
Planning with h+ in Theory and Practice

Christoph Betz and Malte Helmert

Albert-Ludwigs-Universität Freiburg, Institut für Informatik,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany

{betzc,helmert}@informatik.uni-freiburg.de

Abstract. Many heuristic estimators for classical planning are based on the so-
called delete relaxation, which ignores negative effects of planning operators.
Ideally, such heuristics would compute the actual goal distance in the delete re-
laxation, i. e., the cost of an optimal relaxed plan, denoted by h+. However, cur-
rent delete relaxation heuristics only provide (often inadmissible) estimates to h+

because computing the correct value is an NP-hard problem.
In this work, we consider the approach of planning with the actual h+ heuris-
tic from a theoretical and computational perspective. In particular, we provide
domain-dependent complexity results that classify some standard benchmark do-
mains into ones where h+ can be computed efficiently and ones where computing
h+ is NP-hard. Moreover, we study domain-dependent implementations of h+

which show that the h+ heuristic provides very informative heuristic estimates
compared to other state-of-the-art heuristics.

1 Introduction

Many algorithms for classical planning employ the approach of heuristic search based
on delete relaxation heuristics. Given a state s of a planning task, such planners ap-
proximate the distance to the goal by solving a simplified planning task with initial
state s where all undesirable effects of planning operators are ignored. For some plan-
ning formalisms, such as the STRIPS fragment of PDDL [1], such undesirable effects
of planning operators can easily be identified syntactically. For more general planning
formalisms like the ADL fragment of PDDL, linear-time compilation methods exist that
can transform input tasks into the desired form [2].

Delete relaxation heuristics have been used quite successfully in the past. For ex-
ample, they are a key component of the winners of the sequential satisficing tracks of
the International Planning Competitions in 2000 (FF), 2004 (Fast Downward), 2006
(SGPlan) and 2008 (LAMA).

Once we commit to the idea of using heuristics based on delete relaxations, ide-
ally we would like to use the cost of an optimal relaxed plan from a state s, denoted
by h+(s), as the heuristic estimate for s [3]. However, computing h+(s) is an NP-
equivalent problem [4], and good admissible approximations to h+ are also provably
hard to compute, even in a restricted propositional STRIPS formalism where each op-
erator has only one precondition and only one effect (as shown later in this paper.)
Therefore, common delete relaxation heuristics use approximations to h+ which can
differ from h+ by an arbitrarily large multiplicative factor. Many such approaches are
described in the planning literature:

– The max heuristic hmax [5] computes the makespan of an optimal parallel plan for
the relaxed task. The hmax value of the state is always a lower bound to the h+

value, i. e., provides an admissible estimate to h+.
– The additive heuristic hadd [5] computes the cost of a relaxed plan under the pes-

simistic assumption that there are no positive interactions between goal conditions
and between operator preconditions, i. e., all conditions have to be achieved com-
pletely independently. The hadd value of a state is always an upper bound to the h+

value and is in general not admissible.
– The FF heuristic hFF [3] computes an actual relaxed plan for the delete relaxation,

using a greedy algorithm based on backchaining in so-called relaxed planning
graphs. The heuristic value is then the cost of that plan. The FF heuristic is de-
fined procedurally, and hFF(s) is generally ambiguous because the precise heuristic
values depend on tie-breaking behaviour in the backchaining step of the algorithm.
Similar to hadd, the FF heuristic is generally not admissible and provides an upper
bound to h+.

– The cost-sharing heuristic hcs and pairwise max heuristic hpmax are other delete
relaxation heuristics based on relaxed planning graphs, but using different propaga-
tion rules from hFF [6]. The pairwise max heuristic is inadmissible; the cost-sharing
heuristic is admissible but typically less informed than hmax.

– The FF/additive heuristic hFF/a and set-additive heuristic hsa [7] are variants of the
FF heuristic which use different methods for computing the relaxed plans that de-
fine the heuristic value. The set-additive heuristic in particular can be considered
more accurate than hFF because it keeps track of positive interactions between op-
erator preconditions in a more precise way than hFF. However, theoretically, the
heuristics are incomparable (that is, either can be larger than the other). Neither
hFF/a nor hsa is admissible.

– The recently introduced local Steiner tree heuristic hlst [8] is another method for
computing more accurate relaxed plans than hFF in order to get closer approxima-
tions to h+. The local Steiner tree heuristic first computes a relaxed plan using the
hFF/a method, then reduces the size of this plan by exploiting local improvement
properties of Steiner trees. Like the heuristics it builds on, it is inadmissible.

– The LAMA heuristic hLAMA [9] counts the number of landmarks (from a set of
possible landmarks that is precomputed prior to search) for which it can prove that
they need to be achieved on the way to the goal. While it is not introduced as a
kind of delete relaxation heuristic in the original paper, it can be considered such
because the set of landmarks it considers are guaranteed to be landmarks of the
delete relaxation, so that in particular the hLAMA value for the initial state does not
change when the task is replaced by its delete relaxation. The LAMA heuristic is
not admissible, although it is admissible in the special case where each operator
achieves at most one landmark. A family of admissible landmark heuristics built
on top of LAMA has recently been introduced by Karpas and Domshlak [10].

– Finally, additive hmax heuristics are a family of admissible approximations to h+

based on the action cost partitioning paradigm introduced by Haslum et al. [11] and
later generalized by Katz and Domshlak [12]. Examples of additive hmax heuristics
include the original algorithm of Haslum et al. [11] and the additive-disjunctive
heuristic graphs of Coles et al. [13].

This large number of relaxation-based planning heuristics is clear evidence that
delete relaxations are a very important approach to heuristic planning. Still, quite little
is known about their theoretical properties, and in particular about their limitations. The
motivation of most of the research efforts mentioned above is to find more and more
precise estimates to the h+ heuristic. However, it is not clear how good the estimates
provided by h+ itself actually are. The “holy grail” of delete relaxation would be an
efficient heuristic estimator which provides perfect h+ values. But would this actually
be a good heuristic, compared to approaches not based on delete relaxation, such as the
context-enhanced additive heuristic [14] or abstraction heuristics [15]?

Hoffmann [16] provides a partial answer to this question by showing that certain sat-
isficing (suboptimal) h+-based planners have guaranteed polynomial runtime on many
classical planning benchmarks. Additionally, Helmert and Mattmüller [17] provide a
theoretical analysis that shows that h+ generally outperforms pattern database heuris-
tics in the limit of large problems on typical planning domains. In this paper, we comple-
ment these results by evaluating the quality of h+ as an admissible heuristic for optimal
planning on practical benchmarks, i. e., tasks of a size for which we can actually hope
to compute a solution (unlike the in-the-limit results of Helmert and Mattmüller).

Since computing h+ is generally NP-hard and no empirically fast algorithms are
known, we perform our study by designing and evaluating domain-dependent algo-
rithms for h+ in a number of classical benchmark domains. One obvious question when
designing such domain-dependent h+ implementations is whether we can come up with
sub-exponential algorithms by exploiting that we only have to deal with, e. g., LOGIS-
TICS or BLOCKSWORLD tasks. For the domains we study in this paper, we answer this
question by either describing a polynomial-time algorithm or proving that computing
h+ value remains NP-hard even when restricted to tasks of the given domain. These
theoretical results, discussed in Sect. 3, form the first contribution of this paper.

In addition to this theoretical study, we provide empirical results obtained by using
our domain-specific h+ implementations as a heuristic in an A∗-based planner. These
results, discussed in Sect. 4, form the second contribution of this paper. Of course, run-
time results obtained through domain-dependent implementations cannot be directly
compared to domain-independent planners (e. g., using abstraction heuristics) in order
to judge which of the approaches is generally more useful. However, they can tell us
what the theoretical limits of relaxation-based approaches to optimal planning are, so
that we can give an answer whether it is actually worth working on increasingly more
sophisticated methods to compute more and more accurate approximations to h+. To
anticipate our experimental results, it appears that the answer to this question is affirma-
tive: delete relaxations compare very favourably with the state of the art, and it definitely
appears to be worth looking at their application to optimal planning more closely.

2 Background

For the theoretical results of this paper, we use the propositional STRIPS formalism
[4]. (Some of the planning tasks we consider go slightly beyond STRIPS by requiring
conditional effects, but we omit the formal details for these because they are not relevant
to the abbreviated proofs we can present within the limited space of this paper.)

Definition 1. A planning task is a 4-tuple Π = 〈V,O, I, G〉, where

– V is a finite set of propositional state variables (also called propositions or facts),
– O is a finite set of operators, each with associated preconditions pre(o) ⊆ V , add

effects add(o) ⊆ V and delete effects del(o) ⊆ V ,
– I ⊆ V is the initial state, and
– G ⊆ V is the set of goals.

A state is a subset of facts, s ⊆ V , representing the propositions which are currently
true. Applying an operator o in s results in state (s \ del(o))∪ add(o), which we denote
as s[o]. The notation is only defined if o is applicable in s, i. e., if pre(o) ⊆ s. Applying
a sequence o1, . . . , on of operators to a state is defined inductively as s[ε] := s and
s[o1, . . . , on+1] := (s[o1, . . . , on])[on+1]. A plan for a state s (s-plan, or plan when s
is clear from context) is an operator sequence π such that s[π] is defined and satisfies all
goals (i. e., G ⊆ s[π]). The objective of optimal planning is to find an I-plan of minimal
length (called an optimal I-plan) or prove that no plan exists.

Heuristic functions or heuristics are a key ingredient of heuristic search planners.
A heuristic is a function h : 2V → N0 ∪ {∞} with the intuition that h(s) estimates
the length of an s-plan. The perfect heuristic h∗ maps each state to the length of an
optimal s-plan (infinite if no s-plan exists). A heuristic h is admissible if h(s) ≤ h∗(s)
for all states s. All common heuristic search algorithms for optimal planning require
admissible heuristics. If h(s) ≥ h′(s) for all states s, we say that h dominates h′.

Relaxation heuristics estimate the distance to the goal by considering a relaxed task
Π+ derived from the actual planning task Π by ignoring all delete effects of operators,
i. e., replacing each operator o by a new operator o+ with the same preconditions and
add effects as o and del(o+) = ∅. The h+ heuristic [3] uses the length of an optimal
s-plan in Π+ as the heuristic estimate h+(s) for a state s of the original task Π .

3 Theory: Complexity of Computing h+

Computing h+ estimates for states of a planning task is an NP-equivalent problem [4].
It is due to this computational complexity that h+ has not previously been used in an
actual planning system designed to solve planning tasks of interesting size. However, far
from being optimal, all approximations to h+ discussed in the introduction can actually
be arbitrarily far off from the correct h+ values, i. e., h(s)/h+(s) can be arbitrarily large
for the inadmissible heuristics h discussed there, and h+(s)/h(s) can be arbitrarily
large for the admissible ones. We now prove that there is a theoretical reason for this.

Theorem 2. If P 6= NP, then there exists no constant c > 0 and no polynomial-time
algorithm for computing an admissible heuristic function h such that for all states s,
h(s) ≥ c · h+(s). This is true even when only allowing planning tasks where each
operator has only a single precondition and only a single add effect.
Proof sketch: We present an approximation-preserving reduction (see the textbook by
Ausiello et al. [18]) from MINIMUM SET COVER to planning for delete relaxations.
Since MINIMUM SET COVER has no constant-factor approximations unless P = NP
[18, problem SP4], the claim follows. Given a MINIMUM SET COVER instance with set

S and subsets C1, . . . , Cm ⊆ S, the reduction generates operators o1
i , o

2
i , . . . , o

N
i for

each subset Ci such that all these operators need to be applied (in sequence) in order
to achieve a fact ai that marks that Ci has been selected. From ai, facts corresponding
to the elements of Ci can then be directly achieved using operators which have precon-
dition ai and add one element of Ci at a time. To satisfy the goal, which consists of
all facts corresponding to elements of S, we must select enough subsets Ci to cover S
completely. By choosing N appropriately (e. g., N = |S|), we can ensure that the over-
all plan length is dominated by the number of subsets chosen, and hence short relaxed
plans correspond to small set covers.

Theorem 2 shows that we cannot hope to find a polynomial algorithm that is guaran-
teed to find good approximations to h+. However, since theoretical results of this kind
tend to rely on somewhat pathological problem instances, this does not mean that com-
puting or approximating h+ is necessarily difficult for practically interesting planning
tasks. Hence, to get a handle on the complexity of computing h+ in more typical cases,
we now investigate the behaviour of h+ in specific planning domains used as bench-
marks in the planning community, specifically the domains considered by Helmert and
Mattmüller in their theoretical study of admissible planning heuristics [17].

It turns out that, at least for these domains, the situation is not quite as bleak. In
all cases, we can compute constant-factor approximations to h+ in polynomial time,
and in some cases we even have polynomial algorithms for the perfect h+ value, de-
spite the fact that in most of these domains (all except GRIPPER and SCHEDULE [19]),
computing the actual goal distance h∗ is NP-hard.

For space reasons, we refer to the literature for formal definitions of these common
planning benchmarks [19] and only provide very brief proof sketches. An extensive
discussion of these results, including full proofs, can be found in Betz’s thesis [20].

Theorem 3. There exists a polynomial-time algorithm for computing h+(s) for arbi-
trary reachable states s of BLOCKSWORLD tasks.
Proof sketch: The subgoal ordering issues that make optimal BLOCKSWORLD plan-
ning hard in general [21] do not exist in the delete relaxation where simple greedy
criteria are sufficient to decide which blocks to pick up and, after all pick-ups have been
performed, where to drop them. See Betz’s thesis for details [20, Corollary 6.1].

Theorem 4. There exists a polynomial-time algorithm for computing h+(s) for arbi-
trary reachable states s of GRIPPER tasks.
Proof sketch: Due to symmetries in GRIPPER tasks, a closed formula for h+ can be
given. This formula can be evaluated in linear time [20, Theorem 5.1].

Theorem 5. Computing h+(s) for arbitrary reachable states s of LOGISTICS tasks is
NP-hard, but polynomial-time constant-factor approximations exist.
Proof sketch: Hardness is proved by a reduction from SET COVER. There is one truck
corresponding to each candidate subset, which is loaded with one package for each
element of that subset. The instance is then constructed in such a way that a subset of
trucks need to visit a special location, called the Ω-location, and the overall quality
of a relaxed plan is determined by how many trucks visit the Ω-location. In optimal
relaxed plans this subset corresponds to an optimal set cover [20, Theorem 8.3]. For the
constant-factor approximation result, we refer to Betz’s thesis [20, Theorem 8.5].

We remark that polynomial h+-algorithms for LOGISTICS exist if we only consider
valid initial states, where vehicles are required to be empty [20, Theorem 8.2], and also
when there is only one truck per city and only one airplane [20, Theorem 8.1].

Theorem 6. There exists a polynomial-time algorithm for computing h+(s) for arbi-
trary reachable states s of MICONIC-STRIPS tasks.
Proof sketch: This follows directly from the previous remark due to the similarity of
MICONIC-STRIPS to LOGISTICS with only one truck [20, Theorem 3.1].

Theorem 7. Computing h+(s) for arbitrary reachable states s of MICONIC-SIMPLE-
ADL tasks is NP-hard, but polynomial-time constant-factor approximations exist.
Proof sketch: In MICONIC-SIMPLEADL, computing h+ is closely related to comput-
ing h∗, and the known results for h∗ [22] carry over [20, Theorem 3.2].

Theorem 8. Computing h+(s) for arbitrary reachable states s of SATELLITE tasks is
NP-hard, but polynomial-time constant-factor approximations exist.
Proof sketch: The proof [20, Theorem 7.1] is again based on a reduction from SET
COVER and uses similar ideas to the proof that establishes NP-hardness for h∗ [22].

Theorem 9. There exists a polynomial-time algorithm for computing h+(s) for arbi-
trary reachable states s of SCHEDULE tasks.
Proof sketch: A simple algorithm that achieves the goals one object (“part”) at a time
is sufficient [20, Theorem 4.1].

4 Practice: Using h+ Inside an Optimal Planner

As noted in the introduction, delete relaxation heuristics are state of the art for satisfic-
ing planning. For optimal planning, however, the literature suggests that the admissible
representatives of the family, hmax and hcs, lag behind other approaches such as ab-
straction. For example, merge-and-shrink abstractions (hm&s in the following) clearly
outperform hmax [15], and hcs is empirically even worse than hmax [6]. Does this in-
dicate that delete relaxation heuristics are generally not useful for optimal planning,
or is this a specific weakness of hmax and hcs? To answer that question, we have added
domain-specific implementations of the h+ heuristic to a state-of-the-art A∗-based opti-
mal planner [15] and empirically compared it to hmax, to see how far current admissible
relaxation heuristics are from what is possible, and to hm&s, to see if relaxation heuris-
tics may be competitive with the state of the art in optimal planning.

Experiments were conducted under the usual planning competition settings. Table 1
shows the results. Note that while our h+ implementations are domain-dependent, the
estimates themselves are fully domain-independent, and hence comparisons of heuris-
tic quality (e. g., number of A∗ state expansions) are meaningful. We compare on all
domains considered in the previous section except for those not supported by the un-
derlying planner, MICONIC-SIMPLEADL and SCHEDULE. Note that this includes the
LOGISTICS and SATELLITE domains where computing h+ is NP-hard; in these cases,
each state evaluation in our implementation can require exponential time. Table 1 in-
dicates that the time per state expansion is indeed very high for SATELLITE, but h+

Table 1. Experimental comparison of h+, hm&s and hmax. Parameters for hm&s are hand-tuned per
domain. We report heuristic values for the initial state (h), number of expanded states (Exp.), and
runtime in seconds (Time) for the largest tasks solved in each domain. Dashes indicate running
out of time (30 minutes) or memory (2 GB). Best results for each task are highlighted in bold.

h+ hm&s hmax

Inst. h∗ h Exp. Time h Exp. Time h Exp. Time

BLOCKSWORLD (hm&s: one abstraction of size 50000)
#9-0 30 16 13215 0.65 16 971774 191.12 9 3840589 85.00
#9-1 28 16 360 0.02 16 60311 69.25 10 1200345 32.06
#9-2 26 17 594 0.04 16 54583 90.12 9 1211463 32.15

#10-0 34 18 241489 15.42 18 19143580 367.82 9 — —
#10-1 32 19 29144 1.82 16 12886413 316.28 8 — —
#10-2 34 19 83007 5.68 18 — — 10 — —
#11-0 32 19 63891 4.35 21 7291064 199.01 8 — —
#11-1 30 21 59340 4.64 17 — — 4 — —
#11-2 34 19 53642 3.39 19 — — 9 — —
#12-0 34 22 58124 4.54 21 — — 10 — —
#12-1 34 22 6284 0.48 21 — — 11 — —
#13-1 44 25 9990123 1078.59 23 — — 12 — —
#14-0 38 25 100499 10.64 19 — — 10 — —
#14-1 36 27 160352 19.99 20 — — 6 — —
#15-0 40 28 3540691 420.91 18 — — 7 — —

GRIPPER (hm&s: one abstraction of size 5000)
#1 11 9 82 0.00 11 12 0.00 2 208 0.00
#2 17 13 1249 0.00 15 975 0.10 2 1760 0.01
#3 23 17 10304 0.06 11 11506 0.34 2 11616 0.08
#4 29 21 65687 0.44 13 68380 1.04 2 68468 0.56
#5 35 25 371726 2.86 14 376510 3.59 2 376496 3.51
#6 41 29 1974285 17.79 16 1982018 16.19 2 1982016 21.57
#7 47 33 10080252 97.60 18 10091970 79.83 2 10091968 119.64

LOGISTICS-1998 (hm&s: one abstraction of size 200000)
#1 26 24 8623 2.91 25 375885 67.64 6 — —
#5 22 22 30 0.03 20 527498 99.94 4 — —

#17 42 42 67 0.62 — — — 6 — —
#31 13 12 68 0.02 13 14 7.22 4 32282 0.57
#32 20 18 116 0.02 20 21 1.97 6 81156 1.00
#33 27 25 88629 21.80 27 28992 81.01 4 — —
#35 30 29 1682 2.65 22 — — 5 — —

h+ hm&s hmax

Inst. h∗ h Exp. Time h Exp. Time h Exp. Time

LOGISTICS-2000 (hm&s: one abstraction of size 200000)
#8-0 31 29 3269 0.32 31 32 26.75 6 — —
#8-1 44 41 43665 3.87 44 45 28.17 6 — —
#9-0 36 33 14090 1.62 36 37 37.58 6 — —
#9-1 30 29 707 0.10 30 31 37.49 6 — —

#10-0 45 41 193846 26.39 45 196342 79.12 6 — —
#10-1 42 39 165006 24.88 42 518215 86.22 6 — —
#11-0 48 45 156585 28.81 48 12822 87.99 6 — —
#11-1 60 55 5649882 775.53 59 2608870 187.85 6 — —
#12-0 42 39 116555 22.25 42 272878 117.98 6 — —
#12-1 68 63 — — 68 828540 137.67 6 — —

SATELLITE (hm&s: three abstractions of size 10000)
#1 9 8 10 0.00 9 10 0.00 3 59 0.00
#2 13 12 14 0.02 13 14 0.09 3 940 0.00
#3 11 10 21 0.07 11 12 4.01 3 6822 0.11
#4 17 17 26 0.15 17 237 7.57 3 180815 3.37
#5 15 14 34 5.02 12 38598 44.66 3 — —
#6 20 18 526 16.23 16 375938 48.73 3 10751017 371.43
#7 21 20 812 250.37 15 — — 3 — —
#9 27 26 264 1350.72 17 — — 3 — —

#10 29 29 40 401.41 16 — — 3 — —

MICONIC-STRIPS (hm&s: one abstraction of size 200000)
#28-4 92 92 123 0.05 54 — — 3 — —
#29-0 94 94 126 0.06 54 — — 3 — —
#29-1 91 91 184 0.08 53 — — 3 — —
#29-2 95 95 155 0.06 55 — — 3 — —
#29-3 97 96 178 0.07 56 — — 3 — —
#29-4 99 99 141 0.05 55 — — 3 — —
#30-0 95 95 138 0.06 55 — — 3 — —
#30-1 98 98 150 0.06 55 — — 3 — —
#30-2 97 96 130 0.04 55 — — 3 — —
#30-4 99 99 124 0.05 53 — — 3 — —

still scales much further than the other approaches due to the accuracy of the heuristic.
Aggregating results over all domains, h+ convincingly outperforms the other heuristics
considered, including the state-of-the-art hm&s. This suggests that the comparatively bad
results obtained with earlier delete relaxation heuristics are mostly due to their inability
to accurately approximate h+ rather than a general weakness of delete relaxations.

5 Conclusion

Starting from the observation that many current planning heuristics are based on delete
relaxations, we have taken a deeper look at the optimal delete relaxation heuristic, h+,
which all these heuristics strive to approximate. Theoretically, we have seen that h+ is
in general not just hard to compute (as proved already by Bylander), but also hard to
approximate. However, these worst-case results do not carry over to most planning do-
mains, for which we could show much better theoretical results – including polynomial-
time algorithms for h+ in four of the seven benchmark results considered.

Experimentally, we have shown that h+ is very informative across a range of plan-
ning domains, improving on the state of the art in domain-independent optimal plan-
ning. Hence, it appears worth investigating practically efficient general implementations
of h+, or alternatively better admissible approximations, more closely. In our opin-
ion, despite the multitude of existing approaches, there is still considerable scope for
research on delete relaxation heuristics, in particular admissible ones. Our results pre-
sented here can serve as a useful methodological basis for such future work by allowing,
for the first time, direct comparisons of practical relaxation heuristics to h+.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems”. See http://www.avacs.org/ for more information.

References
1. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning

domains. JAIR 20 (2003) 61–124
2. Gazen, B.C., Knoblock, C.A.: Combining the expressivity of UCPOP with the efficiency of

Graphplan. In: Proc. ECP-97. (1997) 221–233
3. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic

search. JAIR 14 (2001) 253–302
4. Bylander, T.: The computational complexity of propositional STRIPS planning. AIJ 69(1–2)

(1994) 165–204
5. Bonet, B., Geffner, H.: Planning as heuristic search. AIJ 129(1) (2001) 5–33
6. Mirkis, V., Domshlak, C.: Cost-sharing approximations for h+. In: Proc. ICAPS 2007.

(2007) 240–247
7. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proc. ECAI

2008. (2008) 588–592
8. Keyder, E., Geffner, H.: Trees of shortest paths vs. Steiner trees: Understanding and improv-

ing delete relaxation heuristics. In: Proc. IJCAI 2009. (2009) To appear.
9. Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In: Proc. AAAI 2008. (2008)

975–982
10. Karpas, E., Domshlak, C.: Cost-optimal planning with landmarks. In: Proc. IJCAI 2009.

(2009) To appear.
11. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-independent plan-

ning. In: Proc. AAAI 2005. (2005) 1163–1168
12. Katz, M., Domshlak, C.: Optimal additive composition of abstraction-based admissible

heuristics. In: Proc. ICAPS 2008. (2008) 174–181
13. Coles, A., Fox, M., Long, D., Smith, A.: Additive-disjunctive heuristics for optimal planning.

In: Proc. ICAPS 2008. (2008) 44–51
14. Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristics. In: Proc. ICAPS

2008. (2008) 140–147
15. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for optimal sequential

planning. In: Proc. ICAPS 2007. (2007) 176–183
16. Hoffmann, J.: Where ‘ignoring delete lists’ works: Local search topology in planning bench-

marks. JAIR 24 (2005) 685–758
17. Helmert, M., Mattmüller, R.: Accuracy of admissible heuristic functions in selected planning

domains. In: Proc. AAAI 2008. (2008) 938–943
18. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.:

Complexity and Approximation. Springer-Verlag (1999)
19. Helmert, M.: Understanding Planning Tasks – Domain Complexity and Heuristic Decompo-

sition. Volume 4929 of LNAI. Springer-Verlag (2008)
20. Betz, C.: Komplexität und Berechnung der h+-Heuristik. Diplomarbeit, Albert-Ludwigs-

Universität Freiburg (2009)
21. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. AIJ 56(2–3) (1992)

223–254
22. Helmert, M., Mattmüller, R., Röger, G.: Approximation properties of planning benchmarks.

In: Proc. ECAI 2006. (2006) 585–589

