problems
are more difficult than determinate ones, and the PMM may
frequently lead to incorrect conclusions because other
possible models are ignored (Rauh et al., 2005).

The SRM model works on an input in the following way:
(1)Initially the SRM receives the first premise.
(2)The SRM model inserts the first object of the first

premise in cell (0, 0). Then it uses this object as RO and
adds the second object into the next adjacent cell
according to the relation.

(3)The “parser” reads the next premise
(4)The SRM model decides on the type of premise:

• If an object of the premise is already in the spatial
array, the focus moves to the RO and inserts into
the next cell according to the relation the LO. If
there is already an object, the focus moves to the
next free cell according to the relation and inserts
the object there. It also adds an annotation to this
object, indicating that more than one position is
possible.

• If none of the objects of the premise exists a new
spatial array is generated and both objects are
inserted as in step 2 (Schaeken et al., 1996).

• If both objects of the premise exist in the spatial
array, the focus groups one model and inserts it
into the other model (Bara et al., 2001).

When the model construction is finished, the inspection
phase works for our example in the following way: a
conclusion must be generated that defines the relation that
holds between the wrench and the saw. So the focus moves
to the wrench (RO) and then inspects the model to find the
saw (LO). In previous studies, we were able to determine
how this inspection process works (Knauff et al., 1998).
After constructing the mental model, the focus is positioned
on the last end-term of the last premise which should also be
the starting point for the scanning of the RO. In our model,
then the scanning for the LO proceeds in the same direction
as before when it found the RO. This saves the costs of re-
focusing (see below). If the LO cannot be found in this
direction the focus changes its direction and proceeds until it
has found the LO. It is important that in our model, the
focus only checks the cells of the array in which an object
is. Empty cells are not scanned. In other words, the system
“knows” which cells are occupied but not which object is in
the cell. If the LO is found from the scan direction the
relation between the two objects is known (the meaning is
again provided by the external module).

What happens if a possible conclusion must be verified?
This is the case when the question for the relation is
replaced by a conclusion that must be verified. Assume that
the model must check whether the conclusion “The wrench
is to the left of the saw” is valid. In this case, the focus
moves to the saw (RO) and then scans the array to the left to
find the wrench (LO). Since the conclusion is valid the
model generates the output “valid conclusion”.

It is important to notice that in the SRM model no
variation of the model is assumed if a conclusion is
generated. The SRM model stops when it has found just one
model – which often leads to errors. Model variation only
comes into play if a conclusion must be verified, or if more
than one model can be constructed from the premises. We
are still working on the exact details of the variation phase,
but we definitely assume that there is no iteration of the first
two phases in which alternative models are generated and
inspected in turn (Johnson-Laird & Byrne, 1991). Instead,
the current version of the SRM model starts from the PMM
and then successively generates alternative models by
modifying the PMM with minimal changes (Rauh et al.
2005). The minimal changes follow the principle of
“conceptual neighborhood” which we have empirically
determined in recent studies (Rauh et al. 2005). The
principle says that alternative models are generated by local
transformations, i.e. moving one object in the model. To
find the next alternative model, the SRM model starts from
the RO of the conclusion and first checks if the next objects
have annotations with respect to the LO. As already
mentioned, this annotation basically stores the relation that
must hold between RO and LO. If so, (this is always the
case in indeterminate problems because the premises itself
are forgotten) the SRM model starts to change the position
of the objects as long as the constraint from the annotation
is satisfied. This leads stepwise to alternative models. As a

consequence models which are difficult to reach are thus
more likely to be neglected than models which are only
minor revisions of the PMM. This phenomenon was
reported in recent experiments (Rauh et al., 2005).

The SRM model also implies a complexity measure which
could be described in short as a function of the number of
relations to handle and the number of operations in the
array. Abstract units are introduced for all operations on the
model. This cost function reflects qualitatively the different
difficulty of tasks, but there is no prediction of response
times. For this reason we have implemented the SRM into
an ACT-R model.

The ACT-R Model
The modeling task consisted in how to translate the formal,
symbolic SRM of spatial reasoning to the production system
ACT-R that comes as its own architecture of cognition. If
this task is done properly, the model would allow statements
about how close the complexity measures of the SRM
model of spatial reasoning tasks are to experiments. Effects
like premise- and term-order, indeterminacy, and
verification-errors (all described below, see results) should
be observable by means of processing times.

Like every production system, ACT-R offers a theory for
the organization of knowledge. The knowledgebase is
divided into a declarative and a procedural component. In
the declarative part passive knowledge about facts is stored
in so called chunks, sets of a given type with a given
number of attribute-value pairs, the slots. Procedural
knowledge comes as productions, condition-action pairs that
usually modify chunks if their conditions are satisfied
(Anderson et al., 2004). The problem to solve was how to
model the elements of the SRM model in terms of these
structures. This means how, i.e. with which of those
components, should the spatial array that the SRM model
describes as the spatial working memory (and that holds the
representation of the mental model) be modeled; how the
objects; how the relations; and how the focus which does all
the operations in the array?

The presented ACT-R model works with the focus stored
in the goal buffer that moves around in a virtual spatial array
and manipulates object (and annotation) chunks. The spatial
array is made up by a two-dimensional space in which both
the focus and each object has its position. The coordinate
values exist only for accessibility as there is no plane with
fixed cells or the like. The focus has got slots for the object
it is currently on, the direction it points to, and for position
values. Every time an object is inserted into the spatial array
a new object chunk is created and added to the declarative
memory. These chunks have slots for the name of the
object, for position values, and for annotation references.
The spatial array is spun implicitly by these object chunks,
empty cells do not exist. The implementation of the
semantics of the relations between objects is described
below. First let us see how the model works in the different
phases – in other words how the productions are modeled.

At the beginning of the construction phase when the first
premise has been read1 the first object is inserted. This
object is then used as the RO, and the focus sets its direction
according to the relation given by the premise. The focus
then moves one step in this direction and inserts the second
object (the LO). As soon as the next premise has been read,
the focus first has to check whether none, one, or both
objects of this premise already exist in the spatial array.
Usually one of the two objects can be retrieved. In this case
the focus first moves to the existing object that is now the
RO. Next it turns to the indicated direction and searches for
a free cell for the LO in that direction. Here the
implementation follows the theory of the PMM explicitly
and applies the first free fit principle (FFF). As soon as this
first free cell is found the LO is inserted. The alternative
would be the first fit (FF) principle which would place the
LO in the first cell next to the RO and if this cell is filled a
more expensive shifting operation would be necessary. The
fff principle, in contrast, means that the object is placed in
the first free cell and if this cell is not the adjacent one to the
RO, then the LO also gets an annotation containing the
relational information of the current premise, i.e., an
annotation chunk for which object is added to the
declarative memory. If none of the objects of the premise
could be retrieved, then the focus jumps to another level and
starts a new spatial array. If both objects could be retrieved
the focus searches the outermost objects in both spatial
arrays of the objects in the direction according to the
indicated relation and then groups these two spatial arrays
into one.

In the inspection phase the focus first moves from its most
recent position (which is the last position of the construction
phase) to the first object to inspect. This is accomplished by
a search process that includes all objects in the worst case.
When the desired object is reached it acts as the RO and the
second object – the LO – is searched. In this second search
process the steps that the focus takes are stored for every
direction so that afterwards when the LO is found the model
can tell the relation between the two objects.

The variation phase comes into play if the premises allow
the construction of multiple models – that is if there are any
annotations – i.e. annotation chunks – in the constructed
model. Moreover the variation phase is started only if there
is a valid conclusion to be verified. The variation then acts
very similarly to the inspection but with the search going
solely in the direction indicated by the relation in the
conclusion. If the LO is found in this direction, the
conclusion is verified; otherwise it is falsified.

Maybe the biggest question during the implementation
process was how to model the relations. On the one hand
they should not be represented in any near-linguistic terms
as this would contradict the main assumption of our model
theory. On the other hand it was very important not to
model them in any way close to visual imagery. Knauff and
Johnson-Laird (2002) have shown that models have a
different structure than images. Models represent the spatial

1The process of reading a premise itself is not modeled. Premises
are read from a file and accordingly premise chunks are created at
model initialization.

relations among entities, i.e., they represent what things are
where, but in inferential tasks, they are likely to exclude
visual detail, to represent only the information relevant to
inference.

We first developed an account to model the relations as
relation-chunks, all of one of four chunk types – left-of,
right-of, in-front-of, or behind. The advantage was that there
was no need for coordinates anymore. The actual positions
of the objects could be left undiscovered while all objects
were accessible simply by retrieving according relation-
chunks. However, as there was an almost exact
representation of the read premises and, worse, the model
tended to be a simple rule-based system, this account was
soon put aside. The current solution works with coordinates
that specify the position of the objects and the focus. But
rather than representing the relations as declarative units as
in the previous account they are now modeled in a
procedural way. Whenever the focus requests to move into
one of the four possible directions a production fires to
retrieve an object that lies somewhere in that direction. If
the focus is to move to the left, for instance, all objects that
are defined to be left of the focus are candidates for the next
retrieval. Which object is retrieved depends on the
association strengths of the focus (or the object the focus is
currently on) and the objects to the left. Because the
association strengths are higher for neighboring objects the
adjacent object to the left of the focus will probably be the
one that is retrieved.

Another interesting feature of the model is its limitation of
the maximum number of objects and annotation chunks.
The values come as parameters that can be set in the Java
Interface – the default is a maximum of eight object chunks
and two annotation chunks. The parameters can be used to
adjust ACT-Rs retrieval threshold and the initial activations
of object and annotation chunks. The base level activation
of all chunks decays over time and increases whenever the
chunk is retrieved. Also all chunks get activation from
related chunks. If an activation of an object or annotation
chunk falls below the retrieval threshold the according
object or annotation will – at a higher level of description -
not be present in the spatial array anymore. Thus, of course,
the parameters mentioned above only give approximations
of the actual limits. Chunks which fall below the threshold
are typically those that are retrieved less often, that is, those
that the focus visited less often. In limiting the capacity of
those chunks the model is able to simulate errors. First of all
(with the limited number of annotations) the common
verification errors that arise when the validation of a
generated conclusion in alternative models – by varying the
constructed PMM – is omitted. The variation phase cannot
start if there are no more (retrievable) annotations to
resolve.

The Java Interface

While the model itself runs solely in ACT-R (i.e. Lisp) there
is a comfortable user interface written in Java. On the one
hand it offers some easy to use input mechanisms for
premises and conclusions as well as parameter settings, and

on the other hand it provides a controllable graphical
representation of the constructed mental model at each time
of the three phases. The communication with the ACT-R /
Lisp processes was kept as simple and reliable as possible:
There are script files and temporary data files which are
called, or read, or written, from both systems as needed. The
program can be downloaded and executed via the website
http://www.informatik.uni-freiburg.de/~srm. Versions for
MacOSX, Linux, and Windows are available. The program
gives the opportunity to load preprocessed model files and
thus to run those models likewise offline. But if the user
wants to run models with their own set of premises the
program depends on a working ACT-R 5.0 installation of
course. The path to the Lisp interpreter has to be set
according to the configuration of the client. The figure
below gives an impression of the interface:

A Processing Example
To get a better insight to the ACT-R model we provide in
the following a description of an exemplary run. Three
premises shall be given:

A is to the left of B
C is to the right of A
D is to the right of C

The construction phase starts by processing the first premise
“A is to the left of B”. Since the spatial array is empty the
first object, “A”, is just placed by the focus at the current
position. Then the focus turns into the direction the relation
of the premise indicates by using the first object as the RO
so the desired direction is the opposite of the relation,
namely “right”. Now the focus moves one step to the left
and inserts the LO, “B”, at position (1,0). After the second
premise, “C is to the right of A” has been read, it first has to
check whether one, none, or both objects already exist in the
spatial array. In this case only the second object, “A”, exists,
known by a successful retrieval of its chunk. The focus now
moves to this object. To prevent (in some cases infinitive)
loops the position of the searched object in relation to the
focus is always known by an approximation of the
horizontal or vertical direction. Thus the focus sets its

direction to “left” and moves from object to object (empty
cells are ignored by the activation matrix function) as long
as its object slot does not match the searched object. While
now object number one of the premise, “C”, is the LO the
focus then changes its direction to “right” - in accordance
with the relation of the premise. Now an empty cell for the
LO is searched in this direction. As the next cell is occupied
by an object, “B”, the focus continues moving till it finds a
free cell following the named principle of first free fit (FFF)
rather than that of first fit (FF) where the LO would have
been inserted right next to “A” shifting “B” aside. Because
at this point it is clear that the premises apparently allow the
construction of more than one model the LO, “C”, gets an
annotation holding the premise information. Therefore an
annotation chunk for object “C” is created which later can
be retrieved to create one or more alternative models. The
third premise is processed much as the second one, but now
the adjacent cell to the RO, “C”, is empty. Nevertheless the
new object “D” gets an annotation because its neighbor,
“C”, is annotated. This method of handing down annotations
is necessary to be able to resolve all alternative models (see
the variation phase below). The figure below shows the
representation of the constructed model:2

Now consider the question “Which relation holds between
B and D?” shall be answered. The model starts the
inspection phase. The focus moves around the spatial field
(it inspects the spatial field) to find a relation between “B”
and “D”. First the reference object (RO), “B”, has to be
found. The focus starts at its last position at object “D”. It
turns to the left and moves object to object till “B” is
reached. Now the LO, “D”, is searched. While performing
this search all steps in both dimensions (horizontal and
vertical) of the focus are remembered. So when the focus
finally reaches “D”, the relation between “B” and “D” can
be generated on the basis of these steps. In this example the
move from “B” to “C” results in a positive value for steps in
the horizontal dimension and a zero value for those in the
vertical dimension. With this setting a production fires that
resolves the movement as a move to the right. Thus the
relation “B is to the left of D” is given as the answer.

This conclusion is only valid if it holds in all possible
models which can be created from the premises. So the
verification and variation phase becomes important. The
constructed model – the PMM – is varied step by step and in
each alternative model the conclusion is verified. The
annotations mark objects to be possibly placed on another
cell. So the variation process works by searching annotated
objects and then resolving these annotations to get to
alternative models. The focus starts at the last position of the
inspection phase, this is object “D” or cell (3,0). First it
checks whether any annotations, namely annotation chunks,
exist in the model or not. Here two annotation chunks exist

2All figures showing the representation of the model are taken
from the Java interface clipped with the screen part to the right.

so that the retrieval is successful. Now an annotated object
is searched. Starting at object “D” the first attempt is a
success. The annotation of object “D”, “D is to the right of
C” (in short “D R C”), is retrieved and then the focus
switches “D” and its adjacent object – in the direction the
annotated relation indicates – “C”. But because “C” is the
second object of the annotation this variation is not possible
in the current model. So while “D” is the first annotated
object the first annotation to resolve is that of “C” for “A”,
the second object of “C’s” annotation is not adjacent to
object “C”. The actual variation is done by changing the
cells of the two objects – in cases where there are adherent
objects in the orthogonal directions whole object structures
have to be moved. Thus the positions of objects “C” and
“B” are switched, meaning their according slots are
modified. The model now looks as shown below:

Now the conclusion “B is to the left of D” is verified in the
new model. For this the focus first moves to object “B” and
then searches object “D” somewhere to the right, the
direction the conclusion gives. Here “D” is to the right of
“B” so the verification of the conclusion succeeds. Next the
model is varied further considering the annotation of “D”.
Since now the second object of “D’s” annotation, namely
“C”, is not adjacent to “D”, “D” can switch positions with
“B”. The figure below shows the resulting model:

In this model the found conclusion “B is to the left of D”
apparently does not hold. The verification process ends with
a negative result, thus the conclusion is falsified for the
model given by the premises. No more verification or
variation is necessary.

Comparison with the performance of human
subjects

The model shows at least three different effects that are
typical in spatial deduction processes. First, the premise
order effects the processing times significantly. If the
premises are ordered in a continuous way the model takes
less time to run than in cases where the premises are ordered
discontinuously. A continuous order such as “A is to the left
of B”, “B is to the left of C”, and “C is to the left of D”, for
instance, takes a total of 3,709 seconds – with the first
premise at 1,303 s, the second one at 1,204 s, and the third
one at 1,202 s. In contrast, the discontinuous order “A is to
the left of B”, “C is to the left of D”, and “B is to the left of
C” of the same model takes a total of 5,488 seconds – with
the first premise at 1,303 s, the second one at 1,523 s, and
the third one at 2,662 s. In the latter case, the third premise
took longer because in processing the second premise two
separate spatial arrays had been created which then had to

be integrated into one again. These times agree with
findings from Knauff, et al. (1998).

Second, indeterminate problems are harder (they take
longer) than determinate ones. Indeterminate problems are
those that allow the construction of more than one model
from the premises (Byrne & Johnson-Laird, 1998). The
model of the processing example in the last section (“A is to
the left of B”, “C is to the right of A”, “D is to the right of
C”), apparently an indeterminate problem, for instance, has
a time for the construction phase of 5,573 seconds – more
than those times of the determinate continuous and semi-
continuous problems above. While this difference is due to
the creation of annotations this model also has
verification/variation phases joining the instruction phase.

Third, people often make errors when they have to draw a
conclusion and omit to verify it in all alternative models.
They only take into account the PMM (Knauff et al., 1998).
This effect is simulated by the limited amount of annotation
(and object) chunks available at each time during the
processes. The approximate maximum number of object and
annotation chunks can each be specified in the settings
dialog of the Java interface. These parameters are used to
adjust the retrieval threshold of ACT-R. If an object or
annotation chunk falls below this threshold the chunk can
not be retrieved anymore. ACT-Rs chunk activation is
calculated as a function of the chunk's creation time and the
number (and points in time) of references of the chunk and
the spreading activation of related chunks. Therefore, those
chunks will probably fall below the retrieval threshold that
are retrieved the less and are far away from the focus. These
chunks will not be available in the variation phase which
means that the alternative models that could have been
created from a lost annotation will not be considered at all.

Discussion
The ACT-R model works fine for the named effects. It

shows that the SRM model is able to predict the complexity
of a given problem in terms of processing times (or units of
cost measures) and error patterns. The presented times of
the exemplary runs quantitatively match times of
experiments except for an almost constant factor – the times
for each premise of the experiment are higher than those of
the ACT-R model. In the following table the processing
times are compared to experimental data from Knauff et al.
(1998):

Premise order Premise 1 Premise 2 Premise 3
continuous 13.0 (1.303) 11.2 (1.204) 10.9 (1.202)
semi-continuous 13.6 (1.303) 11.0 (1.204) 14.4 (1.794)
discontinuous 12.4 (1.303) 13.9 (1.523) 19.5 (2.662)

Mean reading times of premises in seconds from Knauff et al., 1998. The
values in parenthesis are the processing times of the ACT-R model.

To some extent this may be due to the fact that the default

ACT-R mechanisms are set too fast for such complex
spatial reasoning tasks. Furthermore, an important reason
may be that the model contains no simulation of the reading
and interpreting process of the premises. The premises are
created as chunks at initialization of the model. The time

gap could be closed by adjusting according ACT-R
parameters. While the current implementation indeed uses
no such parameter adjustments the processing times are
qualitatively comparable to experimental results.

Further work on the model could concentrate on an
implementation of the reading and encoding processes of
the premises and an integration of the phonological loop
(Baddeley & Hitch, 1974) in which the annotations could be
remembered to get an even better simulation of the
verification errors.

Acknowledgements
The research was supported by grants from the DFG in the
Transregional Collaborative Research Center (SFB/TR 8) to
MK and BN. M.K. is also supported by a Heisenberg Award
from the DFG.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111, (4). 1036-1060.

Baddeley, A. D., & Hitch, G. J. (1974). Working Memory.
In G. A. Bower (Ed.), Recent advances in learning and
motivation (Vol. 8, pp. 47-90). New York, Academic
Press.

Johnson-Laird, P. N. (2001). Mental models and deduction.
Trends in Cognitive Science, 5, 424-442.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction.
Hove, UK: Lawrence Erlbaum Associates.

Knauff, M. & Johnson-Laird, P. N. (2002). Visual imagery
can impede reasoning. Memory & Cognition, 30, 363-371.

Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998).
Mental models in spatial reasoning. In C. Freska, C. Habel
& K. F. Wender (Eds.), Spatial Cognition I - An
Interdisciplinary Approach to Representing and
Processing Spatial Knowledge. Berlin: Springer.

Miller, G. A., & Johnson-Laird, P. M. (1976). Language and
Perception. Cambridge, Cambridge University Press.

Ragni, M., Knauff, M., Nebel, B. (2005). A Computational
Model for Spatial Reasoning with Mental Models.
Lawrence Erlbaum Associates. Proceedings of the 27th
Annual Cognitive Science Conference. Bruno G. Bara,
Lawrence Barsalou, & Monica Bucciarelli, pp. 1797.

Rauh, R., Hagen, C., Knauff, M., Kuß, T., Schlieder, C., &
Strube, G. (2005). Preferred and alternative mental
models in spatial reasoning. Spatial Cognition and
Computation, 5, 239-269. .

Schaeken, W., Johnson-Laird, P. M., & d'Ydewalle, G.
(1996). Mental models and temporal reasoning. Cognition
60, 205-304.

Schlieder, C. (1995). The construction of preferred mental
models in reasoning with interval relations. In G. Rickheit
& C. Habel (Eds.), Mental models in discourse processing
and reasoning, pp. 333-357. Amsterdam, Elsevier.

Vandierendonck, A., Dierckx, V., & Vooght, G. D. (2004).
Mental model construction in linear reasoning: Evidence
for the construction of initial annotated models. The
Quarterly Journal Of Experimental Psychology. 57A.
1369-1391.

	Introduction
	The SRM Model
	The ACT-R Model
	The Java Interface
	A Processing Example
	Comparison with the performance of human subjects
	Discussion
	Acknowledgements
	References

