
Tracking Branches in Trees – A Propositional
Encoding for Solving Partially-Ordered HTN

Planning Problems
Gregor Behnke

Institute of Artificial Intelligence
Ulm University

gregor.behnke@uni-ulm.de

Daniel Höller
Institute of Artificial Intelligence

Ulm University
daniel.hoeller@uni-ulm.de

Susanne Biundo
Institute of Artificial Intelligence

Ulm University
susanne.biundo@uni-ulm.de

Abstract—Planning via SAT has proven to be an efficient and
versatile planning technique. Its declarative nature allows for an
easy integration of additional constraints and can harness the
progress made in the SAT community without the need to adapt
the planner. However, there has been only little attention to SAT
planning for hierarchical domains. To ease encoding, existing
approaches for HTN planning require additional assumptions,
like non-recursiveness or totally-ordered methods. Both limit the
expressiveness of HTN planning severely. We propose the first
propositional encodings which are able to solve general, i.e.,
partially-ordered, HTN planning problems, based on a previous
encoding for totally-ordered problems. The empirical evaluation
of our encoding shows that it outperforms existing HTN planners
significantly.

Index Terms—planning, hierarchical planning, SAT

I. INTRODUCTION

Hierarchical Task Network (HTN) planning [1] is a versatile
planning formalism, which has been used in many practical ap-
plications [2]–[5]. It extends classical planning by introducing
abstract tasks in addition to primitive (classical) actions. They
represent portfolios of more complex courses of action which –
if executed – achieve the abstract task. Decomposition methods
map abstract tasks to partially-ordered sets of other tasks (that
might be primitive or abstract) – and by that express the
connection between higher- and lower-levels of action abstrac-
tion. Decomposition is continued until all tasks are primitive
and these actions can be executed in the initial state. This
decompositional structure is a powerful way to describe the set
of possible solutions, making HTN planning more expressive
than classical planning [1], [6], [7]. To solve HTN planning
problems, fast and domain-independent planning systems are
required that are informed about both – hierarchy and state.
But as of now, the research in this area lacks behind that in
classical planning. Most current HTN planners are based on
heuristic search, as in classical planning. In classical planning,
SAT-based planning has also proven to be highly efficient
and has advantages compared to planning via heuristic search.
Most notably, SAT-based planners benefit from future progress

in SAT research without the need to adapt the planner – simply
replacing the solver is sufficient. Also propositional encodings
are easily extendable, e.g., to add further constraints like goals
formulated in LTL. Lastly propositional logic seems to be a
suitable means to solve HTN planning problems, as verifying
solutions was shown to be NP-complete [8] and solving it via
SAT has proven to be efficient [9].

In HTN planning, there has been little research on SAT-
based techniques. Most importantly, there is no SAT-based
HTN planner capable of handling all HTN planning problems.
There are only two restricted encodings, one by Mali and
Kambhampati [10] – which (among other restrictions) cannot
handle recursion, and one by Behnke, Höller, and Biundo [11]
– which cannot handle partial order in methods, but can handle
recursion. Both restrictions limit the expressiveness of HTN
planning severely [1], [6] and limit the domain-modeller’s
freedom unnecessarily. We present the first encoding that can
handle all propositional HTN planning problems.

We will show how the encoding of Behnke, Höller, and
Biundo [11] can be adapted such that it can also be applied
to partially ordered domains. Since in that case, any ordering
information in the encoding is lost, we propose a mechanism
for representing the ordering constraints contained in the do-
main by additional decision variables. Since the order between
two primitive tasks can only originate from a single method,
this encoding is fairly compact.

Our empirical evaluation compares our encoding against
state-of-the-art HTN planners. Here, we have considered com-
binatorial HTN planning problems, and not those where the
HTN is hand-coded to help the planner find a solution. Our
SAT-planner outperforms existing HTN planning techniques
on these domains, some of them significantly.

First we introduce HTN planning formally and discuss
related work. Then, we review the concept of totally-ordered
Path Decomposition Trees and the SAT formula based on
them. In section five, we introduce the concept of partially-
ordered Path Decomposition Trees and present our SAT for-
mula that can be used for planning in such domains. In the
following chapter we describe the evaluation we conducted.©2018 IEEE

II. PRELIMINARIES

We use the HTN formalism of Geier and Bercher [12],
where plans (partially ordered sets of task) are represented by
task networks.

Definition 1 (Task Network). A task network tn over a set of
task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name

TNX denotes the set of all task networks over the task
names X . We write T (tn) = T , ≺ (tn)=≺ and α(tn)=α for
a task network tn = (T,≺, α). Two task networks tn = (T,≺
, α) and tn′ = (T ′,≺′, α′) are isomorphic, written tn ∼= tn′,
iff a bijection σ : T → T ′ exists, s.t. ∀t, t′ ∈ T it holds that
(t, t′) ∈≺ iff (σ(t), σ(t′)) ∈≺′ and α(t) = α′(σ(t)). Next we
define the restriction notation.

Definition 2 (Restriction). Let R ⊆ D × D be a relation,
f : D → V a function and tn be a task network. Then:

R|X = R ∩ (X ×X) f |X = f ∩ (X × V)

tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

An HTN planning problem is defined as follows.

Definition 3 (Planning Problem). A planning problem is a
6-tuple P = (L,C,O, γ,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• γ : O → 2L × 2L × 2L, defining the preconditions and

effects of each primitive task
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state

The state transition semantics of primitive task names o ∈ O is
that of classical planning, given in terms of an precondition-,
an add-, and a delete-list: γ(o) = (prec(o), add(o), del(o)).
A primitive task is applicable in a state s ⊆ L iff prec(o) ⊆ s
and its application results in the state δ(s, o) = (s \ del(o))∪
add(o). A sequence of primitive tasks o1, . . . , om is appli-
cable in a state s0 iff there exist states s1, . . . , sn, each
oi is applicable in si−1, and δ(si−1, oi) = si. We define
M(c) = {(c, tn) | (c, tn) ∈M} to be the methods applicable
to c.

To obtain a solution in HTN planning, one starts with the
initial compound task and repeatedly applies decomposition
methods to compound tasks until all tasks in the current task
network are primitive.

Definition 4 (Decomposition). A method m = (c, tnm) ∈M
decomposes a task network tn1 = (T1,≺1, α1) into a task
network tn2 by replacing the task t, written tn1 −−→t,m tn2, if
and only if t ∈ T1, α1(t) = c, and ∃tn′ = (T ′,≺′, α′) with
tn′ ∼= tnm and T ′ ∩ T1 = ∅, where

tn2 = (T ′′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T ′′ with

T ′′ = (T1 \ {t}) ∪ T ′

≺X = {(t1, t2) ∈ T1 × T ′ with (t1, t) ∈≺1} ∪
{(t1, t2) ∈ T ′ × T1 with (t, t2) ∈≺1}

We write tn1 →∗D tn2, if tn1 can be decomposed into tn2
using an arbitrary number of decompositions.

Using the previous definition we can describe the set of
solutions to a planning problem P .

Definition 5 (Solution). A task network tnS is a solution to
a planning problem P , if and only if
(1) there is a linearisation t1, . . . , tn of T (tnS) according to
≺(tnS),

(2) α(tnS)(t1), . . . , α(tnS)(tn) is executable in sI , and
(3) ({1}, ∅, {(1, cI)})→∗D tnS ,
S(P) denotes the sets of all solutions of P , respectively.

Note that this definition of HTN planning problems excludes
some of the features in the original formulation by Erol,
Hendler, and Nau [1]. His formalisation allows for constraints
to be present in task network, namely before, after, and
between constraints. The constraint type used most often, are
before constraints, which correspond to SHOP(2)’s method
preconditions. Our planner can handle them by compiling
them into additional actions, as does SHOP2. So far, we don’t
support other constraint types.

To show that a task sequence π is a solution to a planning
problem, we use Decomposition Trees (DTs) as witnesses [12].
They describe how π can be obtained from the initial abstract
task via decomposition.

Definition 6. Let P = (L,C,O,M, cI , sI) be an HTN
planning problem. A valid decomposition tree T is a 5-tuple
T = (V,E,≺, α, β), where

1) (V,E) is a directed tree with a root-node r.
2) ≺⊆ V ×V is a strict partial order on V and is inherited

along the tree, i.e., if a ≺ b, then a′ ≺ b and a ≺ b′ for
any children a′ of a and b′ of b.

3) α : V → C ∪O assigns each inner node an abstract task
and each leaf a primitive task.

4) β : V →M assigns each inner node a method.
5) α(r) = cI
6) for all inner nodes v ∈ V with β(v) = (c, tn) and

children ch(v) = {c1, . . . , cn}, it holds that c = α(v).
Further, a bijection φ : ch(v) → T (tn) must exist
with α(ci) = α(tn)(φ(ci)) for all ci, and ci ≺ cj iff
φ(ci)≺(tn)φ(cj).

≺ may not contain orderings apart those induced by 2. or 6.
The yield yield(T) of T is the task network induced by the
leafs of T , i.e. V , α, and ≺ restricted to these leafs.

Geier and Bercher [12] showed the following theorem:

Theorem 1. Given a planning problem P , then for every task
sequence π the following holds:

There exists a valid decomposition tree T s.t. π is a lineari-
sation of yield(T) if and only if π ∈ S(P).

This means, that instead of finding a solution to the planning
problem P , we can equivalently try to find a DT whose yield
is executable – the approach we use in this paper.

III. RELATED WORK

Past research has already investigated possible translations
of HTN planning problems into logic.

A. HTNs and Logic

Notably, Mali and Kambhampati [10] proposed a SAT-
translation for HTNs. Their HTN formalism differs signif-
icantly from the established HTN formalism, making their
encoding simpler and different from ours. They allow inserting
tasks into task networks apart from decomposition and do
not specify an initial task. Furthermore their encoding is
also restricted to non-recursive domains. Such domains can
be translated into an equivalent STRIPS planning problem,
which is not the case for general domains [6]. Dix, Kuter, and
Nau [13] have proposed an encoding of totally-ordered HTN
planning into answer set programming, mimicking the search
of SHOP. Their evaluation shows that the translated domain
performs significantly worse than the SHOP algorithm (up to
a factor of 1.000).

B. PDT-based encoding

Since our work is based on the encoding presented by
Behnke, Höller, and Biundo [11], we start by reviewing this
encoding in detail. Their idea was to restrict the maximum
depth of decomposition. The planner start with some small
bound K and constructs a SAT formula satisfiable if a solution
with depth ≤ K exists. If not, K is increased and the process
is repeated. To construct this formula, they used a compact
representation of all possible decompositions with depth ≤ K
– the Path Decomposition Tree PDT P . A satisfying valuation
of the SAT formula then represents a decomposition tree T
that is a subgraph of P . They however studied PDTs and
the resulting formula only in the context of totally-ordered
HTN planning, which is as we have argued in the introduction
far less expressive and versatile than full partially-ordered
HTN planning. Also we want to note, that almost all current
HTN planning systems are constructed for partially-ordered
domains, as most domains used in practice are partially
ordered.

A PDT is a compact representation of all possible decompo-
sitions of the initial abstract task up to a given depth-bound K.
Every such decomposition is represented by a decomposition
tree (see Def. 6). The PDT is then a graph P such that
it contains every possible decomposition tree as one of its
subgraphs P ′. To ensure a “common structure” we also require
that the root of P ′ is the root of P . Next we give the formal
definition of totally-ordered Path Decomposition Trees. To
ease notation, we denote with L(T = (V,W)) the set of all
leafs of a tree T .

t1

t2 p1 p2

p1p3 p4

Fig. 1. An example PDT, a DT as its subgraph (nodes filled), and the extension
for primitive tasks (dashed line). The nodes of the DT are each annotated with
the task (ti for abstract and pi for primitives ones) that they are be labelled
with in the DT. The node labelled p2 does not have children even though
it is not at the “lowest” level due to the fact that it can only be labelled
with primitive tasks (p2 in our example), while the node labelled with p1
can potentially also be labelled with an abstract task. For this consider e.g.
the methods t1 7→ t2, p1, p2 and t1 7→ t2, t3, p2. Note that there is one
non-filled node that is also labelled with a task. This is an encoding trick to
ensure that the leafs of the DT are also leafs of the PDT – primitive tasks are
simply “inherited” by one of their children in the PDT.

Definition 7. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. A Path Decomposition Tree
PK of height K is a triple PK = (V,E, α) where

1) V are the nodes of a tree of height ≤ K, with edges
given by function E : V → V ∗, and which has the root
node r.

2) α : V → 2C∪O assigns each node a set of possible tasks.
3) cI ∈ α(r)
4) for all inner nodes v ∈ V , for each abstract task

c ∈ α(v) ∩ C that can be assigned to that node, and
for each method (c, tn) ∈ M(c), there exists a sub-
sequence v1, . . . , v|T (tn)| of the children E(v), such that
tni ∈ α(vi) for all i ∈ {1, . . . , |T (tn)|}, where tni is the
ith element of the sequence of task names of tn.

5) ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

This definition assumes that the tasks in a method’s task
network are totally-ordered and thus can be projected directly
to a totally-ordered sequence of children. As a result, the
leafs of the PDT are also totally-ordered (according to the
order implied by their common ancestors). Behnke, Höller,
and Biundo [11] provide an algorithm constructing a PDT
PσK given a so-called child-arrangement function σ. Based on
it, they describe a SAT-formula FD(P,K) that is satisfiable
if and only if there exists a subgraph G′ of the PDT PσK that
forms a valid decomposition tree. A satisficing valuation of
FD(P,K) represents such a DT G′ – expressed by two types
decision variables:
• tv – v is part of G′ and is labelled with t, i.e., α(v) = t.
• mv – the method m was applied to the node v of G′,

i.e., β(v) = m

Their encoding propagates primitive tasks occurring at any
node v downwards through the first child of v in the PDT.
This ensured that yield(G′) is represented by the leafs of
PσK that have a task assigned to them – else inner nodes
of PσK may belong to the yield. In addition to FD(P,K),
Behnke, Höller, and Biundo used a second formula FE(P,K)
ensuring executability of the tasks assigned to the leafs of G′.

For the formula FD(P,K) – and for other formulae there-
after, we use the functor M(V), which given a set of decision
variables V , outputs a formula that is satisfiable if and only
if at most one of them [14]. FD(P,K) consist solely of local
constraint, i.e., one sub-formula is generated per node of the
PDT. The formula to be generated for a node v of the PDT
PσK = (V,E, α) is either M({tv | t ∈ α(v)∩O})∧c∈C ¬cv if
v ∈ L(PσK), i.e., if v is a leaf, or else the following formula:

f(v) = M({tv | t ∈ α(v)}) ∧ selectMethod(v)

∧ applyMethod(v) ∧ inheritPrimitive(v)

∧ nonePresent(v)

It first asserts that every node in the decomposition tree can
be labelled with at most one task. The next four sub-formulae
encode the further restrictions a decomposition tree must fulfil.
selectMethod ensures that an applicable method is chosen and
that only one is chosen, provided v is labelled with an abstract
task.

selectedMethod(v) = M({mv |M(α(v) ∩ C)})∧ ∧
t∈α(v)∩C

tv → ∨
m∈M(t)

mv

 ∧
 ∧
m∈M(α(t)∩C)

(mv → tv)

applyMethod forces that whenever a method is selected, the
tasks in its task network are assigned to the children of v. Let
for a method m = (c, tn) be v1, . . . , v|T (tn)| the subsequence
given in Def. 6. Let further denote ttn,i the ith task of the
(totally-ordered) task network tn.

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →|tn|∧

i=1

tvitn,i ∧
∧

vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈C∪O

¬t∗vi
]

These clauses also propagate the total order between the sub-
tasks v1, . . . , v|tn|. inheritPrimitive and nonePresent take
care of the border cases, where v is either assigned a primitive
task, or none at all. Let here be v1 the first node in E(v).

inheritPrimitive(v) =∧
p∈α(v)∩O

[
pv →

pv1 ∧ ∧
vi∈E(v)\{v1}

∧
k∈C∪O

¬kvi
]

nonePresent(v) =

 ∧
t∈α(v)

¬tv
→

 ∧
vi∈E(v)

∧
t∈C∪O

¬tvi

The full decomposition formula FD(P) is then simply∧
v∈V f(v).

IV. PARTIALLY-ORDERED DECOMPOSITION

We can extend this encoding, allowing us to track the partial
order induced by the methods. As a first step, we have to
ignore the fact that the PDT represents any ordering constraint.
For that purpose, we introduce unordered PDTs, which differ

only slightly from PDTs. Unordered PDTs – as their names
suggests – don’t have an ordering on the children of a node.
Based on this, the main difference lies in 4. of the definition.
For PDTs every node and applicable method, the subtasks of
that method must from a subsequence of the nodes children,
while for an unordered PDT it suffices that they are a subset.

Definition 8. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. An unordered PDT PK of
height K is a triple PK = (V,E, α) where

1) (V,E) is a tree of height ≤ K with the root node r.
2) α : V → 2C∪O assigns each node a set of possible tasks.
3) cI ∈ α(r)
4) for all inner nodes v ∈ V , for each abstract task

c ∈ α(v) ∩ C that can be assigned to v, and for each
method (c, tn) ∈ M(c), there exists a subset D =
{v1, . . . , v|T (tn)|} of v’s children, such that a bijection
φv(c,tn) : D → T (tn) exists with α(tn)(φv(c,tn)(d)) ∈
α(d) for all d ∈ D

5) ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

As uPDTs are a structural relaxation of PDTs, we can use
the same generation procedure based on a child-arrangement
function σ – simply by ignoring that methods are partially
ordered – we use some topological ordering of the methods
for generating PσK instead. Based on the generated uPDT,
we can also use the same formula FD(P,K) describing
decomposition. To capture the partial order we add new
decision variables for bookkeeping:
• bvw – for nodes v and w that have the same parent, i.e.,

are siblings. If bvw is true, the order v ≺ w is contained
in the method applied to the parent of v and w.

These variables are sufficient to infer the order between all
elements of yield(G′). This is due to how order is inherited
in a decomposition tree. Essentially, the order between two
nodes v and v′ can only stem from the method applied to
their last common ancestor in G′. The structure is illustrated
in Figure 2. For two leafs v and v′ of the tree, let A(v, v′) be
the last common ancestor of v and v′. Further be C(a, v), be
the child c of a, s.t. the leaf v is below c. Then v stems from
C(A(v, v′), v), while v′ from C(A(v, v′), v′). Then the formal
property is the following:

Theorem 2. Let T = (V,E,≺, α, β) be a decomposition tree.
Let v, v′ ∈ L(V,E) be two leafs of T , c = A(v, v′) be the last
common ancestor of v and v′. Then the order between v and
v′ is the same as between vc = C(c, v) and v′c = C(c, v′)
induced by the method applied to c.

Proof. Suppose there is an order between vc and v′c. Then by
2. of Def. 6, this order must also be present between v and
v′.
Suppose there is no order between vc and v′c. Then the direct
children of vc and v′c that are ancestors of v and v′ respectively
cannot contain any order, too. By definition, any order between
them must either be introduced by methods or by 2. of Def. 6.
Clearly, no decomposition methods could have introduced the

Fig. 2. An illustration where order originates from in a decomposition tree.

v1
α(v1)=p2

v2
α(v2)=p6

v3
−

. . . vn
α(vn)=p3

p1
−

p2
p2

p3
p6

. . . pn
p3

Fig. 3. Matching structure between leafs of PσK , and positions in the primitive
sequence.

ordering since the tasks don’t have a common parent. Also
since vc and v′c have no order between them 2. of Def. 6 is
not applicable. By induction, we can conclude that there is not
order between v and v′.

To keep track of the ordering constraints, we have to add
for every decision variable mv clauses that enforce that the
correct bvw variables are set true. We therefore add for every
mv the following clauses to FD(P,K), where m = (c, tn),
{v1, . . . , vn} are the nodes of PσK to which the tasks of tn are
mapped, and {t1, . . . , tn} be those tasks.

n∧
i=1

∧
j∈{1,...,n} s.t. (ti,tj)∈≺(tn)

(mv → bvivj)

These clauses enforce that the bvws represent a superset of the
ordering constraints induced by the applied methods.

To complete the encoding we need a formula FE(P,K)
that is satisfiable if and only if yield(G′) is executable. Let
l = |L(PσK)| be the number of leafs of PσK . We separate
this formula into two parts: representing a linearisation of
yield(G′) and checking that this linearisation is executable.
A linearisation of yield(G′) is a mapping of the leafs of G′

to a sequence of positions. We can use l as an upper bound to
the number of positions – and we have always used this value
in our encoding. Also we denote these positions as 1, . . . , l.
This mapping is essentially a bipartite matching that must not
contradict the ordering constraints. Figure 3 illustrates these
structures.

We have to generate a SAT formula that represents such
a matching and is only satisfiable iff the matching is valid
(i.e. an actual matching and it respects the order). We omit a
formal proof of correctness, as we deem the encoding straight-
forward enough to be considered correct by construction. We
introduce two new decision variables:

• cvi – leaf v connected with position i
• av – leaf v contains a task (i.e. is a leaf of G′ and has

to be matched)

Based on these variables, we can formulate the restrictions a
valid matching must fulfil. First, every leaf or position may

be matched only once.

F1 =

l∧
i=1

M({cvi | v ∈ L(PσK)}) ∧
∧

v∈L(PσK)

M({cvi | 1 ≤ i ≤ l})

Next, we define the av atoms, that are true exactly if the leaf
v of PσK contains an action. We use them as intermediate
variables to decrease the overall size of the formula.

F2 =
∧

v∈L(PσK)

¬av →∧
o∈α(v)

¬ov
 ∧

av →∨
o∈α(v)

ov

Next, a leaf of PσK that contains a task has to be matched –
else it would be allowed to disregard it when checking the
executability of yield(G′).

F3 =
∧

v∈L(PσK)

¬av →∧
1≤i≤l

¬cvi

 ∧
av →∨

1≤i≤l

cvi

If all these formulae are fulfilled, the atoms cvi represent a
matching between all leafs of G′ and the positions. As a next
step, we have to ensure that this matching does not violate
any ordering constraint induced by the chosen decomposition
methods. To do that, we have to exclude the possibility that
there are two positions i < i′ where the tasks they are
matched with must occur in the opposite order. F4 forbids
the mentioned situation.

F4 =

l∧
i=1

l∧
i′=i+1

∧
v,v′∈L(PσK)

(
(cvi ∧ cv

′

i′)→ ¬b
C(A(v,v′),v′)
C(A(v,v′),v)

)
The second constraint states that the chosen linearisation of

the tasks at the leafs of G′ must be executable in the initial
state. To express executability, we use the encoding proposed
by Kautz and Selman [15]. For every proposition symbol
p ∈ L, we introduce a decision variable pi for 0 ≤ i ≤ L. pi

is true if p is true after executing the ith action. Further, we
introduce decision variables ti for every primitive task t ∈ O,
stating that t is executed at timestep i. Then the formula FLE
is defined as follows:

FLE =
∧
p∈sI

p0 ∧
∧

p∈L\sI

¬p0 ∧
l−1∧
i=0

(FA(i) ∧ FM (i))∧

l∧
i=1

M({ti | t ∈ O})

FA(i) =
∧
t∈O

ti+1 →

 ∧
p∈prec(t)

pi ∧
∧

p∈add(t)

pi+1 ∧
∧

p∈del(t)

¬pi+1

FM (i) =

∧
p∈L

(¬pi ∧ pi+1)→
∨

t∈O with p∈add(t)

ti+1

So far, we have only checked that the matching is valid
and that the sequence of actions assigned to the positions
is executable, but not that the matching influences the tasks
assigned to positions. I.e., we have to add two more formulae
that express that if a position is not matched to any leaf, then
it also cannot contain a task, and that if it is matched it has
to contain exactly the same task as the leaf does.

F5 =
∧

1≤i≤l

 ∧
v∈L(PK)

¬cvi

→ (∧
t∈O
¬ti
)

F6 =
∧

v∈L(PK)

∧
t∈α(v)

∧
1≤i≤l

tv ∧ cvi → ti

To sum up, the full formula expressing executability is:

FE(P,K) = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6 ∧ FLE

We know that the satisfying valuations of FD(P,K) represent
exactly all decomposition trees of P with an height ≤ K [11].
Based on this, the correctness and completeness of our encod-
ing can be shown.

Theorem 3. FE(P,K)∧FD(P,K) is satisfiable iff P has a
solution with decomposition height ≤ K.

Proof. ⇒: Let ν be a satisfying valuation of FE(P,K) ∧
FD(P,K). Then ν represents a decomposition tree, since
FD(P,K) is satisfied [11]. Thus the tasks assigned to the
leafs of the Path Decomposition Tree encoded by FD(P,K)
from the yield Y of a Decomposition Tree. Also the sequence
of actions S represented by the ti is executable, due to FLE .
What remains to show, is that this sequence is a linearisation
of the yield Y . Due to F1∧F2∧F3 the cvi represent a matching
of Y to S and due to F5 ∧ F6 matched elements of Y and
S contain the same task. Lastly, due to Theorem 2, the order
between two tasks in Y depends solely on the method applied
to their last common ancestor. Due to the clauses introducing
the bvw variables, at least those orderings induced by the
decomposition tree are true. Allowing for more order is not a
problem, since ν already represents a linearisation. Lastly, F4

ensures that the order encoded by the bvw is respected.
⇐: Let T = (V,E,≺, α, β) be a decomposition tree

whose yield is executable. Then a valuation ν exists that
satisfies FD(P,K) [11] and represents T . Let v1, . . . , vn be
the leafs of the PDT who have a task assigned to them in
ν. Let further be i1, . . . , in the indices of these tasks in the
executable linearisation of the yield of T . We then set cvjij
true for all j ∈ {1, . . . , n}. We also set the α(vj)

ij and
the appropriate pi true. Also we set bvw true as appropriate,
which cannot violate the clauses of F4, as the respective order
must also be present in the yield of T . This valuation satisfies
FE(P,K) ∧ FD(P,K).

V. EVALUATION

We have conducted an empirical evaluation of our planner
to show that it performs favourably compared to other HTN
planning systems. The code of our planner is available at

WWW.UNI-ULM.DE/IN/KI/PANDA/. Since most planning prob-
lems are given lifted, we use a combination of the planning
graph and task decomposition graphs [16] to ground them.

Domains. Since there is no standard set of benchmark
domains for HTN planning, we have compared our planner
on instances used by previous evaluations [16], [17]. These
evaluations also provide further detail on the domains and their
properties. As such, we want to note that the domains were
not in any way designed to be amendable to our translation.
All of the domains are publicly available at WWW.UNI-
ULM.DE/IN/KI/PANDA/. The benchmarking set is composed
of the following domains:
• UM-TRANSLOG, WOODWORKING, SATELLITE, and

SMARTPHONE are the benchmark domains of Bercher,
Keen, and Biundo [18].

• ENTERTAINMENT describes setting-up HiFi devices.
• ROVER is the domain used by Höller et al. [17]. It

is based on the problem instances of the IPC3 domain
ROVER combined with an HTN-structure similar to the
one developed for SHOP.

• TRANSPORT describes a deliver-with-trucks scenario.
There are several trucks (which do not need fuel) to
deliver packages from their start location to a destination.

• PCP is an encoding of Post’s Correspondence Problem.
Since HTN planning is undecidable, we felt it proper to
show that an HTN planner is able to solve undecidable
problems (like PCP) when encoded in an HTN domain.

The domains ENTERTAINMENT, ROVER, and TRANSPORT
contain method preconditions, which we compile away into
additional actions preceeding all other actions.

Behnke, Höller, and Biundo [11] used domains with the
same names, except for PCP, in their evaluation. Their plan-
ner, however, was amendable only to totally-ordered instances.
Since most instances are naturally partially-ordered, they had
to alter them. Behnke, Höller, and Biundo [11] have manually
added additional ordering constraints to each partially-ordered
method. Adding ordering constraints to HTN domains can
make them unsolvable (see e.g. PCP, which cannot contain
a solution when totally ordered). The additional orderings
were chosen such that at least one solution was retained. We
also want to note that adding these orderings makes some of
the domains much easier to solve. For example, in transport,
interleaving using the partial order is required to find optimal
solutions. If the domain is totally-ordered, one package has to
be delivered before another package could be picked up.

In our evaluation we have used the original, partially-
ordered versions of all domains. Note also that all planners
were given the same input.

Planners. Each planner was given 10 minutes runtime and
4 GB RAM per instance on an Intel Xeon E5-2660. We
have compared all state-of-the-art HTN planning systems:
SHOP2 [19], FAPE [5], UMCP [20], PANDA with the TDGm
and TDGc heuristics [16] using greedy A*, PANDApro using
the FF heuristic [17], HTN2STRIPS [21], and totSAT [11].
FAPE – according to the description in its paper – does
not support recursive domains. Thus, we ran it only on the

TABLE I
STATISTICS ON DOMAIN PROPERTIES

Domain |L| |O| |C| |M|
min max min max min max min max

PCP 6 9 8 14 4 46 10 34
ENTERTAINMENT 10 146 16 455 10 170 20 541
UM-TRANSLOG 9 25 7 22 2 27 2 28
SATELLITE 6 37 7 123 3 25 10 214
WOODWORKING 10 101 7 739 4 443 9 2002
SMARTPHONE 10 103 8 231 3 66 4 360
ROVER 21 511 73 4257 14 285 49 3279
TRANSPORT 11 364 13 1968 11 802 21 3158

TABLE II
STATISTICS ON GENERATED FORMULAE

Domain |L(PK)| K #clause #plansteps
min max min max min max min max

PCP 12 70 4 9 14.012 12.091.312 10 42
ENTERTAINMENT 8 78 4 6 416 42.028 7 42
UM-TRANSLOG 7 40 3 4 218 281.642 7 26
SATELLITE 5 40 3 5 183 1.375.308 5 20
WOODWORKING 3 25 3 7 531 689.552 3 19
SMARTPHONE 7 78 3 5 3.332 18.878.346 5 77
ROVER 53 61 5 5 4.048.432 7.045.922 27 36
TRANSPORT 8 48 4 6 3.980 5.176.067 8 42

domains SATELLITE, WOODWORKING, and ROVER, which
are the non-recursive ones in our evaluation. Similarly, as
totSAT can only handle totally-ordered instance, we have run
it only on those instances from our benchmark set that are
totally ordered. Lastly, we have tested HTN2STRIPS with
two different classical planners. We have used both jasper
(which was originally used by Alford et al. [21]) as well as
Madagascar [22], the currently best known SAT planner. We
chose to do so, to compare our propositional encoding with
the theoretically only so-far known propositional encoding
for partially-ordered HTNs: first using the HTN2STRIPS
translation and then the ∃-step encoding [23] for the resulting
planning problem. To complete our evaluation, we have also
used the best planners from the agile and satisficing tracks of
IPC 2018: Fast Downward Stone Soup [24], saarplan [25], and
LAPKT-BFWS-Preference [26].

We have not included the planner GTOHP [27] in our
evaluation. Like totSAT, it takes only totally-ordered instances
as its input. Since totSAT already solves all totally ordered
instances of the domain set, GTOHP cannot have a better
performance.

For our planner, we have evaluated three SAT solvers, each
a top performers at the SAT Competition 2016. These were:
cryptominisat5 [28], MapleCOMSPS [29], and Riss6 [30]. As
our planner performs the translation using a bound K, we
usually have to try several values for K. We started with
K = 1 and increased by 1 if the formula was unsolvable. This
iterative procedure allows us to handle any recursion in the
domains, as we gradually unroll it. We construct the formula
completely anew for each K and do not use the ability SAT
solvers to incrementally solve formulae. We however suspect
that applying a technique similar to the known technique for
classical planning [31] will increase the planner’s performance.

Results. In Tab. III we show the number of solved instances
per planner within the given time and memory limits. Fig. 4
shows the solved instances depending on runtime. First, our
SAT-encoding, no matter the solver, solves more instances
than any other planner. Second, our planner is on par in

1 2 5 10 20 50 100 500

0
20

40
60

80
10

0
12

0
14

0

time in sec

so
lve

d
in

st
an

ce
s

SAT cms
SAT Maple
SAT Riss6
PANDApro FF greedy A*
HTN2STRIPS jasper
HTN2STRIPS MpC
SHOP2

TDG−m greedy A*
TDG−c greedy A*
UMCP−BF
UMCP−DF
UMCP−H
FAPE

Fig. 4. Runtime vs number of solved instances per planner

TABLE III
NUMBER OF SOLVED INSTANCES PER PLANNER PER DOMAIN. MAXIMA

ARE INDICATED IN BOLD. CMS = CRYPTOMINISAT5

#i
ns

ta
nc

es

SA
T

cm
s

SA
T

M
ap

le

SA
T

R
is

s6

PA
N

D
A

pr
o

FF

H
T

N
2S

T
R

IP
S

ja
sp

er

H
T

N
2S

T
R

IP
S

FD
-S

S
20

18

H
T

N
2S

T
R

IP
S

Sa
ar

pl
an

H
T

N
2S

T
R

IP
S

L
A

PK
T-

B
FW

S

H
T

N
2S

T
R

IP
S

M
pC

SH
O

P2

T
D

G
-m

T
D

G
-c

U
M

C
P-

B
F

U
M

C
P-

D
F

U
M

C
P-

H

FA
PE

to
tS

A
T

[A
A

A
I1

8]

PCP 17 11 11 10 10 3 17 17 17 3 0 9 8 0 0 0 - -
ENTERTAINMENT 12 12 12 12 11 5 19 14 12 4 5 9 9 5 5 6 - 12 / 12
UM-TRANSLOG 22 22 22 22 22 19 5 5 5 7 22 22 22 22 22 22 - 19 / 19
SATELLITE 25 25 24 23 25 23 6 5 5 8 22 25 21 18 20 23 22 5 / 5
WOODWORKING 11 11 11 11 10 5 3 3 3 4 8 8 10 6 6 6 0 -
SMARTPHONE 7 7 6 6 5 6 5 5 4 5 4 5 5 4 4 4 - -
ROVER 20 4 4 4 3 5 5 4 4 4 3 2 2 0 0 0 3 -
TRANSPORT 30 16 14 13 13 19 17 13 13 3 0 1 1 1 0 0 - -
total 144 108 104 101 99 85 77 66 63 38 64 81 78 56 57 61 25 36

every domain with the best solver for that domain, or solves
significantly more instances than other planners.

We want to point out our performance in the domains
TRANSPORT and PCP. In TRANSPORT we only solve 3 in-
stances less than HTN2STRIPS, while all other planners solve
at most a single instance. In PCP, we solve significantly more
instances than HTN2STRIPS. This is notable, as both domains
contain difficult combinatorially problem. This is especially
notable, since HTN2STRIPS internally uses a state-of-the-art
classical planner (jasper, [32]). However, there still seems to be
room for improvement, as no planner seem to be well equipped
to exploit the hierarchy in the ROVER domain.

We can see that the HTN2STRIPS encoding does not seem
to work well in combination with state-of-the-art classical
planners as all of the top-performing planners from IPC 2018
performed worse than jasper in its four year old version.

The original totSAT for totally ordered domains has poor
coverage, based on the fact that most domains of the bench-
mark set are partially-ordered. Lastly, we can observe that
using Madagascar in combination with the HTN2STRIPS
encoding seems to perform extremely poorly. In most instances
Madagascar is aborted after only a few seconds as it reached
the memory limit. This is probably due to the large number of
groundings for the operators in the HTN2STRIPS encoding
representing methods, which is a known problem of the

encoding. We have re-run Madagascar with a memory limit
of 20 GB instead of 4 GB and have only seen an increase
by 4 solved instances. Also, the per-instance runtime when
compared to jasper is fairly poor. We suppose that this is due
to the way the encoding works. Modern SAT-based planning
draws its efficiency mainly from the ability to execute several
operators in parallel. This is not possible in the encoded
domain as the next-predicates ensure that all simultaneously
applicable actions form a clique in the disabling graph, i.e.,
cannot be executed parallel in the propositional encoding.

VI. CONCLUSION

We have presented the first encoding for SAT-based HTN
planning that can solve all propositional HTN planning prob-
lems. To that end, we have utilised a previous encoding that
was only usable for totally-ordered planning, which restricts
the freedom of the domain modeller unnecessarily, and ex-
tended it to partial order. Lastly, we have shown that our new
planner outperforms state-of-the-art HTN planners. This plan-
ner has already been used in practice, namely in an assistant
teaching users how to use electronic tools in Do-It-Yourself
projects [33], as well as for generating corpora for plan and
goal recognition [34]. The presented planner is also well
suited for altering existing plans in accordance with a user’s
instruction, which is a computationally hard problem [35]. We
plan to answer these instructions via translation into LTL, for
which efficient propositional encodings exist [36].

ACKNOWLEDGMENTS

This work was partly done within the technology transfer
project “Do it yourself, but not alone: Companion-Technology
for DIY support” of the SFB/TRR 62 funded by the German
Research Foundation (DFG).

REFERENCES

[1] K. Erol, J. Hendler, and D. Nau, “Complexity results for HTN planning,”
Annals of Mathematics and AI, vol. 18, no. 1, pp. 69–93, 1996.

[2] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Muñoz-
Avila, and J. Murdock, “Applications of SHOP and SHOP2,” Intelligent
Systems, IEEE, vol. 20, pp. 34–41, 2005.

[3] R. Straatman, T. Verweij, A. Champandard, R. Morcus, and H. Kleve,
Game AI Pro: Collected Wisdom of Game AI Professional. CRC Press,
2013, ch. Hierarchical AI for Multiplayer Bots in Killzone 3.

[4] A. Champandard, T. Verweij, and R. Straatman, “The AI for Killzone
2’s multiplayer bots,” in Proc. of GDC, 2009.

[5] F. Dvorak, A. Bit-Monnot, F. Ingrand, and M. Ghallab, “A flexible
ANML actor and planner in robotics,” in Proc. of PlanRob, 2014, pp.
12–19.

[6] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Language classifi-
cation of hierarchical planning problems,” in Proc. of ECAI, vol. 263.
IOS Press, 2014, pp. 447–452.

[7] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Assessing the
expressivity of planning formalisms through the comparison to formal
languages,” in Proc. of ICAPS. AAAI Press, 2016, pp. 158–165.

[8] G. Behnke, D. Höller, and S. Biundo, “On the complexity of HTN plan
verification and its implications for plan recognition,” in Proc. of ICAPS.
AAAI Press, 2015, pp. 25–33.

[9] G. Behnke, D. Höller, and S. Biundo, “This is a solution! (... but is
it though?) – verifying solutions of hierarchical planning problems,” in
Proc. of ICAPS. AAAI Press, 2017, pp. 20–28.

[10] A. Mali and S. Kambhampati, “Encoding HTN planning in propositional
logic,” in Proc. of AIPS. AAAI, 1998, pp. 190–198.

[11] G. Behnke, D. Höller, and S. Biundo, “totSAT – Totally-ordered
hierarchical planning through SAT,” in Proc. of AAAI. AAAI Press,
2018, pp. 6110–6118.

[12] T. Geier and P. Bercher, “On the decidability of HTN planning with task
insertion,” in Proc. IJCAI. AAAI Press, 2011, pp. 1955–1961.

[13] J. Dix, U. Kuter, and D. Nau, “Planning in answer set programming
using ordered task decomposition,” in Proc. of KI. Springer, 2003, pp.
490–504.

[14] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Proc. of CP 2005, vol. 3709. Springer, 2005, pp. 827–
831.

[15] H. Kautz and B. Selman, “Pushing the envelope: Planning, propositional
logic, and stochastic search,” in Proc. of AAAI, 1996, pp. 1194–1201.

[16] P. Bercher, G. Behnke, D. Höller, and S. Biundo, “An admissible HTN
planning heuristic,” in Proc. of IJCAI. IJCAI, 2017, pp. 480–488.

[17] D. Höller, P. Bercher, G. Behnke, and B. Biundo, “A generic method
to guide HTN progression search with classical heuristics,” in Proc. of
ICAPS. AAAI Press, 2018.

[18] P. Bercher, S. Keen, and S. Biundo, “Hybrid planning heuristics based
on task decomposition graphs,” in Proc. of SoCS. AAAI Press, 2014,
pp. 35–43.

[19] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and
F. Yaman, “SHOP2: an HTN planning system,” Journal of Artificial
Intelligence Research (JAIR), vol. 20, pp. 379–404, 2003.

[20] K. Erol, J. Hendler, and D. Nau, “UMCP: A sound and complete
procedure for hierarchical task-network planning,” in Proc. of AIPS.
AAAI Press, 1994, pp. 249–254.

[21] R. Alford, G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. W. Aha,
“Bound to plan: Exploiting classical heuristics via automatic translations
of tail-recursive HTN problems,” in Proc. of ICAPS. AAAI Press, 2016,
pp. 20–28.

[22] J. Rintanen, “Madagascar: Scalable planning with SAT,” in The 2014
IPC, 2014, pp. 66–70.

[23] J. Rintanen, K. Heljanko, and I. Niemelä, “Planning as satisfiability:
parallel plans and algorithms for plan search,” Artificial Intelligence,
vol. 170, no. 12-13, pp. 1031–1080, 2006.

[24] J. Seipp and G. Röger, “Fast downward stone soup 2018,” in IPC2018
– Classical Tracks, 2018, pp. 72–74.

[25] M. Fickert, D. Gnad, P. Speicher, and J. Hoffmann, “Saarplan: Com-
bining saarland’s greatest planning techniques,” in IPC2018 – Classical
Tracks, 2018, pp. 10–15.

[26] G. Frances, H. Geffner, N. Lipovetzky, and M. Ramirez, “Best-first width
search in the IPC 2018: Complete, simulated, and polynomial variants,”
in IPC2018 – Classical Tracks, 2018, pp. 22–26.

[27] A. Ramoul, D. Pellier, H. Fiorino, and S. Pesty, “Grounding of htn
planning domain,” International Journal on Artificial Intelligence Tools,
vol. 26, no. 5, pp. 1–24, 2017.

[28] M. Soos, “The CryptoMiniSat 5 set of solvers at SAT Competition
2016,” in Proc. of SAT Competition 2016. University of Helsinki,
2016, p. 28.

[29] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB,” in Proc. of
SAT Competition 2016. University of Helsinki, 2016, pp. 52–53.

[30] N. Manthey, A. Stephan, and E. Werner, “Riss 6 solver and derivatives,”
in Proc. of SAT Competition 2016. University of Helsinki, 2016, pp.
56–57.

[31] S. Gocht and T. Balyo, “Accelerating sat based planning with incremen-
tal sat solving,” in Proc. of ICAPS. AAAI Press, 2017, pp. 135–139.

[32] F. Xie, M. Müller, and R. Holte, “Jasper: The art of exploration in greedy
best first search,” in The 2014 IPC, 2014, pp. 39–42.

[33] G. Behnke, M. Schiller, M. Kraus, P. Bercher, M. Schmautz, M. Dorna,
W. Minker, B. Glimm, and S. Biundo, “Instructing novice users on how
to use tools in DIY projects,” in Proc. of IJCAI-ECAI. IJCAI, 2018,
pp. 5805–5807.

[34] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Plan and goal
recognition as htn planning,” in Proc. of ICTAI, 2018.

[35] G. Behnke, D. Höller, P. Bercher, and S. Biundo, “Change the plan -
how hard can that be?” in Proc. of ICAPS. AAAI Press, 2016, pp.
38–46.

[36] G. Behnke and S. Biundo, “X and more parallelism: Integrating ltl-
next into sat-based planning with trajectory constraints while allowing
for even more parallelism,” Inteligencia Artificial, vol. 21, no. 62, pp.
75–90, 2018.

