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Abstract—We show how techniques from various
research areas – most notably hierarchical planning,
dialog management, and interaction management
– can be employed to realize individualized and
situation-adaptive user assistance. We introduce a
modular system architecture that is composed of
domain-independent components implementing tech-
niques from the respective areas. Systems based on
this architecture – so-called Companion-Systems –
can provide intelligent assistance in a broad variety
of tasks. They provide a user- and situation-adapted
sequence of instructions that show how achieve the
respective task. Additional explanations are, like the
instructions themselves, automatically derived based on
a declarative model of the current task. These systems
can react to unforeseen execution failures repairing
their underlying plans if required. We introduce a
prototype system that assists with setting up a home
theater and use it as a running example as well as
for an empirical evaluation with test subjects that
shows the usefulness of our approach. We summarize
the work of more than half a decade of research and
development done by various research groups from
different disciplines. Here, for the first time, we explain
the full integration of all components thereby showing
“the complete picture” of our approach to provide
individualized and situation-adaptive user assistance.

Index Terms—Companion Technology, Assistance
Systems, Planning-based Assistance, Human-Computer
Interaction (HCI)

I Introduction

At present, many innovative technological develop-
ments find their way into marketable products. As
a consequence, most of the technical systems we con-
stantly use in our everyday lives – household appliances,
entertainment electronics, smart phones, vending ma-
chines, and electronic services of all kinds – are be-
coming increasingly “intelligent”. Their functionality is
changing, becoming more versatile and complex. How-
ever, the functional intelligence of these systems often
contrasts strongly with their lack of user-friendliness and
ease of operation. More importantly, they are static,
i. e., identical for all users in all situations. Volumi-
nous instruction manuals, rigid user instructions and
non-existent user assistance are just a few of the obsta-
cles that significantly hinder the barrier-free and truly
user-friendly implementation of these systems.

Companion-Technology aims to bridge this gap by
complementing the functional intelligence of technical
systems with an equivalent intelligence in interacting
with the user and by integrating the two [35]. It enables
the implementation of so-called Companion-Systems,
which assist users by providing to-the-point instructions
and explanations in a completely individualized way:
they adapt to the user’s knowledge of the application
at hand, to his or her capabilities, and to the current
situation. Furthermore, they are able to communicate
and interact with the user via various input and out-
put channels, and they aim to gain their users’ trust
by making their behavior and functionality as transpar-
ent as possible. Companion characteristics of technical
systems, such as individuality, adaptability, flexibility,
transparency, and trustworthiness are created through
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the realization and interplay of various cognitive system
processes. For a detailed overview about the various
techniques and research areas that are combined to re-
alize these capabilities, we refer to an overview article
about the field [34] and to a recent book about Com-
panion-Technology [17].

In this report we present an approach to realize Com-
panion-Systems that assist users in complex tasks in
a user- and situation-adaptive way. One of its major
strengths is that all components of the underlying sys-
tem architecture are completely domain-independent.
Thus, one only requires to equip them with the required
models and further data like pictures and videos of the
current application at hand, but no software needs to
be adapted. The architecture comprises a knowledge
base with reasoning capabilities; hierarchical planning
modules with plan generation, plan repair, and plan ex-
planation facilities; a dialog and explanation manager;
an interaction manager to handle multimodal input and
output; and an advanced user interface.

Companion-Systems implemented via this architec-
ture work as follows. Given a complex task to solve,
first, an action plan is generated automatically. It pro-
vides a sequence of actions the execution of which ac-
complishes the user’s task. This plan serves to create
step-by-step instructions for the user. As plans are gen-
erated on a declarative model of the task at hand, the
system can – independent of the current application do-
main – answer questions about the instructions gener-
ated, elucidating, e. g., why a particular step is part of
the plan. Such plan explanations are an essential means
to make the system’s behavior transparent. Further-
more, a plan repair component enables the system to
respond to unexpected execution failures by providing
adequate support in those cases. Dialogs between the
system and the individual user are realized by the di-
alog management component of the system. It is con-
cerned with controlling both the structure and the con-
tent of this dialog and is, among others, responsible for
transforming the instruction steps into concrete dialog
steps. It does so by taking the user’s knowledge and
preferences into account to ensure that the instructions
are presented in an individualized and adequate man-
ner. This includes improving the user’s understanding
of the task at hand by offering explanations about rele-
vant concepts and instruction steps, thereby contribut-
ing significantly to establish and maintain the user’s
trust. A Companion-System needs to be flexible and
able to communicate with its user in various environ-
ments and situations. Therefore, it is equipped with an
advanced interaction management that realizes multi-
modal user-system communication and interaction. It
provides appropriate user interfaces and is able to re-
ceive and interpret multimodal user input. Choosing

the right modality or an appropriate combination of
different modalities is important for both adapting to
the current environment or situation and conducting
an individualized user dialog. Companion-Systems are
knowledge-based systems: The various components that
implement their functionality and characteristics rely on
a multitude of different pieces of information that are
required and produced and that need to be exchanged.
Therefore, a central knowledge base serves to represent
and combine the different models used. It is also re-
sponsible for monitoring the world state as well as the
user’s situation. To this end, a probabilistic approach is
employed to ensure that inferences relying on possibly
uncertain sensory input are robust.

To prove that the proposed architecture and the var-
ious components are appropriate to realize Companion-
Systems of rich functionality, we implemented a large-
scale prototype that assists users in the task of setting
up a complex home entertainment system [16, 59]. This
prototype, which also serves as a running example for
this report, assists its user by its manifold capabilities.
In a nutshell, it generates – based on AI planning – a
sequence of actions that serves as a basis to present the
instructions showing the user how the various HiFi de-
vices should be connected with the available cables and
adapters. The dialog manager then decides about the
level of abstraction of these steps, i. e., to decide what
information is conveyed to the user, thereby taking his
or her knowledge about the specific application domain
into account. Finally, the interaction manager decides
about the most appropriate way how (and where) this
information is presented. In addition, the system can
produce repaired solutions in case cables turn out to be
broken during execution. Further, at any time during
interaction, the user can ask questions about the cur-
rently presented instruction, including knowledge about
the involved hardware as well as about the purpose of
the respective instruction for the overall goal.

Contributions We propose a modular system archi-
tecture that is composed of domain-independent com-
ponents implementing techniques from knowledge rep-
resentation and reasoning, hierarchical planning, and
dialog and interaction management. It allows the real-
ization of so-called Companion-Systems – systems that
provide individualized and situation-adaptive assistance
to their users in a broad variety of different applications.
Partial integrations of the proposed approach and sys-
tem were published before with focus on one particular
aspect/capability of the architecture and system (such
as planning [45, 55] or adaptive dialogs and multimodal
interaction [69]), but without highlighting the others
and their interplay in particular. In a short book chap-
ter, we sketch the entire system giving pointers to the
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respective related work of this system by the involved
research groups [16].

In this report we introduce the entire system in detail,
thereby showing “the complete picture” of our approach
dealing with all integration issues. We explain how all
involved system components are communicating with
each other and shortly explain their underlying technol-
ogy and give pointers to related work for further details.
We also summarize the main findings of our empirical
evaluations that were done for these involved technolo-
gies (such summaries have also not been given before) as
well as for partial integrations of the systems, and give
pointers to the original publications. In this report, we
also include one novel evaluation that was not published
before. Another contribution is the related work section,
where we give – to the best of our knowledge – the first
detailed overview of other planning-based assistant sys-
tems and architectures.

Outline The remainder of the report is organized as
follows. Section II introduces the application domain
that serves as a running example throughout the re-
port. It is concerned with the setup of a complex home
entertainment system. Section III presents the over-
all architecture in an abstract way, describes the core
functionality of its sub components, and the general in-
terplay between them. A more detailed view on the
interplay of the various components is given at the be-
ginning of the sections on the particular sub components
and disciplines. We start by explaining the knowledge
base, which serves as central hub of the system’s knowl-
edge (Section IV). The following sections are organized
in the order of one user-system interaction loop: We
start with the planning components that are responsi-
ble, among others, for generating the plan of actions, the
presentation and execution of which supports the user
(Section V). Next, the dialog components are explained,
which are responsible for presenting the current instruc-
tion in a user- and situation-adaptive way (Section VI).
The interaction management is then described, which
is responsible for modality-independent output, as well
as for handling multi-modal user input (Section VII).
Finally, the user interface is described, which serves as
the main interface for the user to communicate with the
system (Section VIII). All these sections discuss lessons
learned from applying the respective technologies in the
described system, their limitations, mention real-time is-
sues (including evaluations), as well as future work. In
addition, Section IX gives a rough overview for the main
steps that need to be taken when building such a system
in a specific application scenario. Here, we particularly
highlight issues that arise from integrating the different
techniques into a single system. Furthermore, we try
to give an intuition about the effort to come up with

such a system by providing suitable examples from our
application domain and prototype system. Section X
reviews related work – both research projects as well as
work on actual systems – that is concerned with a sim-
ilar endeavor of providing user assistance based on AI
planning. Section XI then concludes this report with
some final remarks.

II The Home Theater Assembly Task

The following sections introduce an architecture and
the involved components (and their underlying research
disciplines) that serve as the basis for a system that
provides advanced assistance functionality in a wide va-
riety of tasks. To exemplify our approach, we have
implemented a prototype system in a specific applica-
tion domain, in which we believe many people would
appreciate automated and intelligent assistance (which
we regard confirmed by one of our empirical studies,
cf. Section E). This application domain further serves
as a running example throughout the report. As noted
before, our approach is fully generic and can be applied
to many different problem scenarios (cf. Section IX) –
our example scenario mainly serves as proof of concept
and for illustration purposes.

Our running example is concerned with providing as-
sistance to a user who wants to set up his or her home
theater. The theater consists of several HiFi devices
that need to be connected with each other in such a way
that each of the devices is fully functional. To that end,
the user must pick the correct cables and, if required,
adapters to connect the devices in a correct fashion, so
that each device receives the required audio/video sig-
nals [55]. In the specific example that is used in our
implementation, there are the following devices: a tele-
vision, an amplifier, i. e., an audio/video receiver (Fig-
ure 2 shows its back panel), a Blu-ray player, and a
satellite receiver. For connecting the devices with each
other, several cables, adapters, and adapter cables (ca-
bles with different kinds of ends) are available to the
user. The home theater is fully set up as soon as two
main goals are fulfilled: (1) the television needs to re-
ceive the video signals of both the Blu-ray player and
the satellite receiver, and (2) since the loud speakers are
attached to the amplifier, it needs to receive the audio
signals of the two devices.

The home theater assembly task was chosen for our
prototype system and hence as an illustrating example,
because complicated technical systems that need to be
set up via connecting them in the right fashion can be
found in many households, which makes it a commonly
known task. Also, many people do not consider them-
selves an expert in such technical domains; only a few
concepts are known, but not all the details about the (in-
teraction of the) variety of ports, cables, and adapters.
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SAT Blu-ray
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(a) The task: an assortment of unconnected
devices and cables.

SAT Blu-ray

AMPTV

(b) A solution: the devices
are properly connected.

Figure 1: The figure schematically illustrates the task
[25, Fig. 6.1]. It shows the available devices, some
of the available cables, and how they are compatible
with respect to each other: The TV, amplifier, satellite
receiver, and Blu-ray player each have various female

ports, where , , , and denote HDMI, SCART,
cinch video, and cinch audio ports, respectively. Black

ports on cables denote male ports. There are two
HDMI cables and one SCART-to-cinch-AV cable. The
devices should be connected in such a way that the video
signals of the Blu-ray player and the satellite receiver
reach the TV. The respective audio signals should be
transported to the A/V receiver, which is connected to
speakers.

Figure 2: The figure shows the back panel of the ampli-
fier used for our running example [55, Fig. 1].

There is also the combinatorial aspect in connecting the
devices, which becomes apparent if there is only a lim-
ited number of cables available1. Solving such combi-
natorially hard problems is one of the strengths of AI
planning technology, which makes it a reasonable ap-
plication scenario. It also nicely shows the strengths of

1In fact, we believe that the problem is in general NP-hard;
we do, however, not yet have a formal proof. NP membership is
obvious, since one can simply guess a setup and check its validity
in polynomial time.

Companion-Technology: According to its vision, tech-
nical systems of the future will be Companion-Systems
[35]. These systems will be equipped with a model of
their own functionality that can directly serve as a ba-
sis for the required models without the need to build
them by hand. Furthermore, it shows that Companion-
Technology goes far beyond simple instruction manu-
als, as those can only give a description of a single de-
vice/cable, or a predefined set of devices (which could be
part of a set). Thus, at the most, such a manual could
explain how to set up the devices which are known to
be part of a bundle, but only a generic approach like
ours can assist in this task when the available devices
are specified by the user.

The implemented system runs in an example setting,
where the user has two possibilities for interaction: there
is a standard desktop PC that has a large touch screen
monitor and two loud speakers attached to it as well as a
laser range finder for user localization (cf. Section 5). A
second device, a standard desktop computer, is placed
a few meters next to the touch monitor. That computer
also has a separate pair of loud speakers attached to it.
An additional complication in the setting stems from the
possibility of further persons that, apart from the user,
enter and leave the scene and have to be ignored by the
system. Also, it cannot be assumed that the scene is
free from obstacles, i. e., occlusion is likely to occur. To-
gether, these complications account for the typical sce-
nario in which assistance for setting up a home theater
takes place – at the user’s home, where family members
and additional furniture might be present.

III System Architecture

Knowledge Base

User 
Interface

Sensors

DialogPlanning
Interaction

Management

implicit 
interaction

     Environment

Application 
Core

USER

explicit 
interaction

Figure 3: The underlying architecture of the assistance
system. A more detailed view on its sub components
and their interaction within the system is given at the
beginning of the respective sections.

Our architecture (Figure 3) is based on established ar-
chitectural principles for interactive systems, like Arch
or Arch/Slinky [180], as well as architectural recommen-
dations [78, 107]. Moreover, the presented architecture
and its components respect established practices and ap-
proaches like model-driven software development [161]
and automatic UI generation using different levels of
abstraction, based on the CAMELEON reference frame-
work [168, 160].
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With these principles, we integrate planning capa-
bilities (plan generation, execution/monitoring, repair,
and explanation) with components providing advanced
human-computer interaction, which include dialog man-
agement (explanation and dialog manager) and interac-
tion management (multimodal fission and fusion, con-
tent manager, and nominator) in a knowledge-based sys-
tem. Related is the work by Stahl et al. (2005) [152],
who present a layered architecture for assistance systems
in intelligent environments.

A Subsystem Interaction

Figure 3 gives an abstract view on our system ar-
chitecture, where every component is depicted by one
single box. Many of these components consist of sev-
eral sub components, however. A more detailed view on
the system architecture is given at the beginning of the
respective sections, where these sub components (and
their interaction) are depicted. Here, we first give an ab-
stract view on the involved components and their main
functionality before we explain their interplay via one
user-system interaction cycle.

Application Core Module One main ability of
Companion-Technology is to act as enabling technology.
The presented modules with their generic interfaces can
act as a wrapper for pre-existing applications, tools, or
services. By extending an application’s core functional-
ity, e. g., a media player, the basic system can be oper-
ated with the use of the generic components [111, 94].
With these possibilities, the user perceives the former
system as Companion-System. Aside from wrapping an
existing app to enhance its usability, another ability is
to make use of existing web services for information re-
trieval. This can for example be used to derive user-
specific or user-requested data and media.

Knowledge Base Module The knowledge base com-
ponent (Section IV) organizes the required knowledge
for the whole system. With the use of specialized
sub-systems, various modeling paradigms can be used
to meet the different requirements of other modules.
Static or quasi-static context knowledge, for example,
can be organized using less complex approaches than
time-dependent data or data of high structural complex-
ity. Knowledge representation is further complicated by
the fact that a large part of the knowledge is of an uncer-
tain nature. To maintain a consistent representation of
time-dependent, uncertain information, the knowledge
base component employs probabilistic temporal filter-
ing to its input. The filtered current belief is offered to
other modules through an appropriate query interface.

Planning Module The planning module (Section V)
enables the overall system to realize goal-directed be-
havior. Thus, it provides one of the core functionalities
of a Companion-System. Based on a model of the given
application domain and a description of the user’s goals
that shall be achieved, it generates a step-by-step de-
scription of how it can be reached. This is necessary in
several situations: it can solve a problem for the user
and guide him or her via instruction on how to solve
it. For this, the steps are successively passed on to the
dialog management to initiate presentation to the user.
The planning modules are further responsible for decid-
ing the execution order of these steps (taking the user
into account) and to detect unforeseen environmental
changes during plan execution. When such a change
prohibits the further execution of the plan at hand, a
plan repair component enables the system to find a new
plan that is capable of dealing with the changed envi-
ronment. To enhance the user’s benefit of the system’s
guidance and enhance the user’s trust, it is able to ex-
plain its behavior, which is based on so-called plan ex-
planations.

Dialog Management Module In general, a dialog
manager serves as a flexible interface between an appli-
cation and the user (Section VI). Specifically, it is used
to map a current plan step to user interface concepts
for user participation. The dialog manager employs
diverse emotion-, knowledge-, and skill-specific dialog
strategies to adapt the system to the individual user.
In the same way, explanations about the current task as
well as user-initiated requests for additional information
are provided by the explanation manager. The dialog
manager’s modality-independent output represents the
so-called abstract user interface (AUI) [160], which is
further refined by the interaction management. Once
the output for a plan step and the resulting input is
processed, control is passed back to the planning mod-
ule.

Interaction Management Module The interaction
management’s fission component analyzes the dialog
management’s modality-independent output, decides
about the modality-specific output (Section A), and pro-
vides a so-called concrete user interface (CUI) [160].
This CUI description is then passed on to the user in-
terface components (Section VIII) for rendering. As
depicted in Figure 3, the decision process depends on
context knowledge and highly dynamic data (e. g., the
user’s location). Such data is provided by the knowl-
edge base. The content manager (Section C) analyzes
the fission’s output and provides a corresponding con-
figuration for the fusion component (Section B and C).
The fusion component is able to handle diverse user in-
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puts from multiple modalities. It then passes the fused
input back to the dialog management for further dialog
processing. Also, the fusion component is able to detect
the user’s wishes about specific output configurations
and media use. These so-called nominations are orga-
nized by the nomination manager and can influence the
fission’s process of modality arbitration (Section C).

User Interface Module The user interface module
(Section VIII) comprises diverse rendering components
for different input and output modalities. Whenever
a new CUI is available, the addressed output compo-
nents are able to interpret the CUI description and ren-
der the modality-specific final user interface (FUI) [160].
For input components, the CUI serves as configuration
for the internal sensors (e. g., a situation-, action-, or
user-specific grammar for automatic speech recognition
(ASR)). Different inputs from multiple modalities are
forwarded to the knowledge base as well as to the fusion
component for multimodal input processing.

Sensor System Module Using different sensors
(physical, logical, or virtual [136, 70]), the sensor system
module provides the capability to recognize the environ-
ment (e. g., illumination- and noise level, persons present
in the scene) as well as the user’s implicit and explicit ac-
tions (e. g., implicitly trigger an action by moving from
one spot to another vs. explicitly touching an item on a
screen). Their inferred data is passed on to the knowl-
edge base for further processing, as well as to the input
fusion component in order to detect possible implicit
user interactions.

Exemplary User-System Interaction Loop We
now describe an exemplary life cycle of one user-system
interaction loop. The interaction cycle starts by gener-
ating an initial plan, which consists of the current (ini-
tial) world state and the user’s goals (which are given
in terms of logical formula describing the desired world
state and in terms of abstract tasks the user wants to
have achieved). This initial plan is refined by the Plan-
ning Module, i. e., abstract tasks are decomposed suc-
cessively into a partially ordered set of primitive tasks
(actions), which can be executed. These actions are
passed on one-by-one to the Dialog Management. The
Dialog Management translates each action into a user-
adaptive dialog, selecting a dialog model whose dialog
steps are necessary to achieve the desired effects of the
action, but at the same time is most suitable for the cur-
rent user. For this decision information coming from the
Knowledge Base, namely user emotion or user knowl-
edge, is taken into account. For example, if necessary,
additional dialog steps, explaining missing knowledge,
are included in the course of the dialog. These dialog

steps are in turn passed on one-by-one to the Interaction
Management, which selects an adequate combination of
diverse user interface components for the present situ-
ation to be presented on the available and selected de-
vices. The results of the user interaction are processed
and fused by the Interaction Management, which is able
to combine user inputs from different modalities, such
as pointing gestures in conjunction with verbal cues,
and passed on to the Dialog Management. The Dia-
log Management maps the results to the effects of the
current action. These effects are transmitted back to
the Planning Module, and the world state in the knowl-
edge base is updated accordingly. Hereafter, the cycle
begins anew, i. e., the next action is passed on to the Di-
alog Management. However, if the interaction results do
not match the system’s expectations, the ongoing plan
must be repaired by the Planning Component, i. e., it
searches for an alternative solution, before re-initiating
the cycle.

B Technical Realization

A Companion-System that is realized based on the
proposed architecture includes a number of software
components that may be implemented in different pro-
gramming languages and may run on several operat-
ing systems. It is important to be able to operate
across different types of devices distributed in a net-
work to fit the components’ needs. These range from
mobile devices like smartphones or tablets, e. g., for in-
terface components, to powerful computers to be able
to run, e. g., the planning component. To connect these
distributed and heterogeneous components, a flexible
and efficient middleware is necessary. The used mid-
dleware is an adaptation of the middleware from the
SEMAINE project [106]. It realizes a client-server-
architecture with a central broker instance, called the
system manager, which offers a central connection point
for the communication between the clients in the net-
work. The actual communication between the compo-
nents is asynchronous and message-based. It imple-
ments the publisher-subscriber pattern. Though we re-
alized the system using standard Ethernet components,
we found neither the communication nor the central
server component to be the critical part when aiming
for fast response times.

So far, the components of a system are started based
on a predefined configuration and are thus statically de-
fined for a given overall system. The system manager
checks the current state (online or offline) of all com-
ponents in the system. Currently, the system manager
reports problems to the operator, but though the inte-
grated components might be able to handle changes of,
e. g., the set of available sensors (see Section VIII), it
is not able to automatically reactivate components that
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are offline or re-configure the system. For the sake of
reliability and overall system performance, the system
manager should be able to restart components or replace
them with others that are not part of the current config-
uration. Thus, as future work, we want to realize an au-
tomated dynamic configuration that can deal with fail-
ures of components or communication. To realize these
capabilities, the system manager, which is responsible
for the configuration, needs to be provided with knowl-
edge about the different components that includes not
only definitions of interfaces, but also a description of
the functionality of each component. To preserve short
response times, a special attention needs to be payed to
organizing sensor components and which data needs to
be sent over the network. Such an approach may even
optimize the overall system performance by choosing a
good configuration from all available components or by
starting new components to realize an overall system
with maximum utility to the user [49, 23].

IV Knowledge Base

Knowledge Base

High-Level
Temporal Filter

User 
Interface

Sensors

DialogPlanning Interaction
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Plan
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Figure 4: Architectural view and modules with focus on
the knowledge base.

The knowledge base component serves as a central
hub for the knowledge and beliefs of the whole system.
Its main functionality is the maintenance of a time-
dependent, probabilistic state representation which in-
cludes the state of the user and the system’s general
environment. As the knowledge base interfaces with
many other modules, it has to support a large portion of
the respective modeling paradigms. While there are ap-
proaches in which one common representation language
for all the involved components is chosen [44, 26], here
we use the individual models and ensure that they are
used consistently. For example, the model used by the
planning components (hybrid planning, cf. Section V) is
time-dependent and based on a deterministic first-order
logic. The components concerned with interaction man-
agement, on the other hand, use a flexible, deterministic
model that allows specification of text fragments, im-
ages, or even general files as values [83, 61] to describe

time-independent information about dialogue. Finally,
the models used to process the sensor data are usually
time-dependent and probabilistic. In addition, they usu-
ally make heavy use of continuous variables, such as the
user’s position, which is required to determine adequate
output modalities (see also Sections B and A).

Figure 4 provides an overview on the components of
the architecture that communicate with the knowledge
base. The knowledge base itself consists of a high-level
temporal filter (see Section A) as well as the sensory
processing module (see Section B), which provides a dy-
namic model of the system’s environment. Based on
the data of physical sensors, the module generates a
probabilistic output, which represents the uncertainty in
the number of objects as well as the uncertainty about
the individual object states and delivers this informa-
tion to the high-level temporal filter. In addition to
the sensory processing, the high-level temporal filter of
the knowledge base obtains input from the dialog, the
interaction management, and the user interface. The
multimodal fusion of the interaction management deliv-
ers information about the user’s interaction history to
the knowledge base, which facilitates the adaptivity to
the user’s preferences in succeeding interactions. The
input and output components deliver their capabilities
as well as so-called heartbeat messages to the knowl-
edge base. Further, the usage of the input components
enables the knowledge base to draw conclusions about
the user’s position. In addition to the aggregation of all
available inputs, the knowledge base provides the plan-
ning problem to the plan generation component. The
context knowledge about the system’s environment as
well as the user’s position are delivered to the multi-
modal fission module in order to choose suitable devices
to present the system output.

A Temporal high-level filter

Because of the diversity of the different modeling ap-
proaches, it is important to be selective in the choice
of supported features. An adequate treatment of uncer-
tainty and temporal modeling aspects appeared to be
essential to facilitate a proper integration of sensory in-
put, and to honor the fact that the system has to act
within a dynamically changing and only partially ob-
servable environment. This is achieved by having the
knowledge base component maintain a probability dis-
tribution p(xt|Z0:t) over the current state xt at time
t, given all past observations Z0:t. This task is usu-
ally called filtering. To facilitate a seamless integration,
e. g., with the logical planning formalism, and to support
modeling by human experts, we finally settled with ex-
pressing the central model of the system using Markov
Logic (ML) [139]. ML has been used to integrate low-
level and high-level data in a probabilistic setting on
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many different occasions [36, 57, 101, 102, 105, 121].
ML is an instance of a first-order probabilistic lan-

guage [120]. As such, it allows the concise specifica-
tion of probability distributions over a relational ob-
ject structure. Since the semantics of ML are based
on undirected graphical models [108], the integration
of arbitrary logical constraints is straight-forward, and
ML appears as a generalization of a restricted version of
first-order predicate logic [139]. The ML model consists
of a set of weighted first-order logical formulas, usually
containing free variables.

To illustrate the use of ML for the described architec-
ture, we present the following simplified fragment from
a model [81, 82] that is able to integrate object local-
ization information (and Section B) with respect to a
discretized localization scheme (Figure 5):

∞ at(t, p, l) ∧ at(t+ 1, p, l′)⇒ adj(l, l′) (1)

2 at(t, p, l)⇒ at(t+ 1, p, l) (2)

To obtain the probabilistic semantics, the formulas are
instantiated (grounded) by assigning a time-step to t, a
discrete location (i. e., a colored region as in Figure 5)
to l, l′, and a person to p. The groundings of formulas
with higher weights are more probable to be true, while
formulas with infinite weight must not be violated at
all. Equation 1 then describes that a person can only
move from location l to location l′ within one time-step,
if both locations are adjacent. Equation 2 models the
fact that if a person p is at some location l at time t,
then this condition will likely still hold at time t + 1;
while a negative weight would state that it is unlikely
for a person to remain within the same location. Po-
tentially uncertain observations of the user-position can
then be integrated in the model through observations on
the at atoms [81]. Given a set of such weighted formulas
{(wk, φk)}1≤k≤n, and writing nk(x) for the number of
true groundings of formula φk(x) under interpretation
x, the joint probability of the model is defined as

p(x) =
1

Z

∏
k

exp(wk · nk(x)). (3)

The partition function Z must be chosen such that p
is normalized. Equation 3 states that an interpretation
has a higher probability of being the true interpretation,
when it satisfies more positively weighted groundings of
formulas. With respect to our example, an interpreta-
tion in which a person stands still for a longer duration
is more likely, because it satisfies more groundings of
formula 2.

Inference within a ML model can be performed ei-
ther grounded or lifted. Grounded inference works by
converting the ML model to a Markov network, and
applying conventional inference algorithms [108]. Be-
cause the grounding can cause an exponential blow-up

Figure 5: The figure shows the environment in which our
prototype system was set up. There is a user making a
pointing gesture towards the main terminal of the sys-
tem. On the left and right side of this terminal, there are
laser range finders for user localization (Only the one on
the right is part of the picture). On the right is another
desktop computer that can be used for user interaction
as well. The colored areas depict the discrete locations
of the MLN model that is used for user localization.

in model size, the more complex lifted approaches to
inference try to avoid this step and work directly on
the first-order representation [125], exploiting potential
symmetries. As most symmetries are destroyed by ob-
servations, we followed a grounded approach to infer-
ence [92].

Interfacing to the other modules of the system is re-
stricted to (potentially uncertain) observations of cur-
rent variables, and queries to the marginal distribution
over current variables. Observations are supplied by
sensor-based modules such as user localization (see Sec-
tion B), or modules related to explicit user input. An
example of the latter is the observation of the current
user location based on touch interaction with the sys-
tem. A further stream of observations comes from the
dialog management component at the end of the human-
computer interaction cycle. It verbalizes some of the di-
alog steps (see Section VI) to the user and then receives
a confirmation of their execution. We treat this confir-
mation as an assertion that the effects associated with
the action have occurred, and can thus be observed.

Other modules query the marginal distribution over
the random variables of the present time step. Among
the consumers of this information are modules that are
concerned with decision making, namely the plan gen-
eration component, the dialog management component,
and the fission component. Here an important limi-
tation becomes apparent, caused by the modular ap-
proach and its separation of the different components
for inference and decision making. Within our imple-
mentation, only marginal distributions over single vari-
ables were queried, despite the distribution represented
by the knowledge base component can represent depen-
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dencies between variables. The assumption of indepen-
dence greatly simplifies reporting the results of queries
as the representation of multi-variate distributions can
become exponentially large in the number of variables,
but it may also cause an over-simplification. A solu-
tion to this problem would either be more sophisticated
result representations (for example through variational
approximations [122]), or the unification of probabilistic
inference and decision making within the same module.

Another limitation concerns the restriction to discrete
random variables. A model containing continuous vari-
ables is more appropriate in many situations (for exam-
ple when modeling user location, or emotional states).
The extension of ML models by continuous random vari-
ables has been examined in the literature [123].

B Sensory Processing: User Localization

The data that originates from physical sensors is not
directly processed by the high-level filter, as it is often
of a quite different nature (high-dimensional, continu-
ous state, high-frequency). For this purpose there exist
dedicated probabilistic models that abstract the sensory
information to make it compatible with the knowledge
base, which supports models with discrete-valued vari-
ables that often exhibit a combinatorial component. We
integrated one such sensory pre-processing module in
the prototypical implementation. The purpose of this
module was multi-object tracking, based on the mea-
surements of a laser-range-finder. A reliable method
of acquiring the user’s current location is important
in the context of ambient intelligence [144]. The cur-
rent position of the user obviously restricts the inter-
action modalities, e. g., a touch-interaction is only pos-
sible if the user is located close to the screen. Thus,
the continuous estimation of the user’s kinematic state
is required. This is typically performed using a recur-
sive Bayes filter which estimates the probability density
function p(x|Z0:k) of the object’s kinematic state using
the measurement history Z0:k, i. e., all measurements up
to the current time k. The aim of the user localization
module is to transmit the dynamic state of all persons
in the proximity of the system to the knowledge base.

Since the considered scenario comprises several per-
sons in the proximity of the system as well as occlu-
sions due to static or dynamic obstacles, more advanced
tracking algorithms are required to obtain the required
accuracy of the state estimates. Mahler (2007) [130]
proposed the multi-object Bayes filter which tackles the
problem of estimating the number of objects in the en-
vironment as well as their individual states in a mathe-
matically rigorous way. The multi-object state is repre-
sented by a random finite set (RFS), which comprises a
random number of (unordered) points whose individual
kinematic states are random. Thus, an RFS naturally

represents the uncertainty of the multi-object state since
the number of objects as well as their individual posi-
tions are unknown.

In this work, a sequential Monte Carlo (SMC) imple-
mentation of the full multi-object Bayes filter is used to
track the persons in the system’s environment. Com-
pared to the approximations introduced in the previ-
ous paragraph, the proposed SMC implementation fa-
cilitates the incorporation of object interactions, based
on physical constraints [71, 63], i. e., the prediction step
ensures that objects may not overlap. The interactions
are modeled using the principles of the social force model
[193] which avoids collisions of objects using force vec-
tors. Instead of applying the force vectors to the mo-
tion of the persons, the weights of the particles in the
SMC implementation are adapted, i. e., the weight of
invalid predicted particles is decreased while the weight
of valid particles is unchanged. The SMC implementa-
tion further allows for the modeling of state-dependent
detection probabilities which is essential in the investi-
gated scenarios due to occlusions by static or dynamic
obstacles.

Popular approximations of the multi-object Bayes fil-
ter are the Probability Hypothesis Density (PHD) filter
[162], the Cardinalized PHD (CPHD) Filter [129], and
the Cardinality Balanced Multi-Object Multi-Bernoulli
(CB-MB) filter [114]. However, these approximations
require the removal of the set representation and do not
facilitate the modeling of object interactions. Recently,
the class of labeled RFS and an implementation of
the multi-object Bayes filter using Generalized Labeled-
Multi-Bernoulli (GLMB) distributions were proposed by
Vo and Vo (2013) [74]. Since the GLMB representation
keeps the set representation, the proposed methods for
modeling object interactions could also be integrated
into the GLMB filter.

C Evaluation

Since the scenario of setting up a home theater pro-
vides several interaction possibilities, the information
about the user’s position is essential for choosing the
best output device and modality for the current time
step (cf. Section 5). The choice of the sensor setup for
detecting and tracking all persons or other obstacles in
the proximity of a system strongly depends on the con-
ditions of the scenario, e. g., the required range or reso-
lution. In our example, two laser range finders are used
for the tracking system. The sensors are mounted at a
height of approximately 1 m in two corners of the room
(cf. Figure 5)). Obviously, this sensor setup leads to
a high possibility of occlusions in scenarios with sev-
eral persons in the room, which emulates the restricted
mounting positions for arbitrary types of sensors in real
systems.
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The SMC implementation of the multi-object Bayes
filter, as presented in Section B, successfully estimates
the dynamic states of the persons in challenging scenar-
ios with short-term occlusions due to other persons or
static obstacles. In order to keep track of a person dur-
ing occlusion, a state-dependent detection probability
is required, which may, e. g., be obtained using a grid
map [97]. The benefit of using a state-dependent detec-
tion probability is the significantly reduced number of
lost tracks in occlusion scenarios [63]. Further, model-
ing object interactions stabilizes the tracking results and
facilitates principled approximations during the calcu-
lation of the multi-object likelihood function [63]. The
filter delivers highly accurate estimates with position
errors of less than 10 cm. In case of short-term occlu-
sions, the position uncertainty obviously increases, but
the sophisticated modeling of the detection probability
ensures that the uncertainty about the user’s position
is restricted to the occluded area. Since the complex-
ity of the filter increases exponentially in the number of
tracked objects, real-time performance is only possible
for a restricted number of objects. Hence, approxima-
tive solutions like the Labeled Multi-Bernoulli (LMB)
filter [64] are required for scenarios with more than 10
to 15 persons. However, the structure of the LMB fil-
ter enables the usage of the SMC multi-object Bayes
filter for small groups of objects which are currently in
a challenging situation.

As discussed above, the SMC multi-object Bayes filter
provides excellent results in situations with short-time
occlusions. However, the absence of context knowledge
prevents the continuous tracking of persons in case of
long-term occlusions. Hence, the results of the multi-
object tracking system can be improved in these sce-
narios by a probabilistic knowledge base. The feasibil-
ity and benefit of the integration between a probabilis-
tic knowledge base and a multi-object tracking filter is
demonstrated by Geier et al. (2012, 2012) [81, 82] via an
empirical evaluation. The results of the probabilistic ob-
ject tracking approach are integrated into a Markov logic
(ML)-based model providing information about people’s
destinations. The aim of the experiment was to improve
the tracking performance by enriching the model with
additional background information. For evaluation pur-
poses, three increasingly sophisticated ML models have
been employed. The first ML model only encodes a
floor plan of the room and a basic movement model, the
second one additionally adds information about static
occlusions and the third one also uses the information
about the possible destination of the current user. The
results showed that the track continuity significantly in-
creased with the complexity of the ML model. Since
an ML model can only represent discrete-valued random
variables, the floor plan has to be discretized with a spe-

cific resolution. The experiments by Geier et al. (2012)
[82] showed that the discretization has to be chosen with
care, because both overly coarse and overly fine-grained
discretizations can be unfavorable.
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Figure 6: Architectural view and modules with focus on
the planning part.

Advanced user assistance is based, among others, on
AI planning capabilities. The most fundamental of these
capabilities is to come up with a plan, i. e., a course of
actions, that solves the user’s goals. Such goals can be
specified both in terms of state properties that must
hold after the execution of a plan and in terms of ab-
stract tasks that need to be achieved. That is, the plan
generation component is provided with some abstract
tasks that specify the high-level activities the user wants
to have achieved, such as setting up the home theater
in our assembly task example. Our planning framework
includes the generation of plans, plan execution, plan
repair, and plan explanation (see Figure 6).

The interplay of the plan generation component with
other components of the architecture (cf. Figures 3
and 6) works as follows: The input of the plan gen-
eration component is a planning problem (which en-
codes the initial state, the user’s goals, and the plan-
ning model). There are two possible types of planning
problems that come from different sources.

The first type is the initial planning problem, which,
in the prototype, is specified beforehand and stored in
the knowledge base. In general, it should be elicited
from the user, e. g., by letting her or him select a pre-
defined domain of interest and initiating a domain- and
user-specific dialog for specifying the problem instance.
Such problems will, in our architecture, be generated
by the knowledge base and passed on to the planning
component. The second type of planning problem oc-
curs when the system needs to repair the current plan.
In that case, a new planning problem is generated by
the plan repair component and passed on to the plan
generation component (Section C).
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The plan generation component creates a solution for
the given planning problem. The plan is passed on to
two components. On the one hand, the plan execution
component (Section B) needs it for execution; on the
other hand, the plan explanation component (Section D)
receives it to be able to answer questions about it that
may arise on the user’s side.

There are mainly two purposes of a solution: It may
determine the behavior of the system itself (enabling
flexible system behavior) and thus be executed by the
system. In that case, the plan execution component
passes the steps that need to be done to reach the goal
on to the application core component. A second purpose
is to serve as advice for a human user. Then the steps
are passed on to the dialog component for execution.
In any case, the plan execution monitors the execution
as described in Section B. When problems occur dur-
ing execution, it triggers the plan repair component to
generate a plan repair problem.

When planning-based advice is provided to the user,
questions might arise on the user’s side. Questions
might be about declarative knowledge (like “What is a
SCART cable?”) – these questions are answered by the
dialog component (cf. Section B). There might also be
questions about procedural knowledge (like “Why shall
I do that?”). If this is the case, then the dialog compo-
nent calls the plan explanation component (Section D)
and presents the answer to the user in form of natural
language text.

Preliminaries The deployed planning framework,
Hybrid Planning [186, 171, 89, 33], fuses Hierarchical
Task Network (HTN) planning [191, 156] with concepts
from Partial-Order Causal-Link (POCL) planning [201,
200, 157]. Both paradigms seem to be well suited for our
endeavor to assist human users in real-world tasks for
several reasons. Most notably, HTN and POCL plan-
ning correspond to two prevalent methods of human
planning behavior: top-down and bottom-up planning,
respectively [153]2. In top-down planning, higher-level
actions “guide” the decision making on the more prim-
itive and elemental actions. This is achieved by gen-
erating a higher-level plan first, and then (e. g., using
predefined “recipes”) refine this abstract solution into
a concrete one. HTN planning uses the same hierar-
chical structure of the domain to define valid problem-
solving strategies, and is as such well suited to capture
this behavior. In contrast, in bottom-up planning hu-
mans make decisions based on currently available op-

2There are other approaches that try to explain human plan-
ning behavior. Notably Newell, Simon, et al. (1972) [204] inter-
preted it as a search process through a space of states – which
resembles forward search in classical planning. Empirically this
behavior seems to be limited to well-defined and artificial planning
problems, like Towers of Hanoi [147].

tions and opportunities, rather than based on prede-
fined refinement structures. Such opportunistic behav-
ior can be captured by POCL planning, which is driven
by currently unfulfilled preconditions of actions. As ar-
gued by Ward and Morris (2005) [153], humans do not
seem to use one of these ways to plan alone, but rather
combine them into a coherent planning behavior, where
the choice of the planning methodology at each decision
step depends on external influences (e. g., difficulty of
the problem, familiarity of the human with that prob-
lem, size of the problem, etc). Hybrid Planning does the
same as humans do: combining two approaches to best
fit the human’s cognitive process of planning. Using a
planning procedure that also refines abstract tasks into
more primitive ones thus resembles that way of problem
solving and can further be exploited by incorporating a
human user directly in the planning process [51, 31, 11,
12]. Even before the actual planning starts, the hier-
archy can be exploited, as it allows to model the given
application in a hierarchical manner (e. g., rules as “In
order to carry out task X, one must first do Y, then Z”
can be expressed). Several real-world planning appli-
cations have therefore been modeled in that way [149,
118, 89, 44]; in particular, many planning-based assis-
tance systems are based upon a hierarchical planning
approach [178, 163, 145, 137, 76, 22], see Section B.
The hierarchical dependencies can further be exploited
when generating plan explanations, as elaborated in Sec-
tion D. Plan explanations further base on the explicit
representation of causality (by means on causal links,
which are inherited from POCL planning). They can
further be exploited for plan linearization and plan re-
pair (see Sections B and C, respectively).

We now shorty explain the hybrid planning concepts
that are relevant for the purpose of this report. For a
more detailed explanation we refer to previous work
and, in particular for our enterprise of applying the
technology to human users, to the book chapter on
user-centered planning [15]. Planning is centered
around the execution of tasks. In hybrid planning,
there are two kinds of tasks. Abstract tasks and
primitive ones; the latter are also referred to as actions.
Actions are regarded directly executable by the user,
so they can be communicated to him or her in an
adequate way by relying on the dialog and interaction
components (Sections VI, VII, and VIII, respectively).
Abstract tasks, on the other hand, are high-level
descriptions of several tasks, so they are not directly
communicated to a user but refined into courses of
actions first. For this purpose, the so-called planning
domain model contains one to several decomposition
methods for each of the abstract tasks. Such a method
specifies in which way an abstract task can be refined.
That is, each method is a mapping from an abstract
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Figure 7: This figure shows how an action may be pre-
sented to the user [45, Fig. 1]. The X on the left side
allows the user to provide user-initiative input via text
input, as for example: “The cable is broken.”

task to a pre-defined partial plan consisting of more
primitive tasks that is regarded an implementation
of that abstract task [171, 33]. Tasks, both primi-
tive and abstract, specify preconditions and effects,
which in turn define the circumstances under which
the tasks can be executed and how they change the
current state of the world. For instance, the action
plugIn(scartCinchCable,portaudio,amp,portaudio) re-
presents the instruction to plug the audio end of the
SCART to cinch cable into the respective audio port
of the amplifier. The actions’ parameters, such as
scartCinchCable, are constants representing the
actual devices. These actions are then passed on
to the dialog manager, which decides how they are
communicated to the user (cf. Section VI). How this
can look like is illustrated in Figure 7. It is worth
mentioning that the level of abstraction of these actions
is closely coupled with the level of abstraction of the
respective dialog structure behind: As will be explained
in Section VI, each action has a hierarchical dialog
structure associated to be able to present the respective
action in a user-specific way. The more elementary an
action is modeled, the less hierarchical can this dialog
structure be. So, the level of abstraction needs to be
considered with care. A further alternative would be to
compute plans in which some of the plan steps are still
abstract. In this case the downward solution property
[202, 197] should hold so it is guaranteed that these
partially abstract plans can be refined into solutions.

As mentioned before, the action’s preconditions and
effects specify when they are applicable and how the
states in which they are applied change. More precisely,
they are conjunctions of literals, which in turn base on a
many-sorted first-order logic [171], in which the relevant
information about the application domain is modeled.

For instance, the amplifier is represented by the constant
amp of sort DEVICE. Each device has several ports,
such as HDMI or coaxial. These are represented by con-
stants as well. Their properties, such as signal in/signal
out, video/audio/both, used/unused, and male/female
are expressed via relations between these constants. For
example, the predicate used(amp,portaudio) expresses
that the audio port of the amplifier is already occupied.
The so-called initial state then specifies all of these facts
which are true prior to the execution of any action. For
a more detailed description, we refer to previous work
[55].

The actual problem that the user wants to get as-
sisted by is specified in terms of a hybrid planning prob-
lem [89, 33]. Such a problem description consists of the
planning domain (the description of all ingredients that
were explained before: abstract tasks and their decom-
position methods as well as primitive tasks) and by the
actual problem description, i. e., an initial partial plan
that contains some initial abstract tasks as well as an
encoding of the initial state and the user’s goals. Please
note that we do not employ a user model for plan gen-
eration. So far, we exploit such a model only for the
components that directly involve the human user, i. e.,
the dialog management (see Section VI) and the interac-
tion management (see Section VII). This is in contrast
to very recent work in which such models are used for
planning as well [29, 10]. Here, in addition to the plan-
ning problem and domain itself, an additional model
is maintained that specifies the user’s mental model of
that task. That way, plans can be generated that are
closer to the expectations of the human user. This form
of plan generation is often referred to as human-aware
planning [6] or human-in-the-loop planning [50].

Partial plans are partially ordered sets of tasks. Due
to the partial order, tasks need to be identified in a
unique way. So, the partial order is defined upon a set
of so-called plan steps, where each plan step is simply
a uniquely labeled task. The causal dependencies be-
tween the plan steps is explicitly represented by relying
on so-called causal links. A causal link ps →ϕ ps ′ de-
notes that the precondition literal ϕ is provided by (an
effect of) the plan step ps. Causal links are thus the
basic means in hybrid planning to ensure executability
of plans. A partial plan is called a solution (or plan) to
a hybrid planning problem if it is executable and if it is
obtained from the initial partial plan by decomposition
of abstract tasks and by the insertion of tasks, causal
links, ordering constraints, and variable constraints. Ex-
ecutability is defined in terms of the causal links as or-
dinarily done in POCL planning. For a more detailed
description of the solution criteria we refer to previous
work [89, 33].
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A Plan Generation

Hybrid planning is in general quite difficult: Even the
verification whether a given plan is a solution is often
NP-complete [43, 33]. The question whether there exists
a solution to a hybrid planning problem (the so-called
plan existence problem) is in general undecidable [33].
However, in many cases this worst case complexity is
too pessimistic and so the plan existence problem can
be decided more efficiently [191, 91, 54, 41, 42].

There is a wide variety of planning systems capable of
solving hierarchical planning problems. Some of the best
known ones are SHOP2 [164] and our recent improve-
ment thereof to allow the incorporation of heuristics [8],
the ones for angelic hierarchical planning [119], GoDel
[73], the plan space-based Panda [113, 56], and an ap-
proach that relies on an encoding to SAT [3, 4, 187]
or to non-hierarchical planning [30]. For an overview
of the most early (and influential) hierarchical planning
systems we refer to the work by Georgievski and Aiello
(2015) [47] and for more recent and details overviews
to the related work section of our most recent works on
heuristics in HTN planning [14, 8]. In our prototype sys-
tem we employ search using the plan space-based plan-
ning system Panda [56].

Panda searches in the space of partial plans starting
with the initial partial plan Pinit . That partial plan is
successively refined until a solution is generated. That
is, Panda’s search procedure [56, Algorithm 1] mimics
the solution criteria of hybrid planning by decomposing
abstract tasks and by inserting tasks, causal links, or-
dering and variable constraints. Te search process can
be guided by informed search strategies and heuristics,
which are designed to incorporate the task hierarchy [80,
56, 14], as well as causal relationships in the absence of
hierarchical tasks, i. e., in case of standard POCL prob-
lems [175, 166, 67].

The runtime of the system heavily depends on several
factors, such as the size of the problem, its combinatorial
complexity (which in turn depends on how the problem
is modeled), and the deployed search strategy or algo-
rithm and heuristics. For the example application that
we illustrate here, we can report that runtime was never
an issue as plans can be found within at most seconds.

B Plan Execution and Monitoring

To enable flexible plan execution, solutions generated
by the plan generation component are partially ordered.
When a human user is involved, in particular when he or
she is executing the plan, this is often done sequentially.
Thus, a linearization has to be found that is suitable for
a human user [58]. This task, to linearize a partially
ordered plan in a user-friendly way, is the first objective
of the plan execution component. The second task is
to monitor whether the outcome of the execution of an

action matches the outcome given in the planning model
and to trigger the plan repair component if necessary.

Plan Linearization Though all possible lineariza-
tions of the plan’s partial order are valid (i. e., their
execution will realize the goal) there may be orderings
that are more intuitive for a human user than others.
Consider the assembly problem in Figure 8, a receiver
and a television have to be connected using a SCART to
cinch cable. To solve it, the three cinch plugs have to be
connected to the television and the SCART plug has to
be connected to the receiver. The ordering of this four
plug actions has no effect on the success of the plan, but
it might be confusing if the system’s linearization starts
with the video cinch cable, followed by the SCART to
cinch cable and ending with the two audio cinch cables
– or even worse: if it starts to establish some completely
different connections in between.

Figure 8: The Figure shows the devices and their ports
that are involved in the task of connecting a receiver
and a television via a SCART to cinch cable.

Thus, in interactive systems, techniques should be ap-
plied to find orderings that are appropriate for human-
computer interaction. This approach can be seen as
using a two-part model: hard constraints that are nec-
essary to reach a goal are given in the planning domain,
while soft constraints on the ordering are established
afterwards. It preserves the flexibility of the plan, but
adapts the ordering as much as possible to the needs of a
user. Though it might be necessary to adapt the order-
ing strategies to a specific domain of application, there
are several ways to re-use knowledge that is present in
the planning problem or generated during the planning
process to realize domain-independent approaches.

We identified three sources of information that form
the basis for the following domain-independent lin-
earization strategies [58]. As future work, we want to
empirically evaluate if they make plan execution more
intuitive for human users.

1. Parameter similarity – In the home theater domain,
it seems reasonable to complete steps that include
similar devices sequentially. Since these devices are
represented as constants in the planning problem,
they form the parameter set of the plan steps. A
linearization component may optimize the similar-
ity between parameter sets of plan steps and may
search for a linearization that maximizes the sim-
ilarity of subsequent steps. In the example given
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above, this may result in a linearization where all
television-related steps are close to each other.

2. Causal link structure – Causal links represent the
causal structure in the plan and indicate which plan
step is necessary to fulfill a precondition of another
one. Since the planning process is problem-driven,
there is no causal link in the plan that is not neces-
sary to support a precondition. The second strat-
egy searches a linearization where the producer and
the consumer of a causal link are as closely pre-
sented to each other as possible. If a strategy suits
a given problem or not heavily depends on the way
a domain is modeled, of course. The requirement
that the signal reaches its sink might, e. g., be mod-
eled via preconditions and effects; in this case, this
strategy could work well. However, it might also
be fully modeled via the hierarchy, so that the next
strategy might select better linearizations.

3. Decomposition structure – This strategy relies on
the assumption that plan steps decomposed by the
same method semantically belong together. Gen-
eralizing this assumption, the strategy is based on
the distance of two plan steps in the decomposition
tree, i. e., the tree of decompositions that transfer
the initial plan into the applicable solution. Steps
that are closer in the decomposition tree should
also be ordered closer in the linearization. If you
consider the example given above, the plugin task
of the overall cable might be decomposed into two
tasks – one for plugging in each of its two ends – and
the one of it belonging to the cinch end might fur-
ther be decomposed into two tasks – one for plug-
ging in the audio end and one for the video end.

The given strategies can be applied directly, but they
can also be the basis for domain-specific linearization
approaches. A greedy implementation chooses the next
step from a set of possible next plan steps, (i. e., those
steps where all predecessors have already been exe-
cuted), or the given criteria can be optimized over the
whole linearization.

It is worth noting that research on the problem of
finding good plan linearizations was first inspired by
working on our prototype system: In early versions,
the next step to execute was chosen arbitrarily. The
results were often quite confusing. In our prototypi-
cal system, we hence implemented a strategy that cor-
responds somehow to the parameter similarity: In the
given application scenario, constants and thus parame-
ters represent devices of the real world – it thus seems
reasonable to finish steps regarding one specific device
before starting to work on the next one. We then gener-
alized this idea and developed the further ones we have

introduced here [58]. To our knowledge, there is no other
approach for optimizing linearizations for human under-
standability in the literature so far.

Monitoring Once a plan step has been selected to
be executed, it is passed on to the dialog management
component for execution. After the execution has been
finished, the dialog management component passes its
result information on to the knowledge base component
and triggers the plan execution component to check if
the intended results have been achieved. This is done
by querying the current state from the knowledge base
component and comparing it to the expected state, i. e.,
the state that results from applying the plan step to the
last known state. If these states are identical, the plan
execution component is free to start the next plan step.

If the current state differs from the intended state,
the plan execution component has to decide whether
the detected difference is crucial for the execution of
the overall plan or not. This is done based on the set
of active causal links. A causal link is active if its pro-
ducer has already been executed while its consumer has
not. If there is no active causal link on some literal, it
is either not important for the remaining plan steps to
succeed, or it will be (re-)established by another plan
step before it is needed. Therefore, if there have not
been unexpected outcomes on literals with active causal
links, the plan execution is, again, safe to start the next
plan step. Otherwise, it is not ensured that all precon-
ditions of the remaining plan steps are fulfilled and the
plan repair component is triggered to find an adapted
plan (cf. Section C). Once this plan has been generated,
plan execution is resumed.

Another capability that is closely related to monitor-
ing the execution of plans is plan and goal recognition:
Given an observation of the user’s actions performed so
far, plan and goal recognition can be used to infer both
the overall plan (i. e., outstanding actions) that the user
is currently pursuing, as well as the goals and tasks the
user wants to achieve by it. We have done some theo-
retical investigations on the complexity of this task [43,
37]. Very recently we have developed the first approach
for plan recognition in a hierarchical setting [7], but it is
not integrated into our prototype system. Plan and goal
recognition might help to decide when the system should
offer help to the user, e. g., when he or she changes his or
her goals or when execution of the plan is not continued.
It might also enable more flexible execution monitoring,
since the user might try to reach a goal on another way
than suggested by the system. That way, the system
might even learn about preferences of the user.
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C Plan Repair

There are several reasons for a plan to fail. The envi-
ronment may be complex and its representation in the
planning domain may abstract from many details. Thus,
changes in the environment or the outcome of some ac-
tion may be unforeseen by the planning system. There
may also be parts of the environment’s state that are
not observable for the system.

Though the performance of deterministic planning
systems makes their use in real-world environments
promising, they have to be able to deal with the given
reasons for a plan to fail. Therefore, the plan execu-
tion component keeps track of the environment, detects
unexpected changes and judges if they threaten the ex-
ecution of the currently executed plan.

There are two main approaches to deal with un-
expected changes in the environment [15]. First, re-
planning is an approach that discards the old plan and
searches for a new plan from the current state. A draw-
back of re-planning is the lack of plan stability when
users are involved in the execution process: an entirely
new way of solving the problem at hand may confuse
the (human) executor. Also, resources may have al-
ready been blocked and appointments been made to
execute the original plan. The user might not accept
to take a taxi after having bought a bus ticket. The
second option is to adapt the existing plan to fit the
new situation. This might be possible with only minor
changes, enabling plan stability. However, as Nebel and
Koehler (1995) [194] showed for the setting of classical
planning, modifying a plan at hand may in the worst
case be harder than planning from scratch due to the
additional complexity of trying to reuse as many steps
from the original plan as possible [194].

Work on plan repair in a special setting of totally or-
dered HTN planning (here, the initial plan as well as all
plans in the decomposition methods are totally ordered)
was done by Warfield et al. (2007) [133] and Ayan et al.
(2007) [124]. However, both approaches do not take
the following aspect into account: in HTN planning, a
plan resulting from some reparation process (either re-
planning or repair) is not necessarily a refinement of
the initial plan, which is one of the solution criteria for
both HTN planning [191, 91] and hybrid planning [89,
33]. Consider the case of re-planning: the new overall
plan consists of a prefix that is the executed sequence
of the original plan and of a postfix that is the solution
to the newly generated plan. This combination may not
fulfill the constraints to a valid solution that have been
represented in the hierarchy of the problem.

Therefore, we use a special plan repair approach that
meets the criteria of hierarchical planning [116, 89, 55].
A full description of the approach is given in Section 4
by Bercher et al. (.) [.] In a more recent publication we

discuss the differences and similarities of plan repair and
replanning in a hierarchical problem setting in more de-
tail and give further pointers to related work [9]. The
approach guarantees the repaired plan to be a refine-
ment of the original initial partial plan and includes all
actions that have already been executed. This offers
basic stability, although it does not guarantee minimal
modifications to the old plan. It does however enable
the use of sophisticated planning techniques and leaves
the system free to find a solution that deals with the
reason why the original plan failed. From a computa-
tional point of view, we found it to be similar to plan-
ning from scratch, though there are also cases where it
becomes harder or easier for our planning system.

Based on the planning domain, the initial problem in-
stance, and the failed plan, a new plan repair problem is
created. It includes an additional set of so-called obliga-
tions. These are elements of the original plan that have
to be present in the repair plan. It contains plan steps
that have already been executed. These steps might
have been partially ordered or even unordered in the
original solution, but have been executed in a distinct
total order. So this ordering must also be enforced in the
repair plan using ordering obligations. Do deal with the
unexpected environment change that caused the repair,
a new primitive action is defined that is called process
and causes an effect that reflects the detected change.
It is also included as an obligation into the problem and
placed after the finished actions. The planning algo-
rithm is slightly adapted to find solutions that fulfill the
obligations [55].

If the planning system generates a solution to the plan
repair problem, it is a decomposition from the initial
partial plan. It includes the parts of the original plan
that have already been executed and can deal with the
cause for re-planning. There might be situations where
the new problem is not solvable, in which case the sys-
tem informs the user accordingly.

Integration of the plan repair component is done
by letting the plan execution component trigger repair
when it detects an unforeseen state change that may
threaten the execution of the given plan. The repair
mechanism needs as input the original planning prob-
lem, the sequence of plan steps that have already been
executed, and the unforeseen state change. This enables
the component to create a plan repair problem that is
then passed on to the plan generation component to find
a solution.

D Plan Explanation

The previously described plan repair process may lead
to a plan which is different from the plan the Compan-
ion-System has initially presented to the user. These
repaired plans are usually more complex in terms of size
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and causal structure, too, and may thus be difficult for
a human user to comprehend. A similar situation can
arise if the user is asked to execute a plan step while
not understanding why he or she should do it, i. e., why
performing the action helps him or her to achieve his or
her objective. In both cases the user does not under-
stand the behavior of the system. This problem needs
to be properly addressed in a Companion-System, since
unexpected or non-understandable behavior has a neg-
ative impact on the user’s trust in a human-computer
relationship [198]. Studies have shown that if the user
does not trust the system, the interaction with the sys-
tem itself may suffer [189]. This includes a reduced fre-
quency of interactions, less engaged interactions, and in
the worst case the complete abort of future interaction.

A Companion-System accommodates for these needs
by providing suitable plan explanations. Previous re-
search of Lim et al. (2009) [110] demonstrated that
different kinds of explanations in context-aware intel-
ligent systems like Companion-Systems are suitable to
improve the trust of the user in the system and his or
her understanding thereof. For planning-based intel-
ligent systems in particular, explanations can improve
the user’s trust in the generated solution [32, 38]. As
a general point Fox et al. (2017) [20] also argue that
planning systems should be able to explain their be-
havior and their plans. Chakraborti et al. (2017, 2018,
2018) [29, 10, 6] argue that a model of the user’s mental
model of the planning task should be maintained so that
generated plans and explanations are more expectation-
conforming. For domains in which there are large dif-
ferences between a planner’s model and the human’s
mental model of it, they propose a plan explanation ap-
proach based on “model reconciliation”: The assump-
tion is that certain solutions presented to a human might
not be comprehensible by him or her because of a differ-
ent underlying model (e. g., the user assumes different
preconditions or effects for certain actions). The ap-
proach then identifies and explains these differences to
the user [19].

The question arises which types of explanations
should be used by a Companion-System. Lim et al.
(2009) [110] determined that Why and Why-not expla-
nations can be used to increase the user’s comprehension
of the system, while only Why explanations increase the
trust in human computer interaction. Similar correla-
tions have also been observed by Nothdurft et al. (2014)
[62]. Consequently, the approach for plan explanations
used in our Companion-System focuses on Why expla-
nations. Such explanations describe, e. g., why a certain
plan step is part of the plan the users executes or why
a certain ordering between two plan steps must be ob-
served. In addition to these plan explanations, our sys-
tem can also (even pro-actively) provide the explanation

about certain concepts (e. g., about an HDMI cable) to
establish a common ground between the parties. These
explanations will be presented in Section B.

For the sake of brevity, we will only provide a short de-
scription of the algorithm which we applied in our Com-
panion-System to generate explanations for the presence
of a plan step in a plan, albeit our plan explanation
system also being capable of providing explanations for
orderings and the choice of action parameters. A com-
plete description of the employed explanation technique
was given by Seegebarth et al. (2012) [87]. Explainable
planning has attracted more attention in recent past Fox
et al. (2017) [20]. Still, there are only a few approaches
in the literature in that general area. One approach fo-
cuses on explaining why a given classical planning prob-
lem is not solvable by providing an alternative initial
state in which it would be possible [100]. We do not
consider this approach as it cannot provide the Why
explanations sought here. As mentioned above, there
is a recent approach concerned with Why explanations
that requires a formal specification of the user’s mental
model of the planning task. Given a solution, the in-
volved differences are presented, i. e., explained, to the
user [19]. Some work also considers plans as explana-
tions of observed behavior [98], similar to the task of
plan recognition. In previous work we have developed
a technique for generating Why explanations [87] and
evaluated their impact and usefulness empirically [55]
– this is the approach pursued in our system; we will
outline it below. In addition to such pure plan expla-
nations, we have also developed a technique to com-
bine them with explanations for background knowledge
stored in an ontology [44, 13]. Such extended explana-
tions increase the system’s transparency as they not only
explain the plan itself, but also the restrictions placed
by the planning domain onto it. In the future, we want
to develop a technique to generate Why-not explana-
tions. Further arising challenges are outlined in more
detail in recent work [11]. Using such why-not explana-
tions, one could, e. g., explain why it is not possible to
include a specific action in a plan; this will become espe-
cially interesting for mixed-initiative systems, where the
user can actively participate in the process of generating
plans and ask for specific changes.

The most paramount objective when generating ex-
planations is that they are coherent with the current
plan and their arguments are sound. To ensure this, we
use a technique based on formal proofs in first order logic
where an explanation is a proof for a certain logical fact
[87]. Based on a plan, the list of modifications applied
to generate it and the plan step, whose necessity has to
be explained, a set of first order axioms is constructed.
We use a predicate N(ps) to denote that the task ps is
necessary in a given plan. Please note that the notion of
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necessity we employ does not imply that the execution
of the plan cannot be successful without it, but rather
that it serves some purpose in the respective plan. An
explanation is consequently a formal proof for the ne-
cessity of the plan step the user has inquired about and
can be generated by an arbitrary theorem prover. The
structure of the axioms ensures that the proof is always
a linear list of derivations, which are the arguments of
the generated explanation, and that proving the theo-
rem will always terminate in a finite number of steps.
In practice all possible explanations (often several thou-
sands) can be generated within milliseconds, due to the
fact that every axiom is a Horn Clause [87].

The generated axioms can be split into two groups.
First, the plan-dependent axioms encode the causal and
decompositional structure of the plan, the initial par-
tial plan and the goal. For example, a causal link is
encoded by the fact CR(ps, ϕ, ps ′). Similarly the plan
steps contained in the initial partial plan and the plan
step representing the goal are defined as necessary. This
is due to the solution criteria for hybrid planning, which
require that the plan steps in the initial partial plan
must be decomposed into primitive actions in the solu-
tion and after executing all actions a goal state must be
reached [89, 33]. Second, the plan-independent axioms
encode the inference rules used to determine why a task
is necessary. Such an inference can, e. g., be based on
the causal links contained in the plan. Suppose there
is a causal link ps →ϕ ps ′ between the plan steps ps
and ps ′, which ensures that the precondition ϕ of ps ′ is
fulfilled. Then the plan step ps is necessary, provided
that ps ′ is also necessary, since without it ps ′ could not
be executed. This relationship can be encoded in the
axiom given in Equation 4.

∀ps, ps ′, ϕ.[[CR(ps, ϕ, ps ′) ∧N(ps ′)]⇒ N(ps)] (4)

Similar rules can be created based on the decomposition
methods that have been applied to generate the plan and
others based on the interaction between causal links and
decompositions.

Figure 9 depicts the graphical representation of an
example for a formal plan explanation that can be gen-
erated by our approach.

As a last step, the formal explanation needs to be
transformed so that it can be conveyed to the user. In
our architecture, the result of this transformation is a
natural language text describing the formal explana-
tions. The interaction management component subse-
quently determines the modality in which the explana-
tion will be presented to the user, e. g., whether it will
be displayed as text or read by a text-to-speech compo-
nent. This process is transparent to the plan explana-
tion component. The system described in Section II uses
a pattern-based approach to generate natural language

PlugIn(bluray,porthdmi,hdmiCable,porthdmi)

PlugIn(hdmiCable,porthdmi,amp,porthdmi)

PlugIn(amp,portaudio,cinchCable,portaudio)

connect(amp,portaudio,tv,portaudio)

Goal

hasSignal(hdmiCable,Bluray)

hasSignal(amp,Bluray)

decomposition

hasSignal(tv,Bluray)

Figure 9: An example depicting a formal plan explana-
tion, explaining why it is necessary to plug an HDMI
cable in the respective port of the Blu-ray player. Ac-
tions occurring in the plan are depicted by boxes, while
the arrows connecting them display the arguments of
the explanation. Here, the given action is necessary, as
it provides the effect that the HDMI carries the signal
from the Blu-ray. Likewise, the third action is necessary,
as it is part of the decomposition of the connect action.

given the formal proof. This technique is commonly
used to present proofs generated by automated theorem
provers [190, 183, 172]. One could also use a system sim-
ilar to the Interactive Derivation Viewer [132] to make
both verbal and visual explanations available.

Concerning the integration of plan explanations in
our Companion architecture, plan explanations are only
used if a user has explicitly requested them. Recogniz-
ing such a request is the objective of the explanation
manager, which also determines the plan step the user
wants to have explained. Using the middleware this in-
formation is transferred to the plan explanation compo-
nent, which subsequently computes a plan explanation.
Since there is a multitude of valid formal explanations of
which only a single one can be presented to the user, the
system has to select a most suitable one. Currently, we
employ the “shorter explanations are better” scheme, as
we assume that shorter explanations are easier to com-
prehend. If two (or more) explanations have the same
length one of them is selected randomly. The generated
and selected plan explanation is sent back to the expla-
nation manager, which takes care of verbalizing them.

We have conducted a thorough investigation of the
usefulness of generated plan explanations in our use-
case system (see Section E). However, we are also aware
of a few peculiarities which are to be investigated in
future research. To us, the selection of a single expla-
nation out of all possible ones for presentation to the
user seems most crucial [11]. Despite the logical sound-
ness of all presented explanations, some might be more
comprehensible to a user. Imagine a situation where
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both the audio and the video signal are transmitted
trough several cables, i. e., plug-in actions. Here, a pos-
sible explanation would state that the audio signal is
necessary for action 1, which produces the video signal
for action 2, which in turn produces the audio signal
for action 3. Such an explanation might be confusing
for a human user, compared to an explanation solely
talking about audio signals and should thus not be pre-
sented. In the future, we want to investigate methods
to select suitable explanations, e. g., based on constants
contained in causal links or action parameters, the al-
ternation of causal and decompositional arguments, or
domain-specific knowledge. Similar problems arise also
if linearizations have to be determined (see Section B),
and thus similar techniques could be used. Formal ex-
planations, especially in long plans, can be quite com-
plicated. As such, techniques to produce shorter and
more abstract explanations should be developed in or-
der to ensure easy understandability. A similar issue
arises from explaining certain relationships (like entail-
ments) in ontologies. The before-mentioned integration
of plan explanations with explanations based on back-
ground knowledge stemming from an ontology [44, 13]
will also be further pursued. These techniques should
take the user’s knowledge into account to make sure that
he or she will be presented an explanation that is suited
for his or her level of expertise in the given domain.

E Evaluation

There are many components of the planning frame-
work that can be evaluated. The most fundamental one
is the plan generation. In the given setting, runtimes
of the plan generation component (i. e., the planning
system Panda) was never an issue. So, Panda was
only evaluated systematically in a variety of standard
benchmarks using different search strategies and heuris-
tics [113, 80, 56, 14]. Concerning the example scenario
of setting up a home theater, we did an empirical eval-
uation that should show how well such a system is per-
ceived in general and, more specifically, what impact
plan explanations have on the users’ confidence in the
presented solutions [55].

The task of the test subjects was to set up a complex
home theater as described in Section II. The test sub-
jects did not have to figure out a solution to that task
on their own, however. Instead, they were presented a
detailed sequence of instructions that tells them which
cable is to be plugged into which specific port of which
device. These instructions are based upon a solution
to the planning problem that encodes the respective
assembly task. The presented instructions show these
facts both using animated pictures (where the ports are
flashing) and natural language text. Figure 7 depicts
such an example instruction. The test subjects only

had to follow these instructions – afterwards, the task
was successfully completed (assuming they correctly fol-
lowed the instructions). The system that showed the
subjects how to perform the task was a seemingly in-
teractive HTML5 slide show that corresponded to fixed
course from the prototype system. We did so to have full
control of the experiment and to ensure reproducibility.
Here, we do not give any further details on how the ex-
periment was performed and refer to our previous work
for that purpose [55]. Instead, we just want to mention
our main findings.

Our main hypothesis was that plan explanations fos-
ter the users’ confidence in the correctness of the pre-
sented solution. Our data did not reveal any statisti-
cally significant effect related to the plan explanations.
However, we believe this was mainly due to two rea-
sons. First, the experimental setting seemed to be sub-
optimal, as there was no intrinsic need for the subjects
to actually read and understand the explanations. They
were not intended to be optional, but still some sub-
jects proceeded by clicking “okay” very shortly after
they were displayed. Second, the overall impression of
the system was already very high for all of the sub-
jects thereby limiting the possible impact of showing
explanations: We constructed a summary variable sum-
ming up all questions that rate various aspects of the
system (ignoring explanation aspects). These include
trust, patronization, appeal, and utility. According to
these results, the system was very well perceived in gen-
eral with 26.63/3.67 points (mean/sd) out of 30 points.
Some critical comments were mentioning the artificial
voice reading the instructions. Most free-text comments
were positive, however. Many of them highlighted the
general appeal of the system. Others referred to its prin-
cipal assistance functionality by comments like “assists
in a useful way”, “this assistance system is very use-
ful, as it allows people without expertise to follow the
instructions successfully”, or “I would prefer this kind
of instruction manual to all previous”. While we could
not support our main hypothesis that plan explanations
foster the users’ confidence in the correctness of the pre-
sented solution, we received mainly positive comments
about the explanations such as “explanations were good
and useful [...]” [55]. Thus, in conclusion, the evaluation
revealed that the system was very well perceived by the
subjects – even more by non-experts.

VI Dialog

The task of the Dialog components is to control the
user-adaptive structure, content, and flow of the dia-
log between the user and the system. It communicates
with the Planning components, the Interaction Manage-
ment, and the Knowledge Base to gather from as well as
to provide all necessary information in a user-adaptive
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Figure 10: Architectural view and modules with focus
on the dialog management.

fashion, which is needed to accomplish a specific task
in cooperation with a technical system. In this Com-
panion-System the Dialog module comprises the Dia-
log Manager and the Explanation Manager components
[24]. The former is responsible for the user-driven adap-
tation of the dialog structure (e. g., using scalar knowl-
edge models [173]), while the latter controls and initiates
all proactive behavior related to explanation capabilities
(e. g., using a structural knowledge model).

At the start the Dialog Manager receives plan steps3

from the plan execution component to generate a user-
adaptive dialog. This dialog is potentially augmented
by the explanation manager before it is passed on as
modality-independent dialog output to the multimodal
fission. However, if the dialog designer wants to spec-
ify preferred modalities for a dialog, these preferences
can be sent to the nomination manager to influence the
modality arbitration process in the interaction manage-
ment. After the user interaction, the dialog manager re-
ceives the fused interaction results from the multimodal
fusion and maps these results to action effects, which
are passed back to the plan execution component as well
as to the High-Level Temporal Filter of the Knowledge
Base. In addition, the explanation manager is also re-
sponsible for requesting as well as receiving plan expla-
nations from the plan explanation component and then
transferring them into text using techniques for natural
language generation.

A Dialog Manager

In the past decades several approaches to the dia-
log management task have been developed, which can
be classified in four basic categories. First of all, basic
finite-state-machine approaches, where a set of states is
defined, and, for each state, a set of moves that transi-
tion into a new state in the automaton. Second, frame-

3Please recall that plan steps are simply uniquely labeled ac-
tions, so the terms plan step and action can be considered equiv-
alent here (cf. Section V).

based approaches, where the dialog management mon-
itors the current so-called frame, which is specified by
a set of needed information (slots), the context for the
utterance interpretation, and the context for the dia-
log progress. This is more advanced, since it allows for
mixed-initiative interaction and allows multiple paths
to acquire the information. Third, stochastic-based ap-
proaches (e. g., by Williams and Young (2007) [134]),
which apply reinforcement learning techniques to di-
alog management by determining the best policy or
choice of actions, from all available actions a system
can take in a dialogue. Reinforcement learning will op-
timize the system’s performance as measured by a util-
ity function, such as the user’s evaluation of the system
[169]. The last main group of approaches are agent-
based approaches, where the dialog is controlled by sev-
eral intelligent agents capable of reasoning about them-
selves (e. g., in the BDI (beliefs, desires, and intentions)
approach [196]) using artificial intelligence techniques.
The agent-based approach subsumes plan-based dialog
models, where preconditions, actions, and effects are
used to control the ongoing dialogue. Here, the dialog
flow is determined at runtime by the different agents us-
ing the current world state and the goals left to achieve.
Thus, the approach used here falls into this category.

In the architecture, our system bases upon, the di-
alog management components are coupled closely with
the planning components (cf. Section V). Hence, a dialog
management approach related to the employed planning
approach was chosen. As described in Section B about
plan execution, the course of plan steps representing the
solution of the given planning problem is sequentially
executed, i. e., passed on from the planning framework
to the dialog management component. The main pur-
pose of this component is to decompose and refine, if
necessary, the plan step into a user-adaptive dialog. If
the dialog for the passed plan step requires adaptation
to the individual user, the structure and the content of
the dialog can be adapted. Therefore, our combination
of dialog management and planning is closely related to
the split into task level and dialog level in agent-based
approaches.

The provided plan step is decomposed into a, if nec-
essary, hierarchical dialog structure which consists of
so-called dialog goals [103, 77]. As discussed in Sec-
tion V, this depends on the level of abstraction of the
respective action. For example, if the action is modeled
in a very elementary way, then the degree of freedom
for presenting it may be limited and only the presenta-
tion of the dialogue goal may differ, but a hierarchical
structure may not be needed. Each dialog goal repre-
sents a single interaction step between the user and the
technical system (e. g., one screen on a device filled with
specific information). For example, to execute the plan
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step which checks whether the setup of a home theater
was successful, the first dialog goal is to select a video
signal to test the system with. A resulting interaction
step can, e. g., look as depicted in Figure 14b. Depend-
ing on the user’s choice further dialog goals need to be
established. If the user selects the Blu-ray player as the
source of the video signal, he or she has to be instructed
to insert a disc, while if testing the satellite receiver is
selected, he or she has to be instructed how to do so.
The planning component abstracts from this procedure
by regarding the test action as primitive and ignoring
its internal procedure. Using this scheme, all decisions
which do not influence the execution of the plan can be
taken by the user via the dialog management.

The term dialog goal arises from the fact that ev-
ery step in the interaction pursues a goal. The goal
is, in this case, to achieve one or several of the desired
action effects of the respective action. Therefore, the
term dialog goal is to be distinguished from the term
goal used in planning. This means that each action can
be decomposed into several dialog goals and that for
every of its effects a set of corresponding dialog goals
may exist. These similar dialog goals usually have so-
called guards, which formulate conditions that need to
be fulfilled in order for the dialog goal to be entered at
runtime. These guards take into account user character-
istics (e. g., knowledge or emotions), and therefore help
to adapt the dialog to the user. These user character-
istics, stored in the knowledge base, either come from
a default user model that evolves over time using the
interaction history (see Section B) or from classification
modules that estimate, for example, the user’s emotions.

Goals can be arranged in a vertical as well as in a
horizontal structure. In a vertical structure each goal
may yield several subgoals. In a horizontal structure
each goal may have a fixed successive goal that is next
in the dialog. This implies that the dialog may be
roughly structured like a finite state machine, but there
is enough room left to dynamically arrange the subgoals
to the user’s needs. Such an arrangement is handled in
the way the guards for the goals are defined. Typi-
cal guards in our model are the requirements for gener-
ally needed user knowledge. For example, in our used
domain of connecting devices of a home cinema, this
means that if the user’s overall knowledge regarding this
domain is low, he or she will be considered a novice, re-
sulting in an adapted composition and arrangement of
subgoals. Those roughly made dialog structure adapta-
tions are later augmented by specific fine-grained user
knowledge adaptations during runtime, which will be ex-
plained in Section B. Note that the guards mechanism
only considers the most probable world state. An inter-
esting extension would be to consider a mechanism ca-
pable of more fully leveraging information about world
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EG 6 EG 7

G E8 G E9

Figure 11: This graphic illustrates the dialog flow [24,
Fig. 9.6]. Dialog goals are represented by the rounded
rectangles. Inside those, guards and effects are respon-
sible for the dialog flow. Vertical arrows represent levels
of abstraction, and diamonds decisions based on con-
straints. Horizontal arrows represent predefined dialog
sequences. This shows that the content and flow may
change if, e. g., two different users interact with the sys-
tem.

state uncertainty contained in the knowledge base.

During interaction, the dialog management compo-
nent traverses through its dialog structure to select the
path of dialog goals most suitable for the current user.
For example, in Figure 11, if a user has expert knowl-
edge on a topic, only dialog step 2 would be included,
presenting high-level instructions. Contrary to that, a
novice user would receive a more detailed as well as
longer sequence of dialog steps (3,4,5) with additional
extent of assistance. The selection of the next dialog
goal is therefore made in a user-adaptive manner and
leads to an individual dialog appropriate for the current
user. In order to conduct the selection of the next ap-
propriate dialog goal, a constraint solving algorithm is
used. Constraint programming [179] has proven to be
especially useful in problems on finite domains where
many conditions limit the possible variable value con-
figurations [128]. It is a technique to find solutions to
problems by backtracking and efficient reasoning. We
consider the conditions in the guards as constraints and
based on the current values of the variables the con-
straint solver tells which guard conditions can be ful-
filled. Based on this variable configuration we can select
a number of dialog goals that can be executed at a cer-
tain time in the dialog. As a dialog in our case is limited
to a certain number of possibilities how the system can
traverse through the dialog structure, it is reasonable to
use a finite domain for the variables that constrain the
execution of the dialog goals. In Addition, there are no
real-time issues affecting this dialog selection process.
This is especially important, since a delay in interaction
would influence the user experience negatively. Hence,
These conditions make the dialog model suited for ap-
plying a finite domain constraint solving mechanism.

Before each dialog step is passed on to the fission
component, the explanation manager checks whether
the user has the required knowledge to accomplish the
proposed dialog step. If necessary, an additional dialog
step explaining the missing knowledge is included in the
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course of the dialog, which will be explained in more
detail in Subsection B. The dialogue step is then trans-
formed into a so-called dialog output. Each dialog out-
put represents a modality-independent description of an
abstract user interface, and can be hierarchically struc-
tured using the following elements (cf. Figure 14a): one
topic, one dialog act, an optional sequence of navigation
items, plus an optional sequence of listen items. The
listen items are used to allow user-initiative grammar-
based inputs. The dialog act can contain multiple infor-
mation items, selections, and widgets. Selections consist
of multiple information items that act as selection items.

After the user interaction, the dialog management
component receives the interaction results from the
multimodal fusion. The results are analyzed to check
whether the results of the dialog step are related to the
desired action’s effects. If this is the case, these effects
are transmitted to the knowledge base as observations.

However, the user could as well search for additional
clarification by requesting plan or dialog explanations.
These explanation requests are sent to the explanation
manager, which will, in case of a user-initiative dialog
explanation request (e. g., “What is hdmiCable?” or
“How can I connect amp and hdmiCable?”), handle
the request itself. In case of plan explanation requests
(e. g., “Why do I have to perform this?”), it will sent
the request to the plan explanation component (cf. Sec-
tion D).

B Explanation Manager

In general, explanations are given to clarify, change,
or impart knowledge. Usually the implicit idea consists
of aligning the mental models of the participating par-
ties. The mental model is the perceived representation
of the real world, or in our case of the technical sys-
tem and its underlying processes. In this context, ex-
planations try to establish a common ground between
the parties in the sense that the technical system tries
to convey its actual model to the user. This is the at-
tempt of aligning the user’s mental model to the actual
system. However, explanations do not always have the
goal of aligning mental models, but can be used for other
purposes as well. Analogous to human-human interac-
tion, in human-computer interaction the sender of the
explanation pursues a certain goal, with respect to the
addressee (see Table 1 for a taxonomy of explanation
goals after Sørmo et al. (2005) [151]).

Why explanations (e. g., plan explanations in Sec-
tion D) may increase the user’s understanding in system
decisions, and may thereby counteract arising problems
regarding the human-computer trust relationship [110].
However, the most fundamental factors, influencing a
successful task completion and healthy human-computer
interaction, are still the user’s capabilities, and espe-

Goals Details

Transparency How was the system’s answer reached?
Justification Explain the motives of the answer
Relevance Why is the answer a relevant answer?
Conceptualization Clarify the meaning of concepts
Learning Learn something about the domain

Table 1: A taxonomy of explanation goals. It subsumes
different kinds of explanation as, e. g., why, why-not,
what-if, and how-to explanations.

cially the user knowledge, which can be influenced by
explanations with the goals of Learning and Conceptu-
alization. Therefore, the course of the dialog that ac-
companies the interaction steps is adapted or extended
by additional explanation dialogs to increase the indi-
vidual user’s knowledge at runtime. Each of these dia-
logue steps is represented as a relation with the name of
the task and its appendant concepts and arguments. As
our main goal is to prevent task failure, we have to en-
sure that the upcoming or current tasks and appendant
concepts will not exceed the user’s knowledge.

One countermeasure is employing plan explanations
as presented in the last section upon explicit user re-
quest. For this, formal plan explanations are trans-
lated by an explanation manager using template-based
natural language generation into human-understandable
text. Another important countermeasure directly con-
cerns the user’s understanding of the task at hand: prior
to sending the dialog steps for presentation to the fission
component, they are first sent to the explanation man-
ager [62]. Here, the content of the predefined interaction
dialogs is analyzed and compared to the user’s knowl-
edge model, which is stored in the knowledge base. If
the user’s knowledge is not sufficient, either the content
of the predefined dialog is changed, or the course of the
dialog is updated by including additional dialog steps to
fit better the user’s knowledge model. Those additional
dialog steps are meant to explain missing knowledge to
the user.

In our knowledge model, we distinguish between
declarative knowledge and procedural knowledge [85].
The former can be used to describe the being of things
(i. e., appearance and purpose). Possessing declara-
tive knowledge about something does not necessarily
mean to be able to use this knowledge for a task or
action. In comparison to that, procedural knowledge
can be applied to a task. Procedural knowledge pro-
vides the knowledge on how to execute a task or on how
to solve a problem. For example, in the domain used
in the demonstrator, the task represented as relation
connect(tv, amp, hdmiCable), contains the knowl-
edge of the action connect as well as the concepts tv,
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Figure 12: In this excerpt of the user’s knowledge model
the procedural knowledge of the action connect and the
declarative knowledge of the concept HDMI as well as
their respective probability distributions over the knowl-
edge levels are listed.

amp, and hdmiCable. Those knowledge constituents
are modeled as probability distribution over a five-step
knowledge scale ranging from novice to expert (see Fig-
ure 12). This means that compared to other systems
(e. g., by Beaumont (1998) [185]) the knowledge is mod-
eled in small independent information pieces instead of
using only one general level. The user’s knowledge levels
are based on observations made during the interaction
and on past interaction episodes. Therefore, the knowl-
edge levels are system-made assumptions about the user,
requiring a probabilistic representation. Events occur-
ring during the human-machine interaction influence the
probability distribution of relevant data objects. These
events may be, for example, given explanations, failed
actions, or plainly elapsed time. Contained is, for ex-
ample, not only which tasks the user did execute, but
which entities were used for this task and whether the
task completion was successful.

Before each output, we check whether it is sufficiently
likely that the user’s knowledge level for the current di-
alog step is sufficiently high. If it is too likely that the
user’s knowledge level is low, the explanation manager
generates an additional explanation dialog, which tries
to impart the missing knowledge for the user to execute
the dialog step successfully. The explanation manager
selects which type of explanation is appropriate for the
current lack of knowledge. This explanation may consist
of several parts. Each planned task and its concepts are
analyzed to generate a summarized explanation. The
explanation manager sends the content of the explana-
tion to the knowledge base to be stored in the informa-
tion model. This explanation may consist of pictures,
text or text meant to be spoken. Afterwards, a dialog
step is generated, which references the content of the
explanation stored in the information model and sent
to the dialog management to be included in the course
of the interaction cycle.

Taking a closer look at the implemented approach, a
possible extension of the presented approach is a more
thorough treatment of uncertainty: though the model-
ing of the user’s knowledge is made in a realistic fashion,
considering the uncertainty of one’s knowledge distribu-
tion, the process of updating the knowledge over time
is not. While presenting an explanation to the user will

increase the chances of understanding, it will not guar-
antee it. Therefore, the update process of users’ knowl-
edge should integrate uncertainty as well [126]. It should
not only include using a probabilistic knowledge mod-
eling approach, but also the integration of information
indicating understanding (e. g., user affective states like
engagement, interest, disposition). However, contrary
to the approach used here, real-time issues might be-
come relevant, as one would have to be careful about the
increasing complexity of the probabilistic model. Why
this treatment of affective states is of utmost relevance
for the design of user-adaptive dialogs will be elucidated
in the following section, which reviews the various eval-
uations conducted for both individual components and
component combinations.

C Evaluation

In the last section we showed how different types
of explanations are integrated into our Companion-
System, but it is still unclear how this influences the
user-experience in detail. Hence, we conducted several
evaluations to test the design of different explanation
strategies and their effects on the user-experience.

These evaluations can be structured into two main
research questions covering two distinct situations in
human-computer dialog: On the one hand situations
where explanations are provided to treat unexpected or
incomprehensible system behavior (e. g., incomprehensi-
ble generated plans or plan repair). On the other hand
situations where learning or plain conceptual explana-
tions are necessary for assisting the user in solving a
task due to an estimated lack of user knowledge. For
both situations we aimed to investigate how and when
explanations are best provided to foster optimal user
experience.

Incomprehensible System Behavior Incompre-
hensible situations bear the danger of influencing the
relationship between human and technical system neg-
atively [198]. They may lead to a change or complete
abortion of the interaction [189]. Those situations do
usually occur due to incongruent models: during inter-
action the user builds a mental model of the system and
its underlying processes determining system actions and
output. However, if this perceived mental model and
the actual system model do not match, the situation
is perceived as incomprehensible. This system behav-
ior is likely to occur in intelligent and complex systems
like Companion-Systems, where proposed plans or up-
coming actions may be unexpected or not understand-
able for the user. Analogous to human-human inter-
action providing explanations in these incomprehensi-
ble situations in HCI can reduce the loss of trust [117].
For human-computer trust (HCT) Madsen and Gregor

22



(2000) [177] constructed a hierarchical model, where
personal attachment and faith constitute affect-based
trust; and understandability, technical competence, and
reliability constitute cognitive-based trust. Previous re-
search concentrated on showing that explanations can
influence HCT in general [110]. Hence, what is lacking
currently is which explanations do influence which com-
ponents of human-computer trust. Therefore, the goal
was to change undirected strategies to handle HCT is-
sues into directed and well-founded ones, substantiating
the choice and goal of explanation.

For that we conducted a web-based study [62],
where unexpected, and incongruent to the user’s mental
model, system events were influencing pro-actively the
user’s decisions. Here, without warning, the user was
overruled by the system and either simply informed by
this change, or was presented an additional justification
or transparency explanation. Justifications are the most
obvious goal an explanation can pursue. The main idea
of this goal is to provide support for and increase con-
fidence in given system advices or actions. The goal of
transparency is to increase the user’s understanding in
how the system works and reasons. This can help the
user to change his perception of the system from a black-
box to a system the user can comprehend. Thereby, the
user can build a mental model of the system and its un-
derlying reasoning processes. The main objective of the
participants was to organize four parties for friends or
relatives in a web-based environment.

The results showed that explanations can significantly
help to reduce the negative effects of trust loss regard-
ing the user’s perceived understandability and reliabil-
ity of the system in incomprehensible and unexpected
situations. Especially for the perceived understandabil-
ity, meaning the prediction of future outcomes, trans-
parency explanations fulfill their purpose in a good way.
Additionally, they seem to help with the perception of a
reliable, consistent system. We also found that the use
of explanations in incomprehensible and not expected
situations can help to keep the human-computer inter-
action running, as there was a significant reduction in
drop-out rate when providing explanations (about 12%).

In another experiment the results were proven to hold
across domains [51]. Here, we showed as well that in-
creasing the user’s perceived system transparency by
including valid explanations on incomprehensible sys-
tem behaviors may mitigate the negative effects, thus
increasing the potential areas of application for these
complex Companion-Systems.

Missing Knowledge Because of the increasing capa-
bilities and functionalities of Companion-Systems, they
also become increasingly complex to operate, and less
intelligible for the user. Hence, it is more likely that

the interaction between human and Companion-System
may exceed the user’s knowledge or capabilities. There-
fore, such systems should adapt their content and course
of interaction to the user’s knowledge and explanations
are vital and appropriate instruments for that. Besides
the well-researched area of modeling and appropriate
selection of knowledge, of importance is also how it is
presented to the user.

On this account, we conducted a study to test how
temporal and spatial distances of providing explanations
in a cooperative decision-making process affect the user
experience [39]. We aimed at gathering insights into how
individual users perceive different explanation strategies
to help to derive layout criteria, select appropriate me-
dia types, and structure the dialog in future cooperative
Companion-Systems. For the presentation of the expla-
nations we used the model-driven user interface genera-
tion provided by the Interaction Management (see Sec-
tion VII). A model-driven approach is on the one hand
required for the universal and not specified application
domain of Companion-Systems, but on the other hand
restricts the presentation form. For example, in chal-
lenging situations, in which an extensive explanation in
combination with an underlying selection is needed, the
size of the screen may be exceeded. This results in a UI
either in form of a sequence of multiple screens (expla-
nations plus selection) or in one (scrollable) UI, hence
varying the spatial and temporal distances between ex-
planation and selection task. To test the different effects
of these conditions we also assessed UX during a selec-
tion task without explanations as baseline.

In general we found that both temporal and spatial
distances of the presentation of explanations relative to
decision-making (i. e., a selection) influences user expe-
rience. Specifically, the results showed that providing
explanations separately in advance makes sense when
the amount of content would impair the presentation
form. However, if a convenient method for presenting
the explanation content on the same dialog is possible
without impairing the modality choice, this is the best
option. In addition, we found correlations that indi-
cate that extraverted participants seem to profit from
the presentation of graphics, whereas neurotic persons
seem to suffer more from a low quality of explanation di-
alogs because for the jointly, only-textual, presentation,
neuroticism correlated negatively with perceived system
attractiveness and hedonic system qualities [39].

VII Interaction Management

Mark Weiser’s vision of ubiquitous computing [184]
is in the process of becoming reality. The current rapid
technological progress provides us with a plenitude of
technical systems, services, and personal interaction de-
vices. The increasing number of such interaction devices
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Figure 13: Architectural view and modules with focus
on the interaction management.

and the idea of ubiquitous computing in combination
with multimodal interaction concepts lead to complex
interactive systems. Today, the interweaving of con-
sumer electronics and devices is still in its infancy as
it is rather hard-coded and does not respect individual
preferences.

In the context of individual Companion-Technologies,
the interaction management addresses the requirement
of presenting an individualized user interface. The cur-
rent section focuses on adaptive multimodal interaction.
Subsection A describes how multimodal fission can be
used to realize an individualized user interface (UI) at
runtime with respect to ongoing changes in the context
of use (CoU) [182]. Then, Subsection B discusses a pos-
sible realization for multimodal input fusion, and Sub-
section C shows how the interaction management’s two
major components can interact with and benefit from
each other.

The modules, which are used to realize such processes,
are depicted in Figure 13. As an example, the dialog
management module provides a modality-independent
dialog output (Figure 14 (a)) for a selection. Thereby
included optional nominations can influence the dia-
log output’s way of representation and are thus kept
in memory by the nomination manager. Triggered by
the dialog output, the multimodal fission reasons about
the most adequate UI’s configuration. Thereby, the rea-
soning process fetches additional knowledge from the
knowledge base. As a result, the multimodal fission for-
wards the interface configuration as a so-called interac-
tion output to the addressed input and output compo-
nents for rendering (cf. Figure 14 (b+c)). This config-
uration, as well as the output components’ final layout
descriptions are passed on to the content manager. With
such knowledge, the content manager can configure the
multimodal fusion module. In that way, cross-modal in-
puts (e. g., speech plus pointing gesture) can be fused
to perform an input for the offered selection. Identi-
fied inputs are passed back to the dialog management

component for further processing. In addition, the mul-
timodal fusion can also identify user-given nominations,
which are passed on to the nomination manager. For a
more detailed view on multimodal fission and fusion we
refer to the work by Schüssel et al. (2017) [27].

A Multimodal Fission

The multimodal fission component has to reason
about a suitable UI in a scenario, in which the CoU as
well as the device topology can change unpredictably.
Also, influencing data is based on sensory information,
which is affected by uncertainty. In the following, we
describe how multiple input and output modalities can
be utilized, and how the decision process of modality
arbitration can work successfully, even with uncertain
data.

<?xml version="1.0" encoding="utf-8"?> 
<dialogOutput dialogID="video_source_selection"> 
  <topic> 
    <abstractInformation objectID="topic" informationID="video_source_selection_topic"/> 
  </topic> 
  <dialogAct> 
    <!-- optional nomination --> 
    <desiredOutputChannel>visual</desiredOutputChannel> 
    <!-- regular content --> 
    <selection objectID="video_source_selection_container" 
               informationID="video_source_selection_prompt"> 
      <abstractInformation objectID="BluRay" informationID="BluRay_information"/> 
      <abstractInformation objectID="SAT" informationID="SAT_information"/> 
      <abstractInformation objectID="fletnix" informationID="fletnix_information"/> 
    </selection> 
  </dialogAct> 
  <listen> 
    <abstractInformation objectID="video_source_problem" 
                         informationID="video_source_problem"/> 
  </listen> 
</dialogOutput> 

 

(a) Description of a modality-independent dialog out-
put that contains six information items and serves as
abstract user interface (AUI). The intended output con-
tains a topic plus a selection offer. The selection com-
prises a selection prompt and three selection items.

(b) The final user interface
(FUI) as a rendered selection
offer on a desktop screen. The
generated output is based on
the given dialog description
(a).

(c) The dialog from (a) as
rendered on a smart phone.
The rendering of the selection
concept can be automatically
adapted on the FUI level by
using a pull-down list for se-
lection, because of the small
screen size.

Figure 14: A modality-independent dialog output (a)
is sensed as AUI. This invokes the reasoning process
for modality arbitration and results in individual user-
and context-dependent user interfaces on the FUI level
(see (b) and (c) as two possible examples for the visual
channel). The intended listen item is realized with the
use of automatic speech recognition. Cf. [2, Fig. 4.6,
p. 122 and Fig. 4.8, p. 126].

As shown in Figure 13 and described in Section A, the
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interaction management’s fission component gets acti-
vated whenever the dialog management provides a new
output description as part of its current dialog strategy.
This so-called dialog output (see Figure 14a) represents
a modality-independent description of an abstract user
interface (AUI), which originates from the currently ac-
tive task from the planning execution component. Based
on that and with regard to the CAMELEON reference
framework (CRF) [160], the fission’s reasoning process
for modality arbitration has to solve the mapping prob-
lem from the AUI level to the concrete user interface
(CUI) level. It individually decides about which con-
crete encoding concepts shall be used to communicate
a specific information item. A CUI description is then
passed on to the addressed device components, which
are in charge of rendering the content as final user in-
terface (FUI) (see Figure 14b, 14c, and Section VIII).
The reasoning process depends on diverse knowledge
items (see Figure 13). The interface to the knowledge
base provides such knowledge in terms of probability
distributions over different values (cf. Section IV). Dif-
ferent knowledge items can be clustered to build differ-
ent models, e. g., a user model, an environment model,
or a model representing user-to-device distances. These
models comprehend dynamic variables, since their data
stems from continuous sensory data acquisition. In
addition, the knowledge base provides static or quasi
static knowledge in terms of two other models. The
one model describes devices and their linked compo-
nents for input and output. In that way, each com-
ponent can be described in terms of its supporting en-
coding or decoding concepts, its location, or other at-
tributes. The other model provides possible informa-
tion mappings from modality-independent information
variables to modality-specific encoding or decoding con-
cepts for text, picture, ASR grammars, text-to-speech
templates, or other concepts [83, 61].

The idea of an intelligent and individual output con-
figuration is addressed by many researchers. According
to Costa and Duarte (2011) [90], systems that combine
different output modalities like text and speech evolved
since the early nineties. The allocation of output modal-
ities of the early multimodal systems was hard-coded
with very simple logic and not based on intelligent al-
gorithms. Recent concepts that utilize multi-agent sys-
tems [93] are based on plan-based composing [176], or
make use of rules to identify the most adequate com-
bination for multimodal output [90, 83]. While some
approaches tend to exploit all possible variants of mul-
timodal representation [96], this might conflict with the
guideline to “address privacy and security issues” [159].
Based on that, it looks promising to employ an ongo-
ing adaptation to the context of use, as motivated by

the last of the WWHT questions4 by Rousseau et al.
(2006) [140]. Based on the definition of context by Dey
and Abowd (1999) [182], a model of the context of use
(CoU) can include (amongst others) information about
the environment, the user, and the available devices. So,
talking about adaption to the CoU also includes strate-
gies respecting user preferences, as identified by Pruvost
et al. (2011) [96] and Schüssel et al. (2012) [86].

Today, rule-based approaches can be seen as estab-
lished practice in order to react to changes in the
CoU [96]. Zaguia et al. (2013) [75] apply an ontology ap-
plied for context-dependent modality arbitration. How-
ever, their approach lacks the opportunity to express
uncertainty values, which is, for example, of great im-
portance when fusing contradicting statements. Recent
work goes together with model-driven UI generation as
described in the CRF. This means that a model of a
modality-independent output has to be transformed to
a modality-specific kind of output via a certain mapping
process. The mapping can be either hard-coded or an
adaptive reasoning process. We will focus on the latter,
as proposed by Honold et al. (2012) [83].

In the remainder of this section, we present our ap-
proach for modality arbitration. First, the dialog output
gets analyzed and split up into its single abstract infor-
mation fragments. In a second step, the fission compo-
nent identifies all possible variants of concrete informa-
tion encoding on each available device component. Ac-
cording to Nigay and Coutaz (1995) [195] such a “cou-
pling of a device d with an interaction language L” is
called interaction technique (a.k.a. modality). Items of
similar semantic meaning are clustered together. Af-
terwards, the modality arbitration is done for only one
of them, and case-based reasoning (CBR) is applied for
the others. Next, all available device models are in-
spected in order to identify the possible modalities for
each information item. Therefore, all possible modal-
ities, as well as their multimodal combinations have
to be analyzed. A valid combination of modalities is
called output configuration oc. For n possible modal-
ities, there are 2n − 1 possible ocs. If, for example,
the abstract BluRay information (as referenced in Fig-
ure 14 (a)) could be rendered as text, picture, or video
on 6 possible displays (= 18 modalities), and could also
be rendered using Text-to-Speech (TTS) via 2 different
speakers (= 2 modalities) in combination with potential
speech input via 3 different microphones (= 3 modali-
ties), than this single information item could be realized
via 223 − 1 = 8, 388, 607 different ocs.

Modality arbitration takes place in the next step. Re-

4WWHT questions: What is the information to present?
Which modality(ies) should be used to present this informa-
tion? How to present the information using this (these) modality
(modalities)? and Then, how to handle the evolution of the re-
sulting presentation?
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ferring to Figure 14 (a), for each of the six applied ab-
stract information items the most adequate one out of
the 2n−1 possible ocs has to be identified. The reasoner
can rate each possible oc by using a given set of reward
and punishment functions. Each function’s reward is bi-
ased, based on the probability of their activating knowl-
edge items, which are provided by the Knowledge Base’s
static and dynamic context models. The meaning of
each function stems from domain-independent design
rules or is influenced by study results, e. g., by Schüssel
et al. (2012) [86]. Each identified optimal solution for
a given mapping problem is kept in memory for similar
problems in the future. The highest-rated output con-
figuration represents the final candidate for rendering.
A process of probabilistic fission is described in detail
by Honold et al. (2012) [83].

Beyond that, desires or dislikes of developers or users
can activate nomination-specific functions. This is done
by so-called nominations (see Subsection C), which are
managed by the system’s Nomination Manager. Besides
simple references on information items, the dialog out-
put can also include abstract references to specialized
widgets as, e. g., widgets that realize a calendar, a me-
dia player, or a web browser (see Section VIII). The
reasoning about the concrete widget realization is real-
ized analogous to the reasoning about the information
items.

Finally, the highest-rated output configurations for
information items and/or widgets are assembled to form
the modality-specific interaction output. This output is
passed on as CUI to the involved device components for
rendering (see Figure 13 and Section VIII). It is also
passed on to the content manager in order to configure
the fusion module for possible interaction inputs (see
Section C).

Based on our prototypical implementation, we identi-
fied two points for improvement. First, the use of simple
1-dimensional user-to-device distances does not allow
respecting device-to-device distances in the reasoning
process. The use of 3-dimensional representations for
object- and user locations, as well as knowledge about
the user’s gaze direction could help to identify modali-
ties, which are out of the user’s sight. For interfaces with
multiple GUIs, this could also help to prevent scattered
UIs, where one part of the UI is displayed in front of
the user and another part is displayed behind him or
her. The second improvement concerns the process of
determining the highest-rated output configuration. In
the current implementation, it is determined by simply
enumerating all configurations. As the number of possi-
ble output configurations increases exponentially in the
number of modalities, it would be preferable to use a
combinatorial optimization algorithm instead, such as
simulated annealing.

B Multimodal Fusion

Once the fission component has decided on how to
present an interface, the fusion component needs to be
informed about the resulting interaction possibilities.
Based on that, the fusion is able to decide if different
user inputs are ambiguous, conflicting, or reinforce each
other. Our current approach [72, 27] applies evidential
reasoning as a generalization of probabilities to provide
robust fusion results. Compared to other approaches of
decision level fusion for HCI [188], which can be clas-
sified as performing a procedural, frame-based, unifica-
tion, or hybrid/statistical type of fusion [109, 107, 46],
the approach can be categorized as hybrid fusion, which
merges a frame-based data model with a unification op-
eration. While not providing the power of describing
complex sequences of inputs that span multiple interac-
tions, as this is the task of the dialog management in a
Companion-System, the approach comes with the bene-
fit of providing a formally sound model for ambiguity for
the tasks of reinforcement and disambiguation of multi-
modal inputs. The often rule-based approaches found in
literature either ignore the presence of uncertainty (like
the approaches by Dumas et al. (2012) [79] and Olmedo
et al. (2015) [52]) or rely on simple n-best lists for mak-
ing a decision (like the one by Cohen et al. (1999) [181],
Bouchet et al. (2004) [154], Russ et al. (2005) [150], and
Sun et al. (2006) [142]).

In order to perform its task, the fusion component
needs to be provided with an Abstract Interaction
Model (AIM) that states all actions in the domain at
hand the user could possibly trigger via the available
input device components. In addition, the AIM must
contain all domain-specific knowledge on how different
inputs should be semantically combined. The AIM uses
the concept of graphs with nodes (representing possible
inputs from input device components) and edges (rep-
resenting their combinations) to hold this information.
The specification is done in GraphML syntax [167]; the
details of which are out of scope here. Within our ap-
proach, the interaction management’s content manager
(cf. Figure 13) is responsible to provide this kind of in-
formation, as separately explained in the upcoming sub-
section. An exemplary AIM is visualized in Figure 15.

The AIM shows that the user can state selections,
can make references to objects, and can perform re-
quests for additional information in several ways (green
boxes). To elucidate this, imagine the situation where
the user states “give me more information about that”
and at the same time points at the HDMI cable. In
such a situation, the ASR component would raise an in-
put, containing just a request of type ‘explanation’ (Sec-
tion B explains how this type of explanation is handled).
The gesture component would raise an input containing

26



Request	  
type	  

objectID	  
informa2onID	  

Selec+on	  
objectID	  

informa2onID	  Request	  
type	  

objectID,	  informa2onID	  
Nomina+on	  

desiredOutputChannel	  
[…]	  

Selec+on	  

Request	  
type	  

Request	  
type	  

objectID,	  informa2onID	  
Nomina+on	  

desiredOutputChannel	  
[…]	  

Request	  
type	  

objectID	  
informa2onID	  

Reference	  
objectID	  

informa2onID	  

Figure 15: The AIM created by the Content Manager
from the interaction output [60, Fig. 2] and [2, Fig. 4.16,
p. 151]. The graph expresses all possible inputs (solid
nodes) and their resulting combinations (dashed nodes).
Some of these combinations are complementary (e. g.,
Selection + Reference), while others represent redun-
dant inputs (e. g., Reference + Request/Nomination).

a reference to the objectID ‘hdmi’ and informationID
‘hdmi information’. As defined in the AIM via the edges
between the input nodes, the fusion component is able
to combine these two inputs and create a complete re-
quest (blue box) that contains the type ‘explanation’,
as well as the objectID and informationID of the HDMI
cable. In addition, the confidence values given by the
input components are taken into account to make sure
that only the most probable input results are forwarded
to the dialog management.

A request can also occur together with a so-called
nomination, i. e., the user requests additional informa-
tion in a specific way. For example, the user could state
“tell me more about the HDMI cable”, which would re-
sult in an input as shown in the green box in the bottom-
left corner of Figure 15. Since all needed information is
already contained in the input, it can directly be trans-
formed to a complete request with nomination, without
the need of combining it with other modalities. Since
the semantics of nominations are modality-specific, they
are not relevant for the dialogue management but only
for the fission component. Thus, such nominations are
forwarded to a dedicated nomination manager compo-
nent (cf. Figure 13), as explained separately in the next
subsection.

Though the current implementation provides all nec-
essary functionality like combination, disambiguation,
reinforcement, and conflict detection of inputs, there
may be situations where the system does not behave
as intended by the user, as there might be recognition
mistakes of particular modalities, e. g., a wrong speech
recognition due to ambient sounds. This fact has al-
ready been acknowledged in the literature (like by Du-

mas et al. (2012) [79]), but has not been widely ad-
dressed yet. The abstract interaction model, which is
the starting point for the multimodal input fusion, can
also be used to detect and recover from such sensor er-
rors. The idea is that past multimodal user behavior
can be stored as interaction history in terms of tempo-
ral behavior as described by Schüssel et al. (2014) [66].
Given that a temporal behavior for a specific user in a
specific situation is known, a new input can be detected
as atypical and therefore be exposed as a sensor error.
In addition, the interaction history can be used to re-
solve some of the exposed errors, thus avoiding the need
for user feedback on ambiguities.

For this to work, a user’s interaction history must
be associated with a specific situation. Here, the AIM
comes into play, as it allows identification of different
cases. This can not only be done on a complete AIM
basis, but on each individual edge of the graph as well.
In this way, an interaction history can be applied on
multiple AIMs. Figure 16 depicts this process for an
exemplary generic case.

Figure 16: The figure illustrates the process of detecting
and recovering from sensor errors using a stored interac-
tion history. In the example, a false positive interaction
input C is detected and the correct input AB is for-
warded to the dialog management.

The input components provide the multimodal fusion
component with an interaction input as time-based in-
tervals (Iin). Within the application example of this
report this could be a selection trigger (A), an object
reference (B), and an information request (C), as de-
scribed in Section B. Given the AIM from the content
manager, there are two possible outcomes: either the
user wants to select the object (AB) or requests more
information on the object (BC).

In order to decide which is the most probable input,
the multimodal fusion component checks the interaction
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history of the user for each edge and adjacent nodes of
the AIM. As visualized in the lower part of Figure 16,
the temporal relation of the selection (AB) much better
fits the user’s past behavior than that of the request for
more information (AC). Thus, it is concluded that the
information request (C) must have been a sensory fault
(more precisely, a conflict triggered by a false positive)
and that the selection (AB) must have been the correct
input, i. e., the user most probably wanted to select the
referred object. This correct input is then forwarded to
the dialog management (Din).

This approach for error detection could easily be in-
tegrated into the application scenario of this report as it
also uses some kind of selection tasks, for which a con-
siderably decreased error rate has already been shown
by Schüssel et al. (2016) [40], where the error detection
and recovery process is covered in greater detail.

C Interplay of Multimodal Fission and Fusion

While fission and fusion are usually described and im-
plemented in a self-sufficient way [195, 107], the two
components for fission and fusion can both benefit from
each other when an actual interplay is realized. There-
fore, we introduce two additional components to realize
the linkage: the content manager and the nomination
manager (see Figure 3). This subsection summarizes
findings of Honold et al. (2014) [60] and Schüssel et al.
(2017) [27] and presents a novel explicit collaboration of
fission and fusion.

Content Manager

As soon as the fission component’s computation is
done, and therefore the CUI is realized via device com-
ponents in form of a FUI (cf. Section A), the input fusion
component needs to be configured for all resulting inter-
action possibilities. This task is realized by the content
manager. Although the abstract model of interactions
that can occur is predefined (e. g., references, selections,
etc., as described in Section B), it depends on the FUI
which of them are actually available in the current dia-
log step.

Inspecting the CUI from the fission component and
the FUI descriptions from the device components, the
content manager creates the AIM in the form of an undi-
rected graph (cf. Figure 15). Nodes of the graph rep-
resent all single events that can occur via the available
input device components, while the edges contain infor-
mation in the form of XSLT transformations on how to
semantically combine multiple single events. This way
complementary and redundant multimodal inputs [192]
are modeled.

Using this approach, fission and fusion can both work
on different models and abstraction levels that best fit
their respective purposes. In addition, a dedicated com-

ponent like the content manager allows the input fusion
to be domain-independent and reusable in completely
different applications.

Nomination Manager

As motivated in Section B, a user may demand a spe-
cific output configuration as final UI. To address the
Companion characteristics of individuality, adaptability,
and cooperativeness, the user shall be able to submit any
desires and dislikes for possible channels (i. e., aural, vi-
sual, and tactile), encoding concepts (e. g., text, picture,
video, and text-to-speech), or used device components.
Each of such statements is encoded as a so-called nomi-
nation and can be linked with a specific dialog-, object-,
or informationID. Nominations can also originate from
the dialog manager in order to support an envisioned
dialog strategy.

Nominations are passed on to the nomination man-
ager. On each arrival of a new nomination, and with
knowledge about the actual output, the nomination
manager decides about a necessary repetition of the
fission process. The fission in turn is able to respect
all matching nominations with each reasoning process.
Nomination-specific reward and punishment functions
are used for biasing the rewards of the analyzed output
configurations in the intended way (cf. Section A). User-
given nominations do have a higher influence than the
ones that stem from the dialog manager.

D Evaluation

As motivated by Schaub (2014) [65], human-computer
trust can be increased if a system respects its user’s
privacy concerns. We analyzed the reasoning results of
the fission with respect to their compliance with given
demands for privacy.

The reasoning process for modality arbitration is a
problem, for which no polynomial time algorithm is
known. With the use of n modalities, the fission has to
decide which of 2n−1 possible output configurations (oc)
shall be used for realizing an output item in the final UI.
Accordingly, a problem with n = 20 available modali-
ties provides more than one million possible solutions.
That is why we expect higher rewards in cases where the
system can pick its optimal ocs from a large pool of pos-
sibilities than in situations where only a few modalities
are available.

For further insights, we conducted a performance
analysis to measure different aspects of the fission’s rea-
soning process. In this section we focus on the so-called
reward factor 〈oc〉. The factor represents the ratio of an
oc’s gained reward to a theoretical reward maximum.
This maximum can be derived as an a-priori estimation
from all available evaluation functions in a given con-
text of use (CoU) without further knowledge of a par-
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Figure 17: Achieved mean reward factors in modality
arbitration. The mean of the achieved reward factors
tend to increase with an increasing number of available
modalities. If an object represents private information,
the gained reward significantly drops in some cases (col-
ored in red). This is because even the highest rated out-
put configuration oc∗ does not comply with the required
privacy recommendations as employed in the activated
privacy-specific evaluation functions.

ticular oc. In the experimental setup we used two dialog
outputs of equal structure, but referencing 28 different
information items (14 items per dialog output). Each
dialog output contained one item representing private
information (cf. Figure 17). We asked nine different per-
sons (3 female, 6 male) to provide their individual user
model instances as part of the CoU. We provided two
different environment models (home vs. office) and simu-
lated different devices. The probability distributions for
the user-to-device distances were set randomly, accord-
ing to the distributions as provided by our real-world
sensors. The setup allowed us to simulate test cases
with up to 20 randomized modalities. In total we evalu-
ated all possible output configurations for 80,640 output
items from 5,670 dialog outputs. Case-based reasoning
(CBR) was applied in 28.7 % of all cases. We clustered
the output objects according to their type of use in or-
der to gain insights in the distribution of reward factors
for different problem sizes (see chart in Figure 17). Ob-
jects for which CBR was activated were excluded from
the analysis and do not affect the chart.

Figure 17 shows the distribution of mean reward fac-
tors for output items from different types, as expected.
An increasing problem size (number of available modal-
ities) offers the ability to identify an optimal output
configuration with a higher reward. The visualized re-
ward factors in Figure 17 may also decrease because of

the randomized modalities and the randomized distance
distributions (cf. results for type private information in
the range of 12–15 available modalities). The values for
the type of private information show that it is not al-
ways possible to provide a sufficiently optimal solution
with respect to privacy, especially with a very limited
set of possible modalities, e. g., with components like
public displays and/or speakers.

To address the Companion characteristics of cooper-
ativeness and trustworthiness even in these situations,
and to overcome the problems caused by particular de-
vice components, we plan to add a privacy enforcement
module to the output components on the level of the
final UI as motivated by Honold et al. (2012) [83]. A
possible integration of a privacy decision engine that
reasons about the correct privacy policy is described by
Schaub (2014) [65] on page 223.

A further evaluation of multimodal interaction is de-
scribed by Bubalo et al. (2017) [18]. Said work also
shows how the use of a so-called interaction history can
be used for error detection and recovery by the multi-
modal fusion process.
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Figure 18: Architectural view and modules with focus
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To implement the Companion characteristics of mul-
timodality, individuality, adaptability, availability, co-
operativeness, and trustworthiness our presented ar-
chitecture for Companion-Technologies allows removing
and integrating new devices and sensors at runtime that
realize the user interface (UI). Such a UI consists of
types of device components, namely output components
and input components as depicted in Figure 18. Each
Companion-compatible device component provides an
XML Schema-based description of its capabilities for
specific input decoding or output encoding. This knowl-
edge is stored in the knowledge base and is used by
the fission to determine the possible modalities. The
knowledge base requests so-called heartbeats from the
UI components via continuous broadcasts. The received
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responses allow to decide about each component’s avail-
ability or inactivity. Each user interface component
is in charge of rendering its assigned part of the final
user interface assigned by the multimodal fission mod-
ule. Input components are provided with their opera-
tional parameters (e. g., grammars for speech recogni-
tion), output components are provided with a concrete
description of the intended output (e. g., semantic struc-
ture plus content for visual output). Devices are used
to organize several device components for input and/or
output. Visual output components provide the interac-
tion management’s content manager with information
about their rendered items in terms of regions of inter-
est. This allows the multimodal fusion module, e. g., to
map pointing gestures to objects on the screen, even if
the particular sensor is not connected with the screen’s
host device. Input components pass on their inputs to
the multimodal fusion and send messages to the knowl-
edge base whenever a user interacts with them, so the
knowledge base can draw conclusions about a user’s cur-
rent position (cf. Section B). Widgets are used to wrap
complex interaction concepts (e. g., a media center UI)
in a single and coherent UI component. Widgets are
available for input and Output components and allow
to directly communicate with a linked application or
web service, as motivated by Honold et al. (2011) [94].

Components for input, e. g., a speech recognizer, are
provided with suitable configuration data. In that way,
the video source problem listen item from the third last
line in Figure 14a allows a user to take the floor and
initiate a dialog, based on a context-specific ASR gram-
mar. The grammar facilitates detecting cable problems
based on verbal utterances, like, e. g.: “The cable is bro-
ken.” or “The plug is detached from the cable.” If no
ASR component is available, the fission may instruct a
graphical UI component with the listen task. This is
realized as depicted in Figure 7. The “X” symbol on
the left of the content window allows submitting text
messages to the system. In this case text input can be
analyzed in the same way as speech input. On the ab-
stract semantic level, the dialog manager does not rec-
ognize any difference with respect to the user’s applied
input concept.

Adaptation on the FUI level allows, e. g., to apply dif-
ferent rendering concepts when providing a selection. As
exemplified in Figure 14, size constraints as well as the
amount of selectable items influence the applied con-
cept. In this case, plain buttons are presented as se-
lection offer for less than three items on smart phone
screens. The concept of a pull-down selection list is used
for options with more than two items (see Figure 14c).
On other screens, plain buttons are used as selection
offer for up to seven items.

In order to also support complex widget-based inter-

<?xml version="1.0" encoding="utf-8"?> 
<widgetSet> 
  <widget widgetID="mediaCenter" 
          description="a widget for media browsing and consumption"> 
    <cuiWidget location="http://www.myurl.com/pathTo/MyMediaCenter.dll" 
               assemblyName="MediaCenter" 
               typeName="MediaCenter.Controls.MediaCenter" 
               outputEncoderMedium="gui" 
               preferredHeightPx="800" /> 
  </widget> 
  <widget widgetID="mapDemo" 
          description="a dummy widget with a map application"> 
    <cuiWidget location="file:///C:/Somewhere/WidgetAssembly.dll" 
               assemblyName="WidgetAssembly" 
               typeName="WidgetAssembly.Controls.MapDemo" 
               outputEncoderMedium="gui" 
               preferredHeightPx="500" /> 
  </widget> 
</widgetSet> 

Figure 19: Mappings for possible widgets are used by
the fission to identify possible implementations. On the
abstract level widgets are described only with the use of
their unique widgetID.

actions (e. g., to include a fully functional map compo-
nent, a media center application, or other already exist-
ing user controls), device components are able to instan-
tiate external user controls at runtime via reflection, as
described by Honold et al. (2011) [94]. Currently, this
feature is only supported for GUI-based components.
Whenever an intended widget is referenced on the ab-
stract level in the dialog output, the fission can iden-
tify possible candidates by matching a referenced widget
with a description of all known widgets (see Figure 19).
Based on that, it is possible to identify all possible map-
pings to the CUI with the use of the descriptions about
the known device components. This concept enables
the Companion to integrate widgets even from remote
locations at runtime.

IX Building an Assistance System

So far, we have seen how the various components of
our system interact with each other in order to provide
advanced assistance for a certain task that involves the
execution of a series of actions. We have illustrated
the application of the various technologies and com-
ponents and their interaction in a specific application
domain, where many people need or would appreciate
assistance: the assembly of complex hardware compo-
nents (see Section II). The deployed technologies, as well
as the underlying system’s architecture, is completely
domain-independent, however. That is, when the vari-
ous components are provided with an adequate descrip-
tion of the given problem at hand, the described system
can provide support in many different application do-
mains. In the previous sections, we have focused on
describing the involved sub components and the actual
models used in our prototype system. Here, we shift the
focus towards practical issues that arise when one tries
to apply our approach to a new application scenario and
give an impression of the effort required for doing so.
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Knowledge Base In our application scenario, the
MLN models were not very complex, as sensory input
was quite limited – it was only used for user localization
with a limited number of areas where the user can inter-
act with the system (cf. Figure 5). The model consisted
of 7 rules, plus 24 static facts that represent the area ad-
jacency graph. Concerning the difficulty of constructing
MLN models in other application domains, Jain (2011)
[95] give valuable pointers to pitfalls for knowledge en-
gineering with MLNs. For the user localization, the
choice of the sensors and their mounting positions are
crucial for the system performance and strongly depend
on the desired scenarios. Since the multi-object track-
ing system uses generic sensor interfaces, it is not nec-
essary to change the filter core if an additional sensor
is added to the perception system or a currently used
sensor is replaced by, e. g., a new model with higher
resolution. Consequently, only the sensor-specific mea-
surement model has to be implemented for a sensor type,
which has not been used before. If a sensor is replaced
by a similar sensor with higher resolution, it is sufficient
to adapt the parameters of the existing measurement
model used for the sensor with lower resolution.

Planning Depending on the domain at hand, many
steps of constructing a planning model can be auto-
mated. In the home theater scenario, for example, for-
mal descriptions of the available ports, etc. of the home
theater devices could be constructed by the manufac-
turer and shipped with the device or supplied online.
In other cases, parts of the planning model can be in-
ferred from readily available ontological knowledge, e. g.,
as demonstrated by Behnke et al. (2015) [44] in a fitness
domain. We did, however, model and test the domain
completely by hand. While domain modeling and its
testing can be a complex task – in part due the sparse
availability of intelligent tool support, in particular for
hierarchical models [33] – it is still manageable in our ex-
ample scenario, as there are only a few actions available.
In principle, it suffices to have one single plugIn action
(which makes use of several parameters, i. e., variables
for devices and cables), as explained in Section V. How-
ever, this number heavily depends on several modeling
choices, which in turn depend on the available planning
language features. In one of our models of that domain,
we used 16 tasks, which have up to 6 parameters. Each
of the cables and adapters (in our scenario, there were
11 and 2 of them, respectively) as well as devices (4 in
our scenario, see Section II) featured a number of ports,
each one was modeled by an individual constant (each
cable had 2 to 3 ports, for each device we modeled up
to approx. 10 ports).

In any case, one needs to carefully consider the re-
quirements of the given scenario. The hybrid plan-

ning formalism introduced here relies on a determin-
istic action model. Failures and unexpected behavior
are handled via repairing plans. When the domain at
hand requires handling uncertainty in action execution
or sensory uncertainty at plan generation time, Compan-
ion-Systems can employ planning based on the frame-
work of partially observable Markov decision processes
(POMDPs [203]). In fact, controlling a Companion-
System as a whole can be interpreted as solving an
enormous POMDP problem [21, 53]. More practically,
Richter and Biundo (2017) [25] describe how an ap-
proach that generalizes HTN planning to POMDPs [84]
can be applied to an extended variant of the home the-
ater assembly task that exhibits uncertainty in action
execution as well as sensory uncertainty. Using this ap-
proach in a Companion-System alleviates the need for
a Plan Repair component at the price of more limited
plan explanation functionality, since the approach does
not represent causal dependencies in plans.

A further limitation of our prototype system is that
we currently do not handle time or action durations –
only relative dependencies between actions can be repre-
sented and the execution of an action happens instantly.
That is, we can model simple temporal relations such as
“I have to shop for groceries before I go to the doc-
tor”, but handling time points such as “I have a doctor
appointment at 10 am” is not possible. These features
are conceptually integrated into our planning framework
[113], but not yet implemented in our prototype system.

Dialog Providing the dialog components with all re-
quired data is closely coupled with modeling the plan-
ning domain. As explained in the planning and dialog
sections (Sections V and VI, respectively), every action
that needs user interaction has to have an associated
dialog model, which allows its presentation to the user.
Therefore, the level of abstraction of actions and the
dialog model has to be chosen with care, as explained
in both sections. If individualized dialogs are desired
for the action, e. g., for different knowledge levels, this
has to be predefined. This individualization may require
variations of the content. For example, if two home the-
ater components have to be connected via a cable, an
expert instruction would require only pictures of the ca-
ble and the respective components and text indicating
the instructions. However, if an individualized dialog
for a novice user is desired, this action may be split into
two more detailed ones, where each dialog highlights
the port of the component a specific cable end has to be
plugged into. As can be seen in Figure 7, which depicts
a user instruction to plug the audio end of the SCART
to cinch cable into the respective audio port of the am-
plifier, this requires the generation of two pictures, each
highlighting the respective port of the component. This

31



shows that individualization of the dialog may require
extra effort for the designer and thus has to be han-
dled with care. Further, this requires a user model for
all steps that are involved in executing these actions.
This user model is also used to decide whether explana-
tions generated by the dialog component (cf. Section B)
are presented proactively. In any case, these explana-
tions require the upfront availability of the content of
these explanations in the desired form (text, pictures, or
videos). This content has to be specified by the domain
modeler or gathered, e. g., using information retrieval
and natural language processing techniques. This is in
contrast to the plan explanations (cf. Section D), which
are generated during runtime.

Interaction Management The interaction manage-
ment cooperates with the UI components in a fully
model-driven manner. The UI components are imple-
mented as domain-independent interpreter of our spe-
cific XML-based user interface description language as
CUI. As the description of the final look and feel is in-
ferred from the dialog manager’s modality-independent
output at runtime, we only have to specify missing map-
pings for the possible information encodings. In that
way the desired UIs can be generated on the fly.

In the current assembly assistance domain, the in-
formation model comprises 278 mappings from abstract
information items to their possible concrete representa-
tions (i. e., text, picture, video, TTS, or ASR). Based on
the connection topology of device-ports and cable-plugs,
98 of the 278 mappings have been automatically gener-
ated. These 98 mappings apply links to corresponding
pictures and videos. For these cases we provided 26 pic-
tures plus 26 animated videos. In total, we provided 84
media items. It is also possible to inject new mappings
as runtime, as it is done by the dialog management for
plan explanation. Right now, these on-the-fly genera-
tions are simple mappings to automatically generated
textual descriptions, but it would also be possible to
add visual encoding concepts (i. e., images, or videos).

In its current setting, the fission process utilizes 92
evaluation functions to reason about the most ade-
quate UI, according to a given CoU. These functions
are domain-independent, and there is no need to re-
configure them. Nevertheless, it might be possible that
specific domains require additional functions in order to
respect specific contextual situations. New reward or
punishment functions can be added and are integrated
at runtime via reflection. The evaluation functions are
activated and weighted by contextual parameters and
their level of uncertainty. The current implementation
supports 6 parameters for the environment model and
29 user-specific parameters. Additional evaluation func-
tions may require additional context parameters. Since

XML serves as exchange format for the context models,
these parameters can also be extended, if desired.

Instances of different device models form another
class of input for the fission. Such model instances
(a.k.a. profiles) are used to describe devices and their
components’ rendering capabilities. As devices can be
re-used across different scenarios and domains, it is like-
wise with their profiles.

The fusion process is configured by the abstract in-
teraction model (AIM). In our approach the AIM can
be automatically generated using XSLT transformations
in conjunction with knowledge about the CUI from the
fission and the FUI from the utilized UI components.
This work is done by the content manager. As its XSLT
operation only depends on the semantic structure of the
dialog output, it is domain-independent in itself and can
remain unchanged in any other setting.

Albeit such a model-driven approach offers maximum
flexibility in terms of domain independence, it should
be mentioned that the implementation of generic model
interpreters for different input and output modalities
(including automatic layout mechanisms) are extensive
tasks. If the scope of all UI variants is known at design-
time, and if they are not large in number, for smaller
projects, the linking of pre-compiled widgets at runtime
might be a more cost-effective solution.

The adaptive components of the interaction manage-
ment in cooperation with the UI components were al-
ready successfully applied to the domains of fitness by
Nothdurft et al. (2016) [39] and to interactive biology-
course teaching by Nothdurft et al. (2014) [61].

X Related Work

In this section we first give a short overview of some
of the most important research projects that are related
to our motivation of creating truly user-friendly techni-
cal systems. In the second part, we get more “concrete”
and give an overview about research and systems that
are concerned – as is the approach described in this re-
port – with providing assistance to humans based on AI
planning as its core reasoning mechanism.

A Research Projects

Various research projects address questions and issues
that are related to our general enterprise of assisting
human users in a natural and user-friendly way.

The EMBASSI project [174], for instance, aimed at
providing intuitive interaction capabilities for devices of
every-day life contexts. It specifically deals with provid-
ing assistance functionality through multimodal interac-
tion with anthropomorphic user interfaces. Here, addi-
tional emphasis is put on psychological and ergonomic
aspects.

A dialog shell for interactive systems was also pro-
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posed by the SmartKom project [138, 165], which fo-
cused on flexible, natural interaction.

The REAL project is concerned with assisting its
users in different tasks, but focuses on instrumented en-
vironments [152]. Their focus lies on the implicit and
explicit user interaction, whereas we propose a general
system architecture that focuses on providing planning-
based assistance in a broad variety of tasks.

Closely related are also the research projects that deal
with cognitive technical systems, such as the CoTeSys
(Cognition for Technical Systems) Cluster of Excellence
[99] and the DFG5 excellence cluster CITEC (Cogni-
tive Interaction Technology) [104]. CoTeSys did a large
scale investigation of cognition in technical systems with
a particular focus on systems with explicit models of
their own actions and perceptions. CITEC focuses on
cognitive processes related to the interaction and com-
munication between a cognitive technical system and its
user.

While many of these projects are highly interdisci-
plinary, none of these focus on addressing the implicit
requirements on cognitive technical systems, i. e., the
Companion characteristics mentioned before (see Sec-
tion I). For a more detailed discussion on related re-
search projects we refer to the survey by Biundo et al.
(2016) [34].

B Planning-based Assistance Systems

Due to the importance of the topic for a modern so-
ciety and the variety of related research topics, there
is also a wide range of actual systems and general ap-
proaches that realize assistance functionality in a variety
of different application areas such as robotics, space mis-
sions, health, and elderly care – to name just a few of the
most active ones [34]. Here, we want to mention those
approaches that are closely related to the one proposed
here in the way that they base their decisions upon au-
tomatically generated plans of action. Please note that
there are many practical applications in which the re-
spective system relies upon an AI planning system (see
the website http://sig-aps.org/ of the Special Inter-
est Group for Applications of AI Planning and Schedul-
ing (SIGAPS) for many examples), so we here only list
those in which a human user is directly involved by some
sort of assistance system. Our approach distinguishes
itself from the others in many aspects – for example
the individualization to the individual user, the pursued
planning framework, explanation and execution capabil-
ities, and the advanced interaction capabilities – and we
will discuss differences in the following. Our work dif-
fers from most of the following in the key aspect that
it is completely domain-independent: provided with the

5Deutsche Forschungsgemeinschaft, engl.: German Research
Foundation

required models, it can be used as a basis for a broad
variety of different tasks. The works given below are
all (but one) addressing a specific problem that they
are solving and for which respective assumptions can be
made. Further, only very few of the respective publi-
cations are precisely explaining the underlying system
architecture.

Closely related to our approach is the system
RADAR, a planning-based decision support system [28].
Like our approach, it is a domain-independent system
for providing advice about how to carry out a certain
task that is modeled in terms of a planning problem.
Though the system shares several main ideas and ca-
pabilities of ours (like plan generation, plan repair, and
plan explanation), there are several differences as well.
One core difference is the underlying planning model:
they rely on a non-hierarchical approach. The most
prominent difference, however, is the design of the user
interface and its capabilities. We decided to enable a
detailed, multimodal presentation of the actions in a
step-by-step fashion, so that a single user can just fol-
low them. RADAR, in contrast, presents the entire plan
as a list of action names. It allows its user to rearrange
that list’s order as well as to remove and add actions,
similar to what mixed-initiative planning systems usu-
ally allow. The resulting plan can be evaluated and re-
pair hints get generated in case of problems. Similar to
our system, explanations can get generated. However,
since RADAR assumes expert users, they do not fol-
low our approach that generates explanations in natural
language explaining the purpose of user-selected actions
in the solution. Instead, they follow their approach of
“model reconciliation”, where they use a specification of
the user’s mental model of the planning task (which has
to be available in the same language specification than
the planning task itself) and explain differences to the
actual model [19]. The user interface also features areas
in which the available resources are presented as well as
a further area to show additional domain-specific infor-
mation. In their example scenario, RADAR supports in
a fire-fighting scenario. Thus, an overview map of the
relevant area is shown; the resources list the available
fire engines and equipment per station, which can also
be changed by the user.

The work by Yorke-Smith et al. (2007, 2009, 2012)
[131, 115, 88] is only loosely related to ours, yet shows
some noteworthy similarities. Their research is con-
cerned with proactive behavior of personal task man-
agement assistants, such as used in office environments.
They do not directly rely upon AI Planning, but instead
build upon the BDI (Belief-Desire-Intention) framework
SPARK [158]. BDI agents are a popular approach to
realize intelligent agents that act in complex, dynamic
environments. Though the BDI framework was devel-
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oped independently of planning, there is a close rela-
tionship: Since BDI agents also rely upon hierarchical
control structures, they are expressive enough to cap-
ture the (undecidable) HTN planning framework [141]
that we base upon, too. Yorke-Smith et al.’s research is
concerned with the development of proactive personal
assistants that support knowledge workers in managing
time commitments and performing tasks (such as rou-
tine tasks in an office environment). To achieve this,
they characterise helpful proactive behavior by the as-
sistant and extend the BDI model such that it can act
according to this behavior. From a technology point-of-
view, Yorke-Smith et al.’s work is based on the CALO
(Cognitive Assistant that Learns and Organizes) system
[1]. It includes Towel [127] as one of its underlying com-
ponents, an intelligent todo list manager for office envi-
ronments, which can represent, among others, the du-
ration of tasks and dependencies among them. In con-
trast to us, they focus on providing proactive support,
i. e., deciding on when and how to interact with a user.
The only proactive behavior that we are concerned with
is the (proactive) provision of explanations in case cer-
tain concepts are not sufficiently known to the user, see
Section VI. We, on the other hand, focus on how the
integration of various planning and user-interaction fa-
cilities supports in the execution of various tasks via the
provision of a detailed, multimodal step-by-step instruc-
tion. These aspects are not covered by this work, which
instead presents clearly arranged lists of task descrip-
tions.

González et al. (2017) [22] introduce a planning-based
architecture for humanoid robots to be used in the con-
text of rehabilitation therapies. Their approach allows
a therapist to define exercises that the robot carries out
together with the patient. The proposed architecture re-
lies on different planning layers. The top-most layer is
used to define the therapy. It is formalized using HTN
planning due to the natural hierarchy of the problem
and solved by the planning system JSHOP2 [164]. The
lower levels are realized using a non-hierarchical plan-
ning approach; they are realizing the exercises, i. e., con-
trolling the robot. The robot is equipped with a camera
to monitor whether exercises are executed correctly. In
case the currently observed state differs from the ex-
pected one (and this causes the current plan to fail),
then a new plan is generated relying on replanning from
the current state. The system does not feature explana-
tion capabilities based on AI technology, but instead it is
able to give an introduction to the respective exercises.
Their approach is therefore only loosely related to ours
in that it relies on a hierarchical action model to support
human users, coupled with repair facilities. A core dif-
ference is therefore that it is not a domain-independent
approach for supporting in a variety of complex tasks.

Consequently, it it not about the individual multimodal
presentation of instructions.

Bernardini and Porayska-Pomsta (2013) [68] intro-
duce a system that helps children with Autism Spec-
trum Conditions to acquire social communication skills.
One of its similarities to our system is that is also main-
tains a user model; this model of the child is used to
reflect its current cognitive and affective state to adapt
its behavior to the child’s reactions. Thus, their system
is, as ours, both user- and situation-adaptive. A core
difference to our system is that it uses a virtual agent
to interact with the child, whereas our system shows in-
structions that correspond to the underlying plan. The
agent’s behavior is also based upon such plans, created
by a POCL planner. Our approach, hybrid planning, ex-
tends POCL planning by means of a hierarchy so that
the planning tasks can also be modeled in a hierarchi-
cal way and to improve explanations about presented
instructions. Since Bernardini and Porayska-Pomsta’s
system is not about explaining how to solve a problem
and thus does not show a sequence of instructions, it
also comes without explanation capabilities as proposed
in this report. Similar to our system, theirs also allows
user input via touch gesture and receives sensory infor-
mation. For instance, their system can also recognize
gaze and gestures. In contrast to our system, theirs
runs on a single device, so they are not concerned with
modality arbitration to the same extent as our system is.
Concerning planning execution, monitoring, and repair,
there is a big difference between our systems: Bernar-
dini and Porayska-Pomsta’s system interleaves planning
and plan execution, whereas our system derives the en-
tire plan before the user starts executing it. That way,
they can always adapt the current plan according to the
current situation and the child’s reaction.

Beetz et al. (2012) [76] develop techniques to al-
low autonomous service robots achieving “home chore
task intelligence” to assist elderly people by duties of
their daily life. These robots are controlled by so-called
“cognition-enabled robot control programs” with learn-
ing, reasoning, and planning capabilities. Similar to us,
they use a hierarchical planning approach. While Beetz
et al. also aim at assisting human users, a key difference
is that their aim is to control robots so they do the tasks
in the adequate way. Our approach, in contrast, has one
of its strengths in presenting a sequence of instructions
to its user thereby taking his or her knowledge and the
current situation into account.

Related to the last system, the one by Pollack (2002)
[170] is an assistant for elderly people and people with
cognitive impairments. Its purpose is to assist them in
routines of their daily life so they can remain their in-
dependence for a longer time and therefore also stay in
their own homes longer than without such an assistant.
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For this, the assistant is conceptualized for running on
an autonomous mobile robot. The routines that it is as-
sisting by include, for example, eating and drinking, us-
ing the bathroom, managing medicine, and housekeep-
ing. Thus, one of the system’s central capabilities is to
allow its user to add activities and to remind about for-
gotten ones. For such activities, the assistant features
a model of time allowing tasks to have a duration and
time points where they are supposed to start. As dis-
cussed in Section IX, such expansions are currently not
implemented in our system. The underlying planning
procedure is again a POCL system. The respective sys-
tem also features some sort of plan repair Pollack (called
plan update), which is an important feature of their as-
sistant, because forgotten or changed routines can have
an influence of the remainder of the plan.

A closely related endeavor is also pursued by Boger et
al. (2005, 2006) [143, 135]. Their assistant assists people
with dementia in daily routine tasks. While Pollack’s
approach focuses on complying to the user’s schedule
(i. e., tasks can be regarded atomic), Boger et al.’s ap-
proach focuses on assisting to carry out the respective
tasks. For this, the system is equipped with a com-
puter vision system to observe the user’s currently per-
formed task. The system ensures that no actions were
forgotten or carried out in an incorrect order. If this
is detected, the system prompts – using audio feedback
– an adequate advice. As an example (and for empiri-
cal evaluations) they use the task of washing hands. It
consists of various steps (to be performed in a useful or-
der), such as turning water on and off, taking and using
the soap, and removing the soap from the hands under
running water. As underlying planning model, they use
Markov Decision Processes (MDPs) and the generaliza-
tion thereof to Partially Observable MDPs (POMDPs).
The authors argue that they need such a formalism be-
cause the problems they are assisting by are inherently
relying on observations (which are practically always un-
certain). Further, also the effects of their system’s ac-
tions are uncertain. Finally, they argue that they have
to satisfy several different objective criteria that might
even conflict with each other, thereby preventing goal
achievement with certainty.

The SIADEX system provides decision support in the
application area of crisis management [137]. The exam-
ple application in which they have tested their system
is forest fire fighting. They introduce a system architec-
ture that features components for plan execution and
monitoring (and, consequently, plan repair). It also
comprises a component for displaying plans. Similar
to our system, it also allows non-AI-experts to oper-
ate their system, i. e., technical staff. They do so by
showing the respective plans via Microsoft Excel (as a
chronogram) or Microsoft Project (as a Gantt chart).

The underlying planning framework is HTN planning
with temporal information (which is obviously particu-
larly important in crisis management). In the respective
setting, there is a large amount of data stemming from
heterogeneous sources that is of importance for carry-
ing out the respective tasks. For this, the architecture
features a central knowledge base, in which the infor-
mation is stored and processed in form of an ontology.
The system does not feature components for explaining
the plans, nor are advanced input and output facilities
in the focus of the project.

Peintner et al. (2009) [112] introduce a task man-
agement tool for military environments. It is basi-
cally an intelligent, AI-enhanced, todo list tailored to
the specific requirements for the military. The task as-
sistant builds upon the before-mentionedTowel system
[127], an intelligent todo list manager. Note that Towel
also bases upon the before-mentioned BDI framework
SPARK [158] and that it was also created in the con-
text of the CALO project. The assistant allows to create
and manage task lists, showing which tasks depend on
each other and how much time is needed to carry them
out. Tasks can be shared between multiple users, a fea-
ture that is also currently not explicitly discussed in our
assistant. AI technology was primarily used for provid-
ing recommendations on how to modify task lists based
on previous experiences (based on Machine Learning).
One of the core differences to our approach is therefore
the general problem setting: We enable to automatically
solve a given problem (like the operation of a technical
device) due to the underlying formal model of the world,
whereas todo lists contain a list of tasks with only lim-
ited interaction between each other.

Tate et al. (2000) [178] introduce a prototype system
to provide decision aid to support US Army small unit
operations in urban terrain. The focus of their paper
lies on giving an overview on how AI technology can
be deployed in the entire application scenario, from do-
main knowledge elicitation to the actual plan execution.
The main purpose of their approach and prototype is to
provide the soldiers with information about the environ-
ment or battlespace. Thus, it is especially important for
the (soldier-borne) user interface to give an overview of
the current terrain and objectives (many illustrations
are provided in the paper). As such, it is not concerned
with a direct illustration of actions, nor does it support
advanced input or output capabilities, but it is rather
tailored to the special requirements of the soldiers. The
system does not incorporate user knowledge, but it can
be configured to specialize itself according to user roles.
The underlying planning approach is a hierarchical one
and, similar to our approach, causal links are used to
explicitly represent causality. The system used for the
prototype’s various capabilities is O-PLAN [199]. The
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system can repair its plans in the light of unforeseen
changes to the current situation. For the sake of the
prototype, a simulation creates such changes; in the real
system, sensors are responsible for this instead. Expla-
nation capabilities are not incorporated.

Further assistance systems that directly interact with
their users and base their recommendations upon AI
planning are basically all mixed-initiative planning
(MIP) systems. Since an overview about existing MIP
systems is out of the focus of this report and would
be worth an article on its own, we here only mention
a few systems and approaches that are closest to our
approach. We also want to mention that it is also not
always perfectly clear whether a planning-based system
can be regarded a MIP system. In particular in real-
world applications, at least the problem itself needs to
be defined by a system’s user, so such systems could be
referred to as a MIP system as well. For example, also
the previously introduced systems by Tate et al. (2000)
[178] and Fernández-Olivares et al. (2006) [137] could
be referred to as a MIP system for this reason. At the
time being, there does not exist a survey on current MIP
systems; instead we refer to the work by Behnke et al.
(2017) [12] for a discussion of some of the most recent
approaches. In contrast to our approach (which focuses
on the assistance during the execution of a task), the
core functionality of MIP systems is the generation of
plans and therefore do not have plan execution-related
facilities such as plan monitoring or plan repair. Also
the (user-specific) presentation of plans in a step-by-step
fashion is not required by such systems and thus not
incorporated. Further, the cooperative development of
plans is often intended to be done by an expert (see
examples below), whereas the deployment of our assis-
tance system is also intended to be used by novices.

One of the best-known MIP systems is PASSAT
(Plan-Authoring System based on Sketches, Advice, and
Templates) by Myers et al. (2003) [163]. Similar to
our approach, it relies on an HTN planning approach.
Further, PASSAT is the only system mentioned in this
overview that is, as our approach, completely domain-
independent – only their example application in which
they illustrate their approach is in a specific application
domain. In fact, most of their paper is concerned with
the domain-independent formalization and techniques
for collaborative plan generation. In their application
scenario they are, similar to Tate et al. (2000) [178], con-
cerned with generating attack plans for military special
operations groups; more specifically, they are concerned
with a hostage rescue scenario. Since their system is a
general MIP system, it is spending quiet some effort on
their repair mechanisms. Because plans are developed
prior to their execution, “repair” here means identify-
ing and addressing deficiencies of plans that are not yet

solutions rather than compensating for solution failures
of complete and correct plans. As expected for a MIP
system, it does not incorporate advanced input/output
capabilities or plan explanations.

A further well-known MIP system is MAPGEN
(Mixed-Initiative Activity Planning Generator) that
was used by the operations staff for assisting in cre-
ating the daily activity plans for the Mars Exploration
Rovers (MER) Spirit and Opportunity [145, 146, 32].
The planning language was a hierarchical one that also
featured resources (such as energy) and temporal con-
straints. Because MAPGEN was used to create plans
instead of also executing them, it does not make sense
to be equipped with a plan repair mechanism. How-
ever, both related to plan repair and plan explanation,
it was a critical issue to show the user in an easy-to-
comprehend way any conflicts of the current plan with
any constraints, such as energy levels. Any advanced
input or output capabilities were out of the scope of the
project. Individualization to a specific user was also not
incorporated.

Lastly, we would like to mention that the technology
presented in this report has already attracted attention
for its application in an industrial setting. More specif-
ically, we are currently involved in a project in which
non-experienced users are assisted in a Do-It-Yourself
home improvement project of their choice [5, 26], e. g.,
to build a keyrack, a bird house, or a cupboard. The
objectives of this assistant are twofold: it provides in-
structions to the user on how to safely (work safety)
and successfully complete the desired project, but it also
aims at teaching the user how to use the electronic tools
involved in the project, such that he or she will be able
to use them without assistance in the future and thus
become more self-reliant. Here, we employ the same
architectural principles and many of the components
presented in this report. We use a hierarchical plan-
ner to automatically derive appropriate instructions for
the user that will lead to the completion of the respec-
tive project with those tools and materials the user has
actually available. In addition to the pure sequential
instructions, we have also show the user an abstraction
of the current plan to guide him or her through the DIY
project and to provide instant feedback on successful
task-completion. Similarly, we use many of the dialog-
and interaction-management principles. The major dif-
ference between the two systems is, however, that the
DIY-assistant handles its media content based on ontol-
ogy classification enabling us to find good-fitting content
even if a perfect fitting one is not available. This appli-
cation in a completely new environment emphasizes our
claim that the presented methodology is independent of
the concrete application at hand.
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XI Conclusion and Future Work

We presented an approach for realizing adaptive, indi-
vidual, and trustworthy assistance systems for every-day
life situations. We identified AI planning, probabilis-
tic reasoning, dialog management, and interaction man-
agement as the key technologies in such Companion-
Systems and proposed a flexible architecture that com-
bines these technologies. Dialog management and in-
teraction management adaptively and individually me-
diate between the user and the higher-level cognitive
processes of the system provided by planning and rea-
soning. Transparency and therefore trustworthiness is
achieved across multiple components by offering capa-
bilities for explaining plans and relevant concepts. A
common property of the involved technologies is the
high degree of scalability achieved by using domain-
independent, model-based approaches. That way imple-
menting a system based on our architecture is straight-
forward: it only requires specifying the respective mod-
els for planning, dialog management, and so on (cf. Sec-
tion IX) in addition to the required data, such as pic-
tures or videos. The situation is similar on the sensor
side: many components can process a multitude of in-
formation. For example, the dialog management com-
ponent can modify its dialog strategies according to the
user’s emotional state. Therefore, sensing capabilities
can be added transparently when their measurements
concern variables already taken into account by existing
user and environment models [48].

We implemented a prototype system based on the
proposed architecture in the example domain of setting
up a complex home theater and used it to illustrate the
involved technologies. We gave pointers to previous and
related work, including summaries for evaluations that
were done for the respective system components and
the prototype. In one of these studies we were particu-
larly interested in the usefulness of our system and the
acceptance of such assistance functionality by the test
subjects. In summary, it was perceived very well, in
particular by non-experts (cf. Section E).

We discussed possible directions of future work for
each of the architecture’s components. One of these di-
rections, which is shared by several of the involved com-
ponents, concerns the consistent consideration of uncer-
tainty – in particular in the form of partial observability.
Being able to handle partial observability allows, e. g.,
to deal with partial knowledge about the user or the
current state of the environment. With so-called sensing
actions, certain information can then be acquired by the
system. This is also closely related to our currently pur-
sued research direction of mixed-initiative planning [11,
12]. Here, several choices can be left to the user while
the planner guarantees that for all these choices the plan
still achieves all of the user’s goals – no matter what de-

cision he or she takes (cf. Section A). Further interest-
ing directions in which our prototype can be extended
involve the incorporation of plan and goal recognition,
which would, e. g., allow the system to intervene when it
detects that the user’s currently deployed strategy will
not achieve his or her goals or in a sub-optimal way
(cf. Section B); or the realization of a dynamic config-
uration that combines the most promising components
to the overall system (cf. Section B). Currently ongoing
work incorporates an ontology to the knowledge base
that stores and processes factual knowledge of the ap-
plication domain. These currently developed concepts
are deployed in another assistance system, which bases
upon the technology described in this report and is de-
veloped together with an industry partner. It assists
its users in a Do-It-Yourself (DIY) home improvement
project [5, 26] (cf. also Section X for more details).
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