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Abstract

Many heuristic estimators for classical planning are based on
the so-called delete relaxation, which ignores negative effects
of planning operators. Ideally, such heuristics would compute
the actual goal distance in the delete relaxation, i. e., the cost
of an optimal relaxed plan, denoted by h+. However, current
delete relaxation heuristics only provide (often inadmissible)
estimates to h+ because computing the correct value is an
NP-hard problem.
In this work, we consider the approach of planning with the
actual h+ heuristic from a theoretical and computational per-
spective. In particular, we provide domain-dependent com-
plexity results that classify some standard benchmark do-
mains into ones where h+ can be computed efficiently and
ones where computing h+ is NP-hard. Moreover, we study
domain-dependent implementations of h+ which show that
the h+ heuristic provides very informative heuristic estimates
compared to other state-of-the-art heuristics.

Introduction
Many algorithms for classical planning employ the approach
of heuristic search based on delete relaxation heuristics.
Given a state s of a planning task, such planners approximate
the distance to the goal by solving a simplified planning task
with initial state s where all undesirable effects of planning
operators are ignored. For some planning formalisms, such
as the STRIPS fragment of PDDL (Fox and Long 2003),
such undesirable effects of planning operators can easily
be identified syntactically. For more general planning for-
malisms like the ADL fragment of PDDL, linear-time com-
pilation methods exist that can transform input tasks into the
desired form (Gazen and Knoblock 1997).

Delete relaxation heuristics have been used quite success-
fully in the past. For example, they are a key component
of the winners of the sequential satisficing tracks of the In-
ternational Planning Competitions in 2000 (FF), 2004 (Fast
Downward), 2006 (SGPlan) and 2008 (LAMA).

Once we commit to the idea of using heuristics based on
delete relaxations, ideally we would like to use the cost of an
optimal relaxed plan from a state s, denoted by h+(s), as the
heuristic estimate for s (Hoffmann and Nebel 2001). How-
ever, computing h+(s) is an NP-equivalent problem (Bylan-
der 1994), and good admissible approximations to h+ are
also provably hard to compute, even in a restricted propo-

sitional STRIPS formalism where each operator has only
one precondition and only one effect (as shown later in this
paper.) Therefore, common delete relaxation heuristics use
approximations to h+ which can differ from h+ by an arbi-
trarily large multiplicative factor. Many such approaches are
described in the planning literature:

• The max heuristic hmax (Bonet and Geffner 2001) com-
putes the makespan of an optimal parallel plan for the
relaxed task. The hmax value of the state is always a lower
bound to the h+ value, i. e., provides an admissible esti-
mate to h+.

• The additive heuristic hadd (Bonet and Geffner 2001)
computes the cost of a relaxed plan under the pessimistic
assumption that there are no positive interactions between
goal conditions and between operator preconditions, i. e.,
all conditions have to be achieved completely indepen-
dently. The hadd value of a state is always an upper bound
to the h+ value and is in general not admissible.

• The FF heuristic hFF (Hoffmann and Nebel 2001) com-
putes an actual relaxed plan for the delete relaxation, us-
ing a greedy algorithm based on backchaining in so-called
relaxed planning graphs. The heuristic value is then the
cost of that plan. The FF heuristic is defined procedu-
rally, and hFF(s) is generally ambiguous because the pre-
cise heuristic values depend on tie-breaking behaviour in
the backchaining step of the algorithm. Similar to hadd,
the FF heuristic is generally not admissible and provides
an upper bound to h+.

• The cost-sharing heuristic hcs and pairwise max heuris-
tic hpmax are other delete relaxation heuristics based on
relaxed planning graphs, but using different propaga-
tion rules from hFF (Mirkis and Domshlak 2007). The
pairwise max heuristic is inadmissible; the cost-sharing
heuristic is admissible but typically less informed than
hmax.

• The FF/additive heuristic hFF/a and set-additive heuris-
tic hsa (Keyder and Geffner 2008) are variants of the FF
heuristic which use different methods for computing the
relaxed plans that define the heuristic value. The set-
additive heuristic in particular can be considered more ac-
curate than hFF because it keeps track of positive inter-
actions between operator preconditions in a more precise



way than hFF. However, theoretically, the heuristics are
incomparable (that is, either can be larger than the other).
Neither hFF/a nor hsa is admissible.

• The recently introduced local Steiner tree heuristic hlst

(Keyder and Geffner 2009) is another method for com-
puting more accurate relaxed plans than hFF in order to
get closer approximations to h+. The local Steiner tree
heuristic first computes a relaxed plan using the hFF/a

method, then reduces the size of this plan by exploiting
local improvement properties of Steiner trees. Like the
heuristics it builds on, it is inadmissible.

• The LAMA heuristic hLAMA (Richter, Helmert, and West-
phal 2008) counts the number of landmarks (from a set of
possible landmarks that is precomputed prior to search)
for which it can prove that they need to be achieved on
the way to the goal. While it is not introduced as a kind of
delete relaxation heuristic in the original paper, it can be
considered such because the set of landmarks it considers
are guaranteed to be landmarks of the delete relaxation, so
that in particular the hLAMA value for the initial state does
not change when the task is replaced by its delete relax-
ation. The LAMA heuristic is not admissible, although
it is admissible in the special case where each operator
achieves at most one landmark. A family of admissible
landmark heuristics built on top of LAMA has recently
been introduced by Karpas and Domshlak (2009).

• Finally, additive hmax heuristics are a family of admissible
approximations to h+ based on the action cost partition-
ing paradigm introduced by Haslum et al. (2005) and later
generalized by Katz and Domshlak (2008). Examples of
additive hmax heuristics include the original algorithm of
Haslum et al. (2005) and the additive-disjunctive heuristic
graphs of Coles et al. (2008).

This large number of relaxation-based planning heuristics
is clear evidence that delete relaxations are a very important
approach to heuristic planning. Still, quite little is known
about their theoretical properties, and in particular about
their limitations. The motivation of most of the research
efforts mentioned above is to find more and more precise
estimates to the h+ heuristic. However, it is not clear how
good the estimates provided by h+ itself actually are. The
“holy grail” of delete relaxation would be an efficient heuris-
tic estimator which provides perfect h+ values. But would
this actually be a good heuristic, compared to approaches
not based on delete relaxation, such as the context-enhanced
additive heuristic (Helmert and Geffner 2008) or abstraction
heuristics (Helmert, Haslum, and Hoffmann 2007)?

Hoffmann (2005) provides a partial answer to this ques-
tion by showing that certain satisficing (suboptimal) h+-
based planners have guaranteed polynomial runtime on
many classical planning benchmarks. Additionally, Helmert
and Mattmüller (2008) provide a theoretical analysis that
shows that h+ generally outperforms pattern database
heuristics in the limit of large problems on typical planning
domains. In this paper, we complement these results by eval-
uating the quality of h+ as an admissible heuristic for opti-
mal planning on practical benchmarks, i. e., tasks of a size

for which we can actually hope to compute a solution (unlike
the in-the-limit results of Helmert and Mattmüller).

Since computing h+ is generally NP-hard and no empiri-
cally fast algorithms are known, we perform our study by de-
signing and evaluating domain-dependent algorithms for h+

in a number of classical benchmark domains. One obvious
question when designing such domain-dependent h+ imple-
mentations is whether we can come up with sub-exponential
algorithms by exploiting that we only have to deal with, e. g.,
LOGISTICS or BLOCKSWORLD tasks. For the domains we
study in this paper, we answer this question by either de-
scribing a polynomial-time algorithm or proving that com-
puting h+ value remains NP-hard even when restricted to
tasks of the given domain. These theoretical results form the
first contribution of this paper.

In addition to this theoretical study, we provide empirical
results obtained by using our domain-specific h+ implemen-
tations as a heuristic in an A∗-based planner. These results
form the second contribution of this paper. Of course, run-
time results obtained through domain-dependent implemen-
tations cannot be directly compared to domain-independent
planners (e. g., using abstraction heuristics) in order to judge
which of the approaches is generally more useful. However,
they can tell us what the theoretical limits of relaxation-
based approaches to optimal planning are, so that we can
give an answer whether it is actually worth working on in-
creasingly more sophisticated methods to compute more and
more accurate approximations to h+. To anticipate our ex-
perimental results, it appears that the answer to this question
is affirmative: delete relaxations compare very favourably
with the state of the art, and it definitely appears to be
worth looking at their application to optimal planning more
closely.

Background
For the theoretical results of this paper, we use the propo-
sitional STRIPS formalism (Bylander 1994). (Some of the
planning tasks we consider go slightly beyond STRIPS by
requiring conditional effects, but we omit the formal details
for these because they are not relevant to the abbreviated
proofs we can present within the limited space of this pa-
per.)

Definition 1 A planning task is a 4-tuple Π = 〈V,O, I, G〉,
where

• V is a finite set of propositional state variables (also
called propositions or facts),

• O is a finite set of operators, each with associated precon-
ditions pre(o) ⊆ V , add effects add(o) ⊆ V and delete
effects del(o) ⊆ V ,

• I ⊆ V is the initial state, and
• G ⊆ V is the set of goals.

A state is a subset of facts, s ⊆ V , representing the propo-
sitions which are currently true. Applying an operator o in
s results in state (s \ del(o)) ∪ add(o), which we denote
as s[o]. The notation is only defined if o is applicable in
s, i. e., if pre(o) ⊆ s. Applying a sequence o1, . . . , on of
operators to a state is defined inductively as s[ε] := s and



s[o1, . . . , on+1] := (s[o1, . . . , on])[on+1]. A plan for a state
s (s-plan, or plan when s is clear from context) is an op-
erator sequence π such that s[π] is defined and satisfies all
goals (i. e., G ⊆ s[π]). The objective of optimal planning
is to find an I-plan of minimal length (called an optimal I-
plan) or prove that no plan exists.

Heuristic functions or heuristics are a key ingredient of
heuristic search planners. A heuristic is a function h : 2V →
N0 ∪ {∞} with the intuition that h(s) estimates the length
of an s-plan. The perfect heuristic h∗ maps each state to
the length of an optimal s-plan (infinite if no s-plan exists).
A heuristic h is admissible if h(s) ≤ h∗(s) for all states s.
All common heuristic search algorithms for optimal plan-
ning require admissible heuristics. If h(s) ≥ h′(s) for all
states s, we say that h dominates h′.

Relaxation heuristics estimate the distance to the goal
by considering a relaxed task Π+ derived from the actual
planning task Π by ignoring all delete effects of operators,
i. e., replacing each operator o by a new operator o+ with
the same preconditions and add effects as o and del(o+) =
∅. The h+ heuristic (Hoffmann and Nebel 2001) uses the
length of an optimal s-plan in Π+ as the heuristic estimate
h+(s) for a state s of the original task Π.

Theory: Complexity of Computing h+

Computing h+ estimates for states of a planning task is an
NP-equivalent problem (Bylander 1994). It is due to this
computational complexity that h+ has not previously been
used in an actual planning system designed to solve plan-
ning tasks of interesting size. However, far from being opti-
mal, all approximations to h+ discussed in the introduction
can actually be arbitrarily far off from the correct h+ values,
i. e., h(s)/h+(s) can be arbitrarily large for the inadmissible
heuristics h discussed there, and h+(s)/h(s) can be arbitrar-
ily large for the admissible ones. We now prove that there is
a theoretical reason for this.

Theorem 2 If P 6= NP, then there exists no constant c > 0
and no polynomial-time algorithm for computing an admis-
sible heuristic function h such that for all states s, h(s) ≥
c · h+(s). This is true even when only allowing planning
tasks where each operator has only a single precondition
and only a single add effect.
Proof sketch: We present an approximation-preserving re-
duction (see the textbook by Ausiello et al., 1999) from
MINIMUM SET COVER to planning for delete relaxations.
Since MINIMUM SET COVER has no constant-factor ap-
proximations unless P = NP (Ausiello et al. 1999, problem
SP4), the claim follows. Given a MINIMUM SET COVER
instance with set S and subsets C1, . . . , Cm ⊆ S, the re-
duction generates operators o1

i , o
2
i , . . . , o

N
i for each subset

Ci such that all these operators need to be applied (in se-
quence) in order to achieve a fact ai that marks that Ci has
been selected. From ai, facts corresponding to the elements
of Ci can then be directly achieved using operators which
have precondition ai and add one element of Ci at a time. To
satisfy the goal, which consists of all facts corresponding to
elements of S, we must select enough subsets Ci to cover S
completely. By choosing N appropriately (e. g., N = |S|),

we can ensure that the overall plan length is dominated by
the number of subsets chosen, and hence short relaxed plans
correspond to small set covers.

Theorem 2 shows that we cannot hope to find a polyno-
mial algorithm that is guaranteed to find good approxima-
tions to h+. However, since theoretical results of this kind
tend to rely on somewhat pathological problem instances,
this does not mean that computing or approximating h+

is necessarily difficult for practically interesting planning
tasks. Hence, to get a handle on the complexity of com-
puting h+ in more typical cases, we now investigate the be-
haviour of h+ in specific planning domains used as bench-
marks in the planning community, specifically the domains
considered by Helmert and Mattmüller in their theoretical
study of admissible planning heuristics (2008).

It turns out that, at least for these domains, the situation is
not quite as bleak. In all cases, we can compute constant-
factor approximations to h+ in polynomial time, and in
some cases we even have polynomial algorithms for the per-
fect h+ value, despite the fact that in most of these domains
(all except GRIPPER and SCHEDULE; Helmert, 2008), com-
puting the actual goal distance h∗ is NP-hard.

For space reasons, we refer to the literature for formal
definitions of these common planning benchmarks (Helmert
2008) and only provide very brief proof sketches. An exten-
sive discussion of these results, including full proofs, can be
found in Betz’s thesis (2009). The thesis also provides the
actual performance ratios for the approximation algorithms.
We do not mention these constants here because we have
made no dedicated attempts to make them as small as possi-
ble, and hence they are of limited usefulness.

Theorem 3 There exists a polynomial-time algorithm for
computing h+(s) for arbitrary reachable states s of
BLOCKSWORLD tasks.
Proof sketch: The subgoal ordering issues that make opti-
mal BLOCKSWORLD planning hard in general (Gupta and
Nau 1992) do not exist in the delete relaxation where simple
greedy criteria are sufficient to decide which blocks to pick
up and, after all pick-ups have been performed, where to
drop them. See Betz’s thesis for details (Betz 2009, Corol-
lary 6.1).

Theorem 4 There exists a polynomial-time algorithm for
computing h+(s) for arbitrary reachable states s of GRIP-
PER tasks.
Proof sketch: Due to symmetries in GRIPPER tasks, a
closed formula for h+ can be given. This formula can be
evaluated in linear time (Betz 2009, Theorem 5.1).

Theorem 5 Computing h+(s) for arbitrary reachable
states s of LOGISTICS tasks is NP-hard, but polynomial-
time constant-factor approximations exist.
Proof sketch: Hardness is proved by a reduction from SET
COVER. There is one truck corresponding to each candidate
subset, which is loaded with one package for each element
of that subset. The instance is then constructed in such a
way that a subset of trucks need to visit a special location,
called the Ω-location, and the overall quality of a relaxed
plan is determined by how many trucks visit the Ω-location.



In optimal relaxed plans this subset corresponds to an opti-
mal set cover (Betz 2009, Theorem 8.3). For the constant-
factor approximation result, we refer to Betz’s thesis (Betz
2009, Theorem 8.5).

We remark that polynomial h+-algorithms for LOGIS-
TICS exist if we only consider valid initial states, where ve-
hicles are required to be empty (Betz 2009, Theorem 8.2),
and also when there is only one truck per city and only one
airplane (Betz 2009, Theorem 8.1).

Theorem 6 There exists a polynomial-time algorithm for
computing h+(s) for arbitrary reachable states s of
MICONIC-STRIPS tasks.
Proof sketch: This follows directly from the previous re-
mark due to the similarity of MICONIC-STRIPS to LOGIS-
TICS with only one truck (Betz 2009, Theorem 3.1).

Theorem 7 Computing h+(s) for arbitrary reachable
states s of MICONIC-SIMPLEADL tasks is NP-hard, but
polynomial-time constant-factor approximations exist.
Proof sketch: In MICONIC-SIMPLEADL, computing h+ is
closely related to computing h∗, and the known results for
h∗ (Helmert, Mattmüller, and Röger 2006) carry over (Betz
2009, Theorem 3.2).

Theorem 8 Computing h+(s) for arbitrary reachable
states s of SATELLITE tasks is NP-hard, but polynomial-
time constant-factor approximations exist.
Proof sketch: The proof (Betz 2009, Theorem 7.1) is again
based on a reduction from SET COVER and uses simi-
lar ideas to the proof that establishes NP-hardness for h∗

(Helmert, Mattmüller, and Röger 2006).

Theorem 9 There exists a polynomial-time algorithm for
computing h+(s) for arbitrary reachable states s of
SCHEDULE tasks.
Proof sketch: A simple algorithm that achieves the goals
one object (“part”) at a time is sufficient (Betz 2009, Theo-
rem 4.1).

Practice: Using h+ Inside an Optimal Planner
As noted in the introduction, delete relaxation heuristics are
state of the art for satisficing planning. For optimal plan-
ning, however, the literature suggests that the admissible
representatives of the family, hmax and hcs, lag behind other
approaches such as abstraction. For example, merge-and-
shrink abstractions (hm&s in the following) clearly outper-
form hmax (Helmert, Haslum, and Hoffmann 2007), and hcs

is empirically even worse than hmax (Mirkis and Domshlak
2007). Does this indicate that delete relaxation heuristics are
generally not useful for optimal planning, or is this a specific
weakness of hmax and hcs? To answer that question, we have
added domain-specific implementations of the h+ heuris-
tic to a state-of-the-art A∗-based optimal planner (Helmert,
Haslum, and Hoffmann 2007) and empirically compared it
to hmax, to see how far current admissible relaxation heuris-
tics are from what is possible, and to hm&s, to see if relax-
ation heuristics may be competitive with the state of the art
in optimal planning.

Experiments were conducted under the usual planning
competition settings. Table 1 shows the results. Note

that while our h+ implementations are domain-dependent,
the estimates themselves are fully domain-independent, and
hence comparisons of heuristic quality (e. g., number of A∗

state expansions) are meaningful. We compare on all do-
mains considered in the previous section except for those not
supported by the underlying planner, MICONIC-SIMPLE-
ADL and SCHEDULE. Note that this includes the LOGIS-
TICS and SATELLITE domains where computing h+ is NP-
hard; in these cases, each state evaluation in our implemen-
tation can require exponential time. Table 1 indicates that
the time per state expansion is indeed very high for SATEL-
LITE, but h+ still scales much further than the other ap-
proaches due to the accuracy of the heuristic. Aggregat-
ing results over all domains, h+ convincingly outperforms
the other heuristics considered, including the state-of-the-
art hm&s. This suggests that the comparatively bad results
obtained with earlier delete relaxation heuristics are mostly
due to their inability to accurately approximate h+ rather
than a general weakness of delete relaxations.

Conclusion
Starting from the observation that many current planning
heuristics are based on delete relaxations, we have taken a
deeper look at the optimal delete relaxation heuristic, h+,
which all these heuristics strive to approximate. Theoreti-
cally, we have seen that h+ is in general not just hard to
compute (as proved already by Bylander), but also hard to
approximate. However, these worst-case results do not carry
over to most planning domains, for which we could show
much better theoretical results – including polynomial-time
algorithms for h+ in four of the seven benchmark results
considered.

Experimentally, we have shown that h+ is very infor-
mative across a range of planning domains, improving on
the state of the art in domain-independent optimal planning.
Hence, it appears worth investigating practically efficient
general implementations of h+, or alternatively better ad-
missible approximations, more closely. In our opinion, de-
spite the multitude of existing approaches, there is still con-
siderable scope for research on delete relaxation heuristics,
in particular admissible ones. Our results presented here can
serve as a useful methodological basis for such future work
by allowing, for the first time, direct comparisons of practi-
cal relaxation heuristics to h+.
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