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Abstract Settings where systems and users work together to solve problems collab-
oratively are among the most challenging applications of Companion-Technology.
So far we have seen how planning technology can be exploited to realize Companion-
Systems that adapt flexibly to changes of the user’s situation and environment and
provide detailed help for users to realize their goals. However, such systems lack
the capability to generate their plans in cooperation with the user. In this chapter
we go one step further and describe how to involve the user directly into the plan-
ning process. This enables users to integrate their wishes and preferences into plans
and helps the system to produce individual plans, which in turn let the Companion-
System gain acceptance and trust from the user.

Such a Companion-System must be able to manage diverse interactions with a
human user. A so-called mixed-initiative planning system integrates several Compa-
nion-Technologies which are described in this chapter. For example, a – not yet final
– plan, including its flaws and solutions, must be presented to the user to provide a
basis for her or his decision. We describe how a dialog manager can be constructed
such that it can handle all communication with a user. Naturally, the dialog man-
ager and the planner must use coherent models. We show how an ontology can be
exploited to achieve such models. Finally we show how the causal information in-
cluded in plans can be used to answer the questions a user might have about a plan.
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The given capabilities of a system to integrate user decisions and to explain its
own decisions to the user in an appropriate way are essential for systems that interact
with human users.

1 Introduction

Planning has proven to be a successful technology for problem solving in scenarios
involving humans and technical systems [5, 7, 22, 26]. Usually, a planner generates
a plan to solve a given problem, e.g., to set up a home theater system (see Chap. 24),
and presents the generated plan to the user in a stepwise fashion, while providing
additional advanced planning capabilities, like explanations or plan repair. In this
process the user is only viewed as an operator who inputs an objective and sub-
sequently executes the actions presented to him, while the planner is treated as a
black-box system. This scheme is well-suited if the task to be performed is combi-
natorially complex and a deeper understanding the proposed solution’s structure is
not relevant as long as the goal is achieved.

However, if the problem at hand is of a more personal nature, e.g., creating a
fitness-training plan, or the user has certain preferences and wishes about the plan
to be executed, or the user has domain knowledge not easily encodable in terms of
planning actions, a black-box approach is not adequate. The user may not accept the
plan in case it does not suit his individual needs or preferences. The same holds if the
plan is associated with grave risks, e.g. in spaceflight [1] and military settings [25].
Here a human must be the final decider on which actions are actually executed. To
circumvent these problems, the user has to be integrated into the planning process
itself. Such planning systems are commonly called ”mixed-initiative” as both the
planner and the user propose courses of action and ask one another questions about
the plan. As the result of their interplay the planner generates a final plan which
solves the task and satisfies the user’s wishes. We focus our discussion on the plan-
ning formalism hybrid planning [9], which is well suited for user-centered planning
applications (see Chap. 5 and [3]). Most notably, it is similar to the way humans
solve problems, i.e., in a top-down fashion [11].

Mixed-initiative planning (MIP) systems have already been studied by several re-
searchers as they are often necessary to successfully deploy planning techniques to
real-world problems. In the TRAINS/TRIPS project [13], a domain specific planner
for path finding and transportation tasks was extended with the capability to interact
with a user. Similarly MAPGEN [1, 6] was developed to support planning of oper-
ations of the mars-rovers Spirit and Opportunity while ensuring energy and safety
constraints. Another approach, PASSAT [25], employs hierarchical planning. Here
the user can “sketch” a plan, i.e., state some actions he wants to be part of the solu-
tion and the system finds a plan containing these actions. Further, PASSAT guides
the user through the search space by repeatedly asking how a current plan should be
altered until an accptable solution is found. In contrast, the techniques described in
this chapter aim at integrating the user directly into the planning process.
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In addition to a pure mixed-initiative planner a Companion-System [8] needs
additional advanced capabilities to suitably interact with the user, including a dialog
management system and explanation facilities. They need to be specifically tailored
to the task of mixed-initiative planning, as they, e.g., must support dynamic changes
in the current plan as well as changes of initiative from the system to the user.
In the latter part of the chapter, we demonstrate how the planner and interaction
components can be brought together with a mixed-initiative planner. An important
part of such an integration is a shared model used by every component. We propose
to use an ontology to store this model and describe how a planning model can be
suitably encoded and which additional benefits can be obtained.

In this chapter we study the design of such a mixed-initiative planning system.
To begin with, we outline in Sect. 3 challenges a mixed-initiative planning system
has to tackle in order to successfully cooperate with a user and whether the issue
should be addressed by the planner or by a dialog manager. Next, we show how a
Companion-System can be built atop a mixed-initiative planner in Sect. 4. Section 5
explains how the common model of all components of the Companion-System can
be created and how relevant information can be accessed. More specifically, we
describe how a planning domain can be encoded in the ontology and how parts
of the domain, i.e., decomposition methods, can even be inferred automatically. In
Sect. 6 we study how users react to strategies applied by the dialog manager to
mediate between the planner and the user. Then we discuss how explanations for
plans can be enhanced to make them more comprehensible as described in Sect. 7.

We will use a fitness training domain as a running example. It is the mixed-
initiative planner’s objective to develop an individualized training plan achieving
some fitness objective, e.g., to have well defined abdominal muscles. Exercises are
grouped into workouts, which are to be performed on a single day and contribute
to some fitness objective. We call a training a longer sequence of exercises that
achieves a specific objective. A training is partitioned into several workouts, which
are collections of exercises done on a single day of the training’s schedule. The
planner starts with a plan specifying a training task, representing the user’s objec-
tive, and refines the plan repeatedly, first into suitable workout tasks and those in turn
into concrete exercises. A similar application domain was considered by Pulido et
al. [33] who described how a planner can be utilized to arrange physiotherapy exer-
cises to rehabilitate people with upper limb injuries.

2 Preliminaries

The content of this chapter is based on the notions of hybrid planning and ontolo-
gies, which are both briefly introduced in this section. Chapter 5 explains hybrid
planning in further detail and illustrates how it can be applied to user assistance in
particular. In this chapter we show how the presented techniques can be comple-
mented by integrating the user into the planning process itself.
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Hybrid Planning. Planning is an AI technique for solving complex combinato-
rial problems. The objective of the planner is to find a so-called plan, a (partially
ordered) set of actions, which, if executed in a given initial state, achieve some goal.
States in planning are abstractions of the real world and are represented as sets of
predicates. Actions are described in terms of their preconditions and effects, two
formulae that must be true such that the action can be executed and that describe the
change to the world state if the action is executed, respectively.

Hybrid planning is the fusion of two other planning approaches, namely Hier-
archical Task Network (HTN [12]) and Partial Order Causal Link (POCL [24, 31])
planning. From the former it inherits the subdivision of actions into primitive and
abstracts ones. Primitive actions are assumed to be directly executable by an op-
erator, e.g. a human user, while abstract actions represent more complex courses
of action. The aim in HTN planning is, given an initial set of abstract actions, to
refine them into a plan solely containing primitive actions. To do so, an HTN plan-
ning domain contains so-called decomposition methods mapping abstract actions
to plans—not necessarily containing only primitive tasks—by which they may be
replaced. We use the expression A 7→≺ B1, . . . ,Bn to denote such a method for the
abstract task A decomposing it into a plan containing the subtasks B1 to Bn which is
ordered w.r.t. the partial order≺. If the partial order≺ is omitted, we assume that no
order is present, i.e., ≺= /0. POCL planning introduces the notion of causal links to
hybrid planning. A causal link describes the relation between two actions, i.e., that
one is executed to achieve an effect needed by the other. Furthermore, in standard
HTN planning abstract actions have neither preconditions nor effects, whereas in
hybrid planning they do. They enable causal reasoning about the plan at every level
of abstraction and especially early during the planning process.

A planner for hybrid planning domains, PANDA, is presented in Chap. 5. Its pur-
pose is to refine a given initial plan into a solution to the hybrid planning problem,
i.e., to be an executable plan without abstract action that can be obtained via decom-
position from the initial plan. It uses a heuristically guided plan-space search to find
solutions. At each step during the search a so-called flaw, a property that keeps it
from being a solution, is selected to be resolved. For instance, each abstract action
in a plan constitutes a flaw, as well as preconditions of actions without supporting
causal links. Thereafter, all possible modifications solving this flaw are applied to
generate the plan’s successors in the search space.

Ontologies. Ontologies based on Description Logics (DLs) serve to model
knowledge in an application domain, with a focus on the concepts of a given do-
main and the relations (roles) that hold between them. The formal representation of
a knowledge base enables the use of reasoners to infer additional knowledge that is
logically implied and provides a model-theoretic semantics for the contents of such
a knowledge base. One application of ontologies is the Semantic Web, in whose
context the web ontology language OWL was established as a W3C standard. In
this chapter, we consider the fragment of OWL corresponding to the DL ALC [35].
Concepts are either primitive (represented by a set of concept names) or complex.
Complex concept expressions are formed using the connectives u (conjunction of
concepts) and t (disjunction), and quantifier-like ∃ /∀ constructs, which specify re-
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lationships between concepts with respect to a particular role. For instance, sup-
pose that includes is a role name, and HardExercise is a concept name, then the
expression ∃includes.HardExercise represents the concept of all things that include
(at least) something that is a HardExercise. By contrast, the expression ∀includes.
HardExercise represents the concept of all things that include nothing but Hard-
Exercises. Two distinguished concepts, > and ⊥, represent the universal concept
(which encompasses every other concept) and the empty concept, respectively.

DLs are fragments of first-order logic and possess a model-theoretic semantics.
Concepts are interpreted as subsets of a domain. A domain element that is in the
interpretation of a concept is referred to as an instance of the concept. Roles are
interpreted as binary relations in the domain. For example, to qualify as an instance
of the concept ∃includes.HardExercise, a domain element needs to be related by the
role includes to (at least) one instance of the concept HardExercise.

An ontology or knowledge base O specifies a finite set of axioms. Axioms of the
form CvD are referred to as concept inclusion axioms (alternatively: subsumption
axioms), and specify that every instance of the concept C is also an instance of the
concept D. Equivalence axioms are of the form C≡D, and state that D subsumes
C and vice versa. An interpretation that satisfies all axioms of a knowledge base
O is called a model of O. Using an ontology reasoner, a given knowledge base
O can be queried about whether the subsumption relationship holds between two
concepts C and D, namely whether the axiom CvD holds in any model of O (in
which case the axiom is entailed by the knowledge base). Another type of query
concerns whether a concept is satisfiable in O, that is, whether a concept can have
any instances (without leading to a contradiction).

The generation of natural-language output from ontologies (ontology verbaliza-
tion) has traditionally focused on making the formalized content accessible to non-
expert users (e.g. in the NaturalOWL system [2]). Recent work also aims at verbal-
izing ontology reasoning (in a stepwise manner), including [28] and [34].

3 Technology Concept and Design

In this section, we take a closer look at how automated planners and humans solve
problems. We elucidate the major differences between them and describe how these
can be handled either by altering the planner or by equipping a dialog manager with
appropriate behavior.

User-friendly search strategies. As mentioned earlier, most automated planners
employ efficient search strategies, like A* or greedy search, guided by heuristics.
These strategies visit search nodes, in our case yet unfinished plans, in an order de-
termined by the heuristic starting with the most promising plan, e.g., the plan for
which the heuristic estimate of the distance to a solution is minimal. Given a perfect
heuristic, the planner would basically maintain always the same plan and alter it un-
til a solution has been found. Since all heuristics computable in a reasonable time are
necessarily imperfect, the planner does not necessarily visit plans after each other
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which are neighbors in the search space, but may jump between completely separate
parts of the search space. The considered plans may have nothing in common at all.

This alternating between plans is not in line with the human planning processes,
as we tend to refine only one plan at a time. For example, in an experimental study
on planning behavior, Byrne [11] found that subjects dealt with goals “one by one”.
Further research helped to put this finding in perspective, and postulates that the de-
gree to which people adhere to a hierarchical top-down approach of sequential plan
refinement depends on various factors; whether the problem domain can easily be
recognized by people as hierarchically structured, whether human problem-solvers
already dispose of expertise with hierarchical schemata to address problems in the
domain, or—on the other hand—in how far they feel enticed to explore the do-
main by using bottom-up processes rather than a more straightforward top-down
approach [17]. Thus, these empirical studies suggest that a structured planning pro-
cess is a feature of skilled and goal-directed decision-making. In contrast, an au-
tomated planner’s A* strategies may seem erratic to the user. Such may result in
the perception that user-decisions exert only an arbitrary influence on the planning
process and may promote a lack of subjective control and transparency. In order to
prevent this perception—which would most probably lead to the user not using the
system—the gap between the way human and automated planners solve a planning
problem needs to be bridged in a mixed-initiative planning system. Instead of A*
or greedy search, we propose to use the search strategy depth-first search (DFS),
which repeatedly refines a current plan until a solution has been found. If a plan is
reached that cannot be further refined into a solution, e.g. a plan without a possible
refinement, the decisions leading to this plan are reverted until another possible re-
finement is found. This continuous refinement of a single plan reflects the human
process of problem solving much closer.

A drawback of DFS is that it is a blind search, i.e., it does not consider an estimate
of how far a plan is away from being a solution when choosing a refinement. To
remedy this problem, a mixed-initiative planner can consider a heuristic if the user
is indifferent between options, or even weight the information of a heuristic against
the decisions of the user. This scheme enables the user to inform the planner that
it should use its best judgment to determine a solution for a subproblem, e.g. if it
is combinatorially too complex to be solved by a human. DFS is also incomplete
meaning that it may not find a solution even if it exists, as it can “get stuck” in
infinite parts of the search space not containing a solution.

Handling unsolvable plans. Another difference is the way humans and planners
deal with failed plans. During the search, the planner will explore plans that can-
not possibly be refined into a solution anymore, either because the plan has a flaw
without a possible modification to solve it or because a heuristic has determined
this property. In this case, no successors are generated for the plan—it may still
have resolvable flaws—and the search is continued. If the search procedure DFS
is applied, this will lead to backtracking. As every practically usable computable
heuristic is necessarily imperfect1, there are usually whole parts of the search space

1 Computing a perfect heuristic is as difficult as planning itself, e.g. in the case of HTN planning,
undecidable [14].
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only containing unsolvable plans which are not recognized as such. If, either by
chance or due to the user’s decisions, the search enters such a region, a failed plan
will eventually be obtained and the backtracking procedure will be started, leading
to the complete exploration of this unsolvable part of the search space.

On the other hand, if humans recognize that a plan is unsolvable, they can most of
the time determine a reason for failure and alter only relevant parts of the plan. Cur-
rent planning systems often fail in determining which applied modification was the
reason for the failure. Instead they use backtracking to resolve the problem. Back-
tracking, especially through a large search space, is very tedious and frustrating for
a human user performing or witnessing these steps. A large search space requires
extensive backtracking through unsolvable alternatives. This may result in the user
interpreting the system’s strategy as naive and impairs the trust and perceived com-
petence of the planner. Additionally, this strategy does not prevent the repetition of
similar (unsuccessful) decisions, leading furthermore to frustration.

To remedy this problem, we can utilize the computational power of the planner.
If options for a refinement are presented to the user he usually takes several seconds
(if not longer) to decide for one of the options. During this time, the planner can
start to explore the search spaces induced by the modifications presented to the user.
The planner may determine, using a well-informed heuristic, that the search space
induced by one of the options only leads to failed plans. We call such a modification
a dead-end and if it occurs, the respective option can be removed from consideration
and thus backtracking through this part of the search space can be averted. Here the
important question is how this information should be communicated to the user, as
simply disabling the respective option in the user interface without any apparent
reason would be rather irritating and seems not to be appropriate. If the planner, on
the other hand, has found a solution, the mixed-initiative planning system knows
that backtracking is not necessary if the user agrees with the solution. We describe
our approach in the next section and evaluate it in Sect. 6.

4 Integration of Planning and Dialog

The integration of automated planning and user-centered dialog begins with the
statement of the user’s goals. This first dialog between user and machine has the
objective of defining the goals in a way understandable for the assisting automated
planning system. This requires on the one hand a user-friendly and efficient task-
selection dialog, and on the other hand the creation of a valid planning problem.
Thus, the semantics of the dialog have to be coherent with the planning domain,
resulting in a valid mapping between dialog result and planning problem.

Once the problem is passed on to the planner the interactive planning itself may
start. Using the described DFS the initial plan will be refined by selecting appropri-
ate modifications for available flaws. In order to decide whether to integrate the user
or not during this process, an elaborate decision model, integrating various informa-
tion sources, is required. Relevant information sources are, for example, the dialog
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history, e.g., was the user’s decision the same for all past similar episodes, the kind
of plan flaw, e.g., is this flaw relevant for the user, the user profile, e.g., does the user
have the competencies for this decision, or the current situation, e.g. is the current
cognitive load of the user low enough for interaction. These sources illustrate that a
decision model uses information from the dialog management and the planner, and
is therefore located in a superordinate component.

In case of user integration the information on the current plan decision has to
be communicated to the user. This means that the plan flaw and the corresponding
decision between the available modifications have to be represented in the dialog
suitably. Hence, the corresponding plan information needs to be mapped to human-
understandable dialog information. As this mapping potentially needs to exist for
every plan information and for every dialog information, the requirement of coher-
ent models between planner and dialog system becomes an existential factor for
MIP systems. The thorough matching of both models would be an intricate and
strenuous process, requiring constant maintenance, especially when a model needs
to be updated. Thus, a more appropriate approach is the automatic generation of
the respective models using one mutual model as source. This way, once the trans-
formation functions work correctly, coherence is not an issue any more, even when
updating the domain. How these essential constituents of a conceptual MIP system
architecture (depicted in Fig. 1) were implemented in our system is explained below.

Planning
Framework

Decision Model
Interactive Heuristic, Domain Heuristic, User Presentation

Heuristic, Interaction History, User Profile

Dialogue
Management Interfaces

Sensors

User

Environment

Knowledge Model
Mutual Domain

Fig. 1 Essential components of a mixed-initiative planning system integrating the user [29]

The decision model. This model is in charge of deciding when and how to in-
volve the user into the planning process. It is composed of several subcomponents,
acts as an interface to the planner and decides, upon planner requests, whether a user
involvement is useful, i.e., if this kind of flaw is understandable to a human user.

For this it also includes a list of essential domain decisions that are interesting
and relevant for the user (e.g. for a training domain: day, workout, and exercises)—
the rest is left for the fallback-heuristic and thus decided by the planner. If it is in
favor of user involvement, the flaw and its corresponding modifications have to be
passed on to the user. Then, the decision on the form of user integration is made.
The dialog may either provide the complete set of modifications, a pruned list, a
sorted list, implicit confirmations, explicit confirmations, for presentation or only to
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inform the user. This decision depends not only on the interaction history, but also
on additional information (e.g. affective user states like overextension, interest, or
engagement) stored in the user state.

The Decision Model also records the dialog- and planning history. There are
several reasons for that: The dialog history may enable a prediction of future user
behavior (e.g. in selections), and additionally this knowledge is mandatory for back-
tracking processes, when the current plan does not lead to a solution. The history
stores which decisions were made by the user. In case of backtracking the decisions
are undone step-by-step, with the goal of finding a solution by applying alterna-
tive modifications. Whenever a user-made decision is undone, the user is notified,
because this system behavior would otherwise appear irritating.

Since backtracking as well as dead-ends are peculiar phenomena in a MIP sys-
tem, the communication of these might have a critical influence on the user experi-
ence. Together with the Dialog Management (DM), the Decision Model orchestrates
the corresponding system behavior. The main difference between backtracking and
dead-ends is the temporal ordering of the awareness of the unsolvable plan and
made decision. For backtracking the awareness is achieved after the decision, and
for dead-ends during the decision. As we assumed that backtracking will impair the
user experience significantly, a parallel search for dead-ends, as described in Sect. 3,
was implemented. The process itself is, of course, inherently different from back-
tracking, but may prevent it. Removing dead-ends from the search space when the
relevant modification is not part of the current selection is a rather easy task. Oth-
erwise, the current selection has to be modified to prevent the user from selecting a
dead-end. However, removing it without any notification from the list seems like a
confusing behavior.

5 Coherent Models Across the System

The system described in the previous section relies on a shared vocabulary and a
coherent description of the planning domain in both the dialog system (DS) and
the planner. In this section we describe how this coherence can be achieved using
an ontology as the central knowledge-base component. To do so, relevant2 parts of
the planning domain are encoded in description logic. To obtain a unified view of
the system’s knowledge we also demonstrate how the remaining planning specific
information can be encoded in a way not interfering with the reasoning process, and
thus how all information can be stored in the ontology. Further we describe how
planning and dialog domain can be automatically extracted from the ontology.

As an additional advantage, new decomposition methods for the planning domain
can be inferred using ontology reasoning without the help of a human expert mod-
eler, easing creating domains significantly. This is especially useful in our applica-

2 those which must be accessible by other systems
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tion scenario—individualized fitness training. Imagine a user found a new workout3,
e.g. while browsing the Internet, and wishes to add it to his training plan4.

Using ontological reasoning, the system can infer which training objective the
workout has and how it can be integrated into the existing planning domain, without
additional input from the user. Furthermore, using plan and ontology explanations
the Companion-System can explain how and why it has integrated the new workout
into the model in a certain way. If the workout does not comply with the user’s
objective it could even explain why the user should not use the workout.

A few previous approaches have attempted to integrate ontological reasoning
into planning. Most approaches targeting classical, i.e., non-hierarchical, planning
attempt to either increase the performance of the planner or increase the expressivity
of the planning formalism, e.g. by changing the notion of states. We refer to an
article by Gil [15] for an extensive survey. Another approach by Sirin et al. [37,
36], called HTN-DL, uses ontology reasoning to solve web service composition
problems encoded in an HTN. Their main objective is to determine which abstract
tasks can be decomposed by a predefined plan, based on annotations to that plan. In
that, they infer new decomposition methods, but only those for which the plan’s task
network was provided by the domain modeler. Their matching cannot take the actual
content of the plan into account, but only an abstract description of the plan in terms
of preconditions and effects. Furthermore, there is no guarantee on the relation of
the plan’s content and these descriptions. One could, e.g., use a legality criterion
for decomposition methods [9] to determine whether the description is correct. Our
approach, on the other hand, can infer completely new decomposition methods and
is able to infer them based on the actual plan’s steps to be contained in them.

5.1 Integrating Planning Knowledge into Ontologies

We start by describing how a planning domain can be encoded in an ontology. Tasks
in the planning domain are represented as concepts in the ontology. For each plan-
ning task T there is a corresponding concept T in the ontology. Preconditions and
effects of actions are encoded in the ontology using four distinct data properties:
needs for positive preconditions, hindered-by for negative preconditions, and adds
and deletes for positive and negative preconditions, respectively. Here, only the
predicates of preconditions and effects are contained in the ontology, while their
parameters are omitted. Expressing them correctly, i.e. in a way amenable to logical
reasoning, would require common references, e.g., for an action requiring has(x)
and resulting ¬has(x) where both instances of x must be equal. Unfortunately, de-
scription logics are not suited for such kinds of expressions, due to the tree model
property [39]. One example of such an action is the Day action, describing the tran-
sition of a day to the next one, i.e. modeling time explicitly in the domain.

3 a partially-ordered set of exercises
4 A system that supports this search-and-extraction, resulting in an extension to the ontology, has
been developed but is not yet published.
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Day≡ ∃deletes.′′fatigue′′

This concept describes an action without any preconditions, leading to a state where
the predicate fatigue does not hold after the action has been executed, for some
parameters. In this case it models that a person is not fatigued after he has slept,
i.e., a day has passed. Additionally our approach allows for domain-depended ex-
tensions. They define that certain axioms C v E, where C is a concept and E an
expression, are interpreted as a set of preconditions and effects. In our application
scenario, we used this mechanism to map declarative descriptions of exercises to
actions. These descriptions are based on parts of the NCICB corpus [27], describing
the musculoskeletal system of the human body. As an example, we provide the fol-
lowing definition of the exercise BarbellHackSquat, which describes that the action
BarbellHackSquat has the precondition warmedup(Hamstring) and the effects
trained(Hamstring), warmedup(Soleus), and warmedup(GluteusMaximus).

BarbellHackSquatv ∃trains.Hamstringu∃engages.Soleus

u∃engages.GluteusMaximus

The most important part of a hierarchical planning domain are its decomposition
methods. Each method A 7→≺ B1, . . . ,Bn describes that a certain abstract task A can
be achieved by executing the tasks B1, . . . ,Bn under a restriction ≺ on their order.
To transform decompositions into ontological structures consistently, we state an
intuition on the meaning of the concept-individual relation in the created ontology,
by which our subsequent modeling decisions are guided. Individuals in the ontology
should be interpreted as plans and a concept T , corresponding to some task T, as the
set of all plans (i.e. individuals) that can be obtained by repeatedly decomposing
T. A concept inclusion B v A thus states that every plan obtainable from B can
also be obtained by decomposing A. To ease modeling, a special role—includes—is
designated to describe that a plan contains some other plan. That is, if an individual a
is an instance of a plan and includes(a,b) holds, the plan described by the individual
a also contains all actions of the plan b. First, so-called unit-methods A 7→ B, which
allow for replacing the task A with the task B, are translated into a simple concept
inclusion Bv A, for which the intuition clearly holds. Methods creating more than a
single task must be translated into more elaborated constructs in the ontology. Such a
method A 7→≺ B1, . . . ,Bn defines a set of tasks {B1, . . . ,Bn}which must be contained
in the plan obtained from decomposing A, while also stating that they are sufficient.
The relation “is contained in a plan” is expressed by the role includes. Following its
description, an expression ∃includes.T describes the set of all plans containing the
task T. Using this property, the decomposition method could be translated into the
following axiom

n⊔
i=1

∃includes.Bi v A

It is, however, not sufficient due to the open world assumption of description logics.
The expression solely describes the required tasks, but not that only these tasks are
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contained in the plan. To express the latter, we use the syntactic onlysome quantifier,
originally introduced for OWL’s Manchester syntax [20].

Definition 1. Let r be a role and C1, . . . ,Cn concept expressions. Then we define the
onlysome quantification of r over C1, . . . ,Cn by

Or.[C1, . . . ,Cn] := un
i=1∃r.Ciu∀r(tn

i=1Ci)

As an example in the fitness domain, consider a method that specifies that a partic-
ular workout decomposes into the set of tasks represented by its exercises, for ex-
ample Workout1 7→ FrontSquat,BarbellDeadlift. This can be specified
in the ontology as Oincludes.[FrontSquat,BarbellDeadlift]vWorkout1. In general,
with this definition we can describe a decomposition method A 7→≺ B1, . . . ,Bn with
the following axiom, fulfilling the stated requirement.

Oincludes.[B1, . . . ,Bn]v A

The intuition on the interpretation of concepts and individuals implies a criterion
when two concepts A and B, described by such axioms, should subsume each other.
That is, A should subsume B based on the axioms in the ontology, if and only if every
plan described by B is also a plan for A. We have stated this criterion previously
and proven that it holds with only minor restrictions to the ontology for expressions
defined in terms of onlysome restrictions [4]. So far, we have not mentioned possible
ordering constraints imposed on the tasks in a method. Representing them s.t. that
they can be accessed by a DL reasoner poses a problem similar to representing
variables, as a single task may be referred to several times in describing a partial
order. To circumvent this problem ordering is encoded only syntactically, i.e., in a
way ignored by any reasoner while it still can be retrieved from the ontology by
analyzing its axioms. If a plan contains some task A before some task B, then any
occurrence of B in an onlysome restriction is substituted with Bt (⊥u∃after.A).

5.2 Generating New Decomposition Methods Using DL Reasoning

Having integrated the planning domain into an ontology, we can utilize DL rea-
soning to infer new decomposition methods. Based on the interpretation of concept
subsumption, each inferred subsumption E v A can be interpreted as the fact that
every plan obtainable from the expression E can also be obtained from the abstract
task A. If it is possible to associate E with a distinct plan P we can add a method
A 7→ P to the planning model. The task of ontology classification is to find the sub-
sumption hierarchy of the given ontology, i.e., all subsumptions between named
concepts occurring in the ontology. They have the form B v A and can be easily
transformed into unit-methods A 7→ B. Taking Workout1 as an example, if it can
be inferred that Workout1 v StrengthTraining (Workout1 is a strength training), a
method StrengthTraining 7→ Workout1 is created. A more challenging task
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is to find more complex decomposition methods, described by concept inclusions
between named concepts (i.e. the task to be decomposed) and expressions describ-
ing plans. For example, is the combination of Workout1 with another workout clas-
sified as a StrengthTraining?

Since generating all possible subsumptions between concepts and arbitrary ex-
pressions is impossible in practice, only a certain set of candidate expressions should
be considered. The easiest way to do so is to add new named concepts C ≡ EC for
every candidate expression EC to the ontology. This enables a uniform scheme to
generate new decomposition methods. First, a set of candidate expressions is gener-
ated and added as named concepts to the ontology. Second, ontology classification
is used to determine all subsumptions between named concepts in the ontology.
Third, these subsumptions are translated into decomposition methods. This is done
for subsumptions that connect two named concepts from the original ontology, and
subsumptions between a named concept and the concepts in a newly generated can-
didate expression.

Behnke et al. [4] described which expressions should be considered as poten-
tial candidate concepts. Most notably, they argued that a syntactic combination of
concepts defined by onlysome expressions should be defined. Our fitness training
domain initially contains 310 tasks and only a few methods, while the correspond-
ing ontology contains 1230 concepts (of which 613 are imported from the NCICB
corpus) and 2903 axioms (of which 664 are from NCICB). Using DL reasoning—
provided by the OWL reasoner FaCT++ [38]—206 new decomposition methods are
created. On an up-to-date laptop computer (Intel R© CoreTM i5-4300U) it takes 3.6
seconds to compute the whole extended planning domain.

5.3 Dialog Domain

In order to integrate the user into the planning process and to communicate the gen-
erated solution, a dialog management component is needed to control the flow and
the structure of the interaction. In order to communicate a solution, all planned tasks
have to be represented in the dialog domain, while integrating the user requires the
ongoing presentation of planning decisions. This includes, most notably, the choice
of a decomposition method if an abstract task is to be refined. The use of shared
knowledge considerably facilitates coherency of the interaction. Although the plan-
ning knowledge stored in the ontology alone is not sufficient for the generation of
the dialog domain, it contributes to its structure and enables an unisono view on the
domain, eliminating inconsistency and translation problems.

The integrated planning knowledge, used to infer new decompositions for ex-
isting planning domains, can be used to create a basic dialog structure as well.
Analogous to Sect. 5.1, a dialog A can be decomposed into a sequence of subdi-
alogs containing the dialogs B1, . . . ,Bn by an axiom Oincludes[B1, . . . ,Bn]v A. For
example, in our application scenario a strength training can be conducted using a
set of workouts A1, . . . ,Am, each of which consists of a set of exercises B1, . . . ,Bn.
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This way a dialog hierarchy can be created, using the topmost elements as entry
points for the dialog between user and machine. Nevertheless, this results only in
a valid dialog structure, but not in a most suitable one for the individual user. For
this, concepts of the ontology can be excluded from the domain generation or con-
jugated to other elements in a XML configuration file. This way elements can be
hidden or rearranged for the user. The dialogs are also relevant during the MIP pro-
cess. When selecting between several Plan Modifications, these have to be translated
to a format understandable by the user. Hence, in addition to the knowledge used
to generate plan steps, resources are required for communicating these steps to the
user. Therefore, texts, pictures, or videos are needed, which can be easily referenced
from an ontology. Using this information, dialogs suitable for a well-understandable
human-computer interaction can be created and presented to the user.

One key aspect of state-of-the-art DS is the ability to individualize the ongoing
dialog according to the user’s needs, requirements, preferences, or history of inter-
action. Coupling the generation of the dialog domain to the ontology enables us to
accomplish these requirements using ontological reasoning and explanation in var-
ious ways as follows: Dialogs can be pruned using ontological reasoning according
to the user’s needs (e. g. “show only exercises which do not require gym access”),
to the user’s requirements (e. g. “show only beginner exercises”) or adapted to the
user’s dialog history (e. g. “preselect exercises which were used the last time”) and
preferences (e. g. “present only exercises with dumbbells”).

6 Explanations for Plans and Planning Behavior

Integrating proactive as well as requested explanations into the interaction is an im-
portant part of imparting used domain knowledge and clarifying system behavior.
Using a coherent knowledge source to create dialog and planning domains enables
us to use predefined declarative explanations [30] together with the dynamically
generated plan explanations described in Chap. 5 and explanations for ontological
inferences without dealing with inconsistency issues. This way Plan Steps (e.g. exer-
cises) can be explained in detail, dependencies between plan steps can be explained
to exemplify the necessity of tasks (i.e. plan explanation), and ontology explanations
can justify inferences from which the planning model and the dialog domain where
generated. All of which increase the user’s perceived system transparency. In the
scope of mixed-initiative planning, events like backtracking may confuse the user.
Especially in this context we deem the integration of explanations a very valuable
system capability. In order to investigate the effects of the use of explanations in MIP
we designed an experiment comparing different kinds of explanations. As context a
typical backtracking situation was chosen, initiated by external information.
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Methodology

Participants were presented a scenario where they were tasked to create individual
strength training workouts. They were guided through the process by the system,
which provided a selection of exercises for training each specific muscle group nec-
essary for the workout. Figure 2 shows an exemplary course of interaction for the
introductory round. Here, the user had to plan a Full Body Workout to train the listed
body parts. For each body part a dialog was presented, providing the user with a se-
lection of exercises to train the specific body part. For example, when training the
legs the user could choose from exercises such as the barbell squat or the dumbbell
squat (see Fig. 3).

Instruction Full
Body Workout

Select Legs
Exercise

Select Chest
Exercise

Select Shoulders
Exercise

Select Upper
Back Exercise

Select Lower
Back Exercise

Fig. 2 Sequence of (sub-)dialogs for planning the introductory workout

Fig. 3 A screenshot of a
typical selection dialog (we
employ a system developed
by Honold et al. [18]). The
user is prompted to select an
exercise to train the legs or
to “let the system decide”,
in which case the exercise is
selected at random.

The experimental design compared two conditions, distinguished by the use of
explanations. During the session, backtracking was initiated due to an artificially in-
duced event. In the first condition (backtracking with notification, BT-N), a context-
independent high-level explanation was provided:

“The system has detected that the previously presented options do not lead to a solution.
Therefore, you have to decide again.”

In the second condition (backtracking with explanation, BT-E), a more concrete
description of the reason for backtracking (the external event) was provided:

“The system has detected that the gym is closed today due to a severe water damage. There-
fore, you have to decide again and select exercises suitable for training at home.”
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Participants were assigned randomly to conditions. Due to incomplete data some
had to be removed resulting in 43 participants (25 to BT-N, 18 to BT-E). Measures
were obtained after the interaction for the following variables:

Human-Computer Trust (HCT) describes the trust relationship between human
and computer and was assessed using the questionnaire by Madsen and Gre-
gor [23] measuring five dimensions (Perceived Understandability, Perceived Re-
liability, Perceived Technical Competence, Personal Attachment, Faith).

AttrakDiff assesses the perceived pragmatic quality, the hedonic qualities of stim-
ulation and identity, and the general attractiveness of dialog systems (or software
in general). We used the questionnaire developed by Hassenzahl et al. [16].

Cognitive Load is assessed using an experimental questionnaire developed by
Pichler et al. [32] which measures all three types of cognitive load (intrinsic,
extraneous and germane cognitive load) separately, along with the overall expe-
rienced cognitive load, fun and difficulty of the tasks.

Results

A pairwise t-test on the uniformly distributed data revealed significantly higher
scores for the HCT items perceived reliability (t(3.0) = 57, p = .004), perceived
understandability (t(3.99) = 57, p = .000) and perceived technical competence
(t(2.06) = 41, p = .045) in the BT-E condition as compared to BT-N. For the cog-
nitive load questionnaires, we only found that the germane load was higher for the
BT-E condition, but only to a marginally significant degree (t(1.99) = 41, p= .053).
Note that germane load is positive load—it occurs in the processes inherent in the
construction and automation of schemas (e.g. building mental models). In the At-
trakDiff we observed a significantly higher score for BT-E in the dimension of expe-
rienced pragmatic qualities (t(2.37) = 41, p = .022), which can be attributed to sig-
nificant differences in the subscales unpredictable - predictable, confusing - clearly
structured, unruly - manageable and unpleasant - pleasant.

These results strengthen our hypothesis that providing explanations of system be-
havior, in this case of backtracking, does indeed help to perceive the system as more
reliable, more understandable, and more technically competent. It seems that the
explanations kept the user motivated, compared to a more frustrating experience of
receiving no explanation for the impairing system behavior for BT-N. The findings
concerning AttrakDiff provide evidence for the conjecture that systems with expla-
nation capabilities seem to be perceived as not so complicated, more predictable,
manageable, more clearly structured and in general as more pleasant. However, pro-
viding explanations of internal system processes, which increase the transparency of
the system, requires corresponding reasoning capabilities. This includes the ability
to explain causal dependencies between tasks and their related hierarchical structure
(i.e. decomposition methods), using plan explanations (cf. Chap. 5) and extensions
thereof discussed in the following.
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7 Extending Plan Explanations with Ontology Explanations

Plan explanations focus on elaborating the structure of a generated plan; namely
the relationships between preconditions and effects and how primitive tasks are
obtained by decomposing abstract tasks. However, as described in Sect. 5.1, task
decompositions are inferred from domain knowledge in the ontology, which lends
itself to more detailed explanations. For example, rather than presenting a task de-
composition only in the form of a statement such as “Task A was necessary, since
it must be executed to achieve B”, the assumptions and the reasoning behind this
decomposition can be used to further elucidate why such a task A serves to achieve
B. One advantage of using a description logics formalism for this knowledge is the
opportunity to make use of ontology verbalization techniques that have been de-
vised to generate texts and explanations from ontologies that are understandable to
lay people. A considerable part of related work in this field has so far concentrated
on how selected facts from an ontology can be presented to users in a fluent manner,
and how well they are understood, for example [2, 21]. Approaches to the generation
of explanations for reasoning steps have been developed [10, 28, 34]. The work pre-
sented here is in line with the principles common to these three approaches. Whereas
in the following, we illustrate our approach using the explanation of a task decom-
position as an example, also other logical relationships between facts modeled in the
ontology can be explained with the help of the presented techniques. The presented
mechanism has been implemented as a prototype—developing the prototype into a
mature system remains a topic for future work.

Explanations are generated for facts that can be inferred from the axioms in the
ontology. For a short example, consider a workout that includes two tasks, front
squat and barbell deadlift (each to be performed for a medium number of rep-
etitions), called Workout1. Further assume that with the background knowledge
of the ontology, Workout1 is classified as a strength training (i.e. Workout1v
StrengthTraining holds), which—as discussed in Sect. 5.1—introduces a decom-
position StrengthTraining 7→ Workout1. The user may now ask for a jus-
tification for the decomposition, which is provided based on the axioms and the
logical relationships that served to classify Workout1 as a strength training. These
explanations are generated in a stepwise fashion from a formal proof, such that the
individual inference steps (in particular, including intermediate facts) are translated
to simple natural language texts. In our running example, the resulting explanation
is the following:

A strength training is defined as something that has strength as an intended health outcome.
Something that includes an isotonic exercise and a low or medium number of repetitions
has strength as an intended health outcome, therefore being a strength training. Workout1
is defined as something that strictly includes a medium number of repetitions of front squat
and a medium number of repetitions of barbell deadlift. In particular Workout1 includes
a medium number of repetitions of front squat. Given that front squat is an isotonic exer-
cise, a medium number of repetitions of front squat is an isotonic exercise. Thus, we have
established that Workout1 includes an isotonic exercise and a low or medium number of
repetitions. Given that something that includes an isotonic exercise and a low or medium
number of repetitions is a strength training, Workout1 is a strength training.
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In the following, we discuss the two submechanisms involved in generating such
an explanation—reasoning and explanation generation—in more detail.

Reasoning. The first step consists of identifying those axioms that are logically
sufficient to show (and thus explain) the fact in question. This task is known as axiom
pinpointing, for which an efficient approach has been developed by Horridge [19].
The set of necessary axioms (which needs not be unique) is called a justification for
the inferred fact. We simply use Horridge’s mechanism as a preprocessing step to
obtain a set of relevant axioms to infer the fact in question, and then use inference
rules implemented in the prototype to build a stepwise (also called consequence-
based) proof. As of current, the prototype uses inference rules from various sources
(e.g. [28]) and has not been optimized for efficiency (working on the justifications
instead of the full ontology makes using such a simple mechanism feasible).

Explanation Generation. The generated proofs have a tree structure, which is
used to structure the argument. Each inference rule provides a template, according
to which textual output is produced. As a general rule, first the derivation of the
premises of an inference rule needs to be explained before the conclusion may be
presented (this corresponds to a post-order traversal, with the conclusion at the root
of the tree). Inference rules with more than one premise specify the order in which
the premises are to be discussed, which is determined by the logical form of the
premises. For example, for the following inference rule, the derivation for the left
premise is presented before the derivation of the right premise, though logically, the
order of the premises is irrelevant for the validity of the proof.

...
X v ∃r.B

...
BvC

R+
∃X v ∃r.C

Lexicalisation of facts is done with the help of the ontology. For each concept
name or role name (or other named elements in the ontology) the value of the label
attribute is used as a lexical entry. Thus, the domain modeler is required to specify
adequate names for the elements of the domain when modeling them in the on-
tology, for example, “isotonic exercise” for the concept name IsotonicExercise. A
special case is represented by concepts that can be used as attributes in complex
concept expressions. For instance, consider MediumNumberOfRepetitions (things
that are repeated a moderate number of times) and FrontSquat, which can be com-
bined to MediumNumberOfRepetitionsuFrontSquat. Since MediumNumberOfRep-
etitions can be used on its own, the label specifies a name that can stand on its own,
such as “medium number of repetitions”. However, the concept needs to be com-
bined adequately when in combination, for which a second type of label is used,
in this case “medium number of repetitions of”, such that the combination reads
as “medium number of repetitions of front squat”. In formulae, concept names are
generally represented in indeterminate form, e.g., “a medium number of repetitions
of front squat”. Connectives in formulae are translated as v: “is”, u: “and” (unless
the concepts can be combined as described above), t: “or”, ∃: “something that”,
etc. This way, texts are generated similar to those studied in [21] and [28]. While
this template-based approach is in general similar to previous related work (e.g.
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[28]), some mechanisms and templates are specific to our approach. For example,
our modeling relies on the onlysome macro, which represents a rather lengthy for-
mula when expanded. When generating output, class expressions that correspond
to the form of onlysome are identified and treated using a succinct text template
to avoid being repetitive; in the example above, this is done for the third sen-
tence, in which the onlysome statement Oincludes.[MediumNumberOfRepetitionsu
FrontSquat,MediumNumberOfRepetitionsuBarbellDeadlift] is verbalized as: “some-
thing that strictly includes a medium number of repetitions of front squat and a
medium number of repetitions of barbell deadlift”. Without this macro, the verbal-
ization of the logically equivalent statement would state both the existence of and the
restriction to these two exercises separately, and can thus be considered repetitive.

8 Conclusion

This chapter discussed a nexus of considerations and techniques that can form the
basis of a planning system in which the user actively takes part in the planning
process. For this purpose, we put priority on technologies that serve to make the
planning process comprehensible and that emphasize its structure, by identifying
adequate search strategies and techniques for handling flaws and dead-ends. Fur-
thermore, we addressed the requirements of such a system to provide a coherent
view on its domain knowledge. To this end, we developed an integration of the
planning domain with an ontology to provide a central knowledge component for
such an interactive system, such that planning is suitably linked with reasoning and
dialog management. A further aspect considered important for the empowerment of
the user concerns the provision of explanations. In addition to enabling the user to
effectively participate in the problem-solving process, explanations increase the per-
ceived reliability, understandability and competence of such a system, as was shown
in the presented experiment. We discussed how different kinds of explanations (in
particular, of reasoning steps) help to realize a dedicated user-oriented approach to
planning, and outlined the scope for individualizing the planning process and the
system’s communication to address users’ preferences.
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Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home
theater. In: Proc. of the 29th Nat. Conf. on Artificial Intelligence (AAAI). AAAI Press (2015)
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