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Abstract

HTN planning provides an expressive formalism to model
complex application domains. It has been widely used in real-
world applications. However, the development of domain-
independent planning techniques for such models is still
lacking behind. The need to be informed about both state-
transitions and the task hierarchy makes the realisation
of search-based approaches difficult, especially with unre-
stricted partial ordering of tasks in HTN domains. Recently,
a translation of HTN planning problems into propositional
logic has shown promising empirical results. Such planners
benefit from a unified representation of state and hierarchy,
but until now require very large formulae to represent partial
order. In this paper, we introduce a novel encoding of HTN
Planning as SAT. In contrast to related work, most of the rea-
soning on ordering relations is not left to the SAT solver, but
done beforehand. This results in much smaller formulae and,
as shown in our evaluation, in a planner that outperforms pre-
vious SAT-based approaches as well as the state-of-the-art in
search-based HTN planning.

Introduction
In many practical applications, Hierarchical Task Network
(HTN) planning (Erol, Hendler, and Nau 1996) has proven
to be a useful formalism for modelling planning prob-
lems (Nau et al. 2005; Straatman et al. 2013; Champan-
dard, Verweij, and Straatman 2009; Dvorak et al. 2014;
Bercher et al. 2015; Behnke et al. 2018). It allows for spec-
ifying a primitive action theory in conjunction with a hier-
archical refinement structure. As plans have to be obtained
using these refinement rules they form a second means to
restrict the set of solutions. In fact, these restrictions are
strictly more expressive than classical (even using ADL)
planning (Erol, Hendler, and Nau 1996; Höller et al. 2014;
Höller et al. 2016; Bercher et al. 2016).

The hierarchy can also be used to restrict the search space,
leading to very efficient domain-configurable planning sys-
tems (like, e.g., SHOP2 (Nau et al. 2003)). However, this
increases the modelling effort severely. Recent research has
focussed on domain-independent HTN planning, which pro-
vides more freedom and flexibility to the domain modeller,
as he does not have to take the way the planner will solve
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the problem into account. Progress has been made using
heuristic search (Höller et al. 2018) and search space prun-
ing (Dvorak et al. 2014). However, since heuristics need
to be informed about both, the hierarchy and the state-
transition system, the design of HTN heuristics is difficult.
Empirically, translations of HTN planning problems into
propositional logic have proven successful (Behnke, Höller,
and Biundo 2018a; 2018b). They have a unified represen-
tation of state transition and hierarchy and benefit from on-
going research in SAT solving. Similarly, a translation into
propositional logic has been proposed for the HTN plan ver-
ification problem (Behnke, Höller, and Biundo 2017).

The first encoding of hierarchical planning was proposed
by Mali and Kambhampati (1998). Their formalism does not
specify initial tasks to decompose, but freely inserts (ab-
stract) tasks. Thus it does not comply with the established
HTN formalism and its definition of a solution, but is equiv-
alent to classical planning. Further, the encoding cannot han-
dle recursion, i.e., even with an initial task, it would allow
only for less expressive models. The second encoding has
been restricted to totally ordered HTNs, but allows for re-
cursion (Behnke, Höller, and Biundo 2018a). This decreases
the expressivity severely (Höller et al. 2014). The encoding
of the hierarchy has been based on the Path Decomposition
Tree (PDT), which represents all possible decompositions
up to a certain depth. It has been combined with the Kautz
and Selman encoding (1996) to represent the state transition
system. Behnke, Höller, and Biundo (2018b) introduced a
canonical extension to partially ordered HTNs, representing
ordering relations on top of the PDT. Thus the SAT solver is
tasked with all reasoning about ordering relations.

In this paper we introduce a novel encoding of Partially
Ordered HTN Planning as SAT. Most ordering-related rea-
soning is done before creating the propositional formula
– alleviating it from the SAT solver. This leads to much
more succinct encodings – theoretically O(n3) instead of
Θ(n4) clauses, which practically often degenerates to a for-
mula with O(n2) clauses. We further combine our hierar-
chy representation with the more recent ∃-step encoding for
classical planning (Rintanen, Heljanko, and Niemelä 2006).
The resulting planner outperforms existing SAT-based HTN
planners as well as the state-of-the-art in search-based
domain-independent HTN planning.



α(t1) = A

α(t2) = B

α(t3) = c

α(t4) = d

T = {t1, t2, t3, t4}

α′(t′1) = B

α′(t′2) = B

α′(t′3) = e

α′(t′4) = f

T ′ = {t′1, t
′
2, t
′
3, t
′
4}

Figure 1: Two example task networks tn = (T,≺, α) and
tn′ = (T ′,≺′, α′) where the order is given by the depicted
graphs. Compound task names are indicated with capital let-
ters, while lower-case letters indicate primitive task names.

Preliminaries
We use the HTN formalism of Geier and Bercher (2011).
Task networks represent partially ordered sets of tasks.
Definition 1 (Task Network). A task network tn over a set
of task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name
TNX denotes the set of all task networks over

task names X . Two task networks tn = (T,≺, α) and
tn′ = (T ′,≺′, α′) are isomorphic, written tn ∼= tn′, iff a
bijection σ : T → T ′ exists, s.t. ∀t, t′ ∈ T it holds that
(t, t′) ∈ ≺ iff (σ(t), σ(t′)) ∈ ≺′ and α(t) = α′(σ(t)). Two
examples for task networks are depicted in Fig. 1. The sec-
ond example also demonstrates the necessity of a separate
label set T , as the task name B occurs twice in tn′.
Definition 2 (HTN Planning Problem). An HTN planning
problem is a 6-tuple P = (L,C,O,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state
The state transition semantics of primitive task names
o ∈ O is that of classical planning, given in terms of a
precondition-, an add-, and a delete-list: prec(o) ∈ 2L,
add(o) ∈ 2L, and del(o) ∈ 2L.

A solution in HTN planning is obtained by starting with
the initial task and repeatedly applying decomposition meth-
ods until all tasks in the current task network are primitive.
The notion of decomposition is defined as follows. An ex-
ample can be seen in Fig. 2.
Definition 3 (Decomposition). A method m = (c, tnm) ∈
M decomposes a task network tn1 = (T1,≺1, α1)
into a task network tn2 by replacing the task t, written
tn1 −−→t,m tn2, if and only if t ∈ T1, α1(t) = c, and
∃tn′ = (T ′,≺′, α′) with tn′ ∼= tnm and T ′∩T1 = ∅, where
tn2 = (T ′′,≺X ∩(T ′′ × T ′′), (α1 ∪ α′ \ {(t, c)})) with

T ′′ = (T1 \ {t}) ∪ T ′

≺X = {(t1, t2) ∈ T1 × T ′ with (t1, t) ∈≺1} ∪
{(t1, t2) ∈ T ′ × T1 with (t, t2) ∈≺1} ∪ ≺1 ∪ ≺′

α(t1) = A α(t′1) = B

α(t′2) = B

α(t′3) = e

α(t′4) = f

α(t3) = c

α(t4) = d

T = {t1, t3, t4, t′1, t
′
2, t
′
3, t
′
4}

Figure 2: The task network tn∗ = (T ∗,≺∗, α∗) resulting
from applying the method (B, tn′) to t2 in tn of Fig. 1.

We write tn1 →∗D tn2 if tn1 can be decomposed into tn2
using an arbitrary number of decompositions.
The solutions to a planning problem are defined as follows.
Definition 4 (Solution). A task network tnS is a solution to
a planning problem P , if and only if
(1) ∃ a linearisation of the tasks of tnS , executable in sI
(2) ({id1}, ∅, {(id1, cI)})→∗D tnS
S(P) denotes the sets of all solutions of P , respectively.

Decomposition Trees (DTs) are witnesses showing that a
task sequence π is a solution to the planning problem (Geier
and Bercher 2011). They describe how π can be obtained
from the initial abstract task via decomposition. An example
of a DT can be seen as a subgraph in Fig. 3.
Definition 5 (Decomposition Tree). Let P =
(L,C,O,M, cI , sI) be an HTN problem. A decompo-
sition tree T is a 5-tuple T = (V,E,≺, α, β), where
1. (V,E) is a directed tree with a root-node r.
2. ≺ ⊆ V ×V is a strict partial order on V and is inherited

along the tree, i.e., if a ≺ b, then a′ ≺ b and a ≺ b′ for
any children a′ of a and b′ of b.

3. α : V → C ∪O assigns each inner node an abstract task
and each leaf a primitive task and α(r) = cI .

4. β : V →M assigns each inner node a method.
5. for all inner nodes v ∈ V with β(v) = (c, tn), tn =

(Ttn,≺tn, αtn), and children D = {c1, . . . , cn}, it holds
that c = α(v). Further, a bijection φ : D → Ttn must
exist with α(ci) = αtn(φ(ci)) for all ci, and ci ≺ cj iff
φ(ci)≺tn φ(cj).

≺ may not contain orderings apart from those induced by 2.
or 5. The yield yield(T ) of T is the task network induced by
the leafs of T , i.e. V , α, and ≺ restricted to these leafs.

Geier and Bercher (2011) showed the following theorem:
Theorem 1. Given a planning problem P , then for every
task sequence π the following holds:
There exists a decomposition tree (DT) T s.t. π is a lineari-
sation of yield(T ) if and only if π ∈ S(P).

This means that instead of finding a solution to the plan-
ning problem P , we can equivalently try to find a DT whose
yield has an executable linearisation.

Path Decomposition Trees and SAT
The new representation of partial order of HTN planning
problems and its SAT encoding will be combined with a pre-
vious encoding of HTN decomposition (Behnke, Höller, and



Biundo 2018b). As such, we start by reviewing this encod-
ing, denoted as SAT-tree. It is based on two key ideas:
1. Bound the maximum depth K of decomposition (and it-

erate to achieve completeness)
2. Compute a tree that contains all possible DTs of depth
≤ K as its subtrees

This tree – the Path Decomposition Tree (PDT) – is the basis
for a compact encoding of all possible decompositions into a
single SAT formula. Since every solution to a planning prob-
lem corresponds to a DT (with executable yield), a solution
can be expressed equivalently by selecting a subtree T of the
PDT and checking that T is a DT. Decision variables repre-
sent the selected subtree T while the requirements for a DT
(see Def. 5) are formulated as a propositional formula.

The translation starts by constructing the PDT for a depth
bound K. The PDT is a tree that contains all DTs of depth
≤ K as subtrees – with the additional condition that the root
of these subtrees is the root of the PDT. Behnke, Höller, and
Biundo ignored the order contained in methods completely
when constructing the PDT and check the ordering after-
wards in the formula. Ignoring order eases the construction,
but ignores important information in the domain, as we will
show in this paper. We denote with L(V,E) the set of leafs
of a tree (V,E).
Definition 6. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. A PDT PK of height K is a
triple PK = (V,E, α) where
1. (V,E) is a tree of height ≤ K with the root node r.
2. α : V → 2C∪O assigns each node a set of possible tasks.
3. α(r) = {cI}
4. for all inner nodes v ∈ V , for each abstract task
c ∈ α(v) ∩ C, and for each method (c, tn) ∈ M with
tn = (Ttn,≺tn, αtn), there exists a subset Dv

(c,tn) =

{v1, . . . , v|Ttn|} of v’s children, such that a bijection
φv(c,tn) : Dv

(c,tn) → Ttn exists with αtn(φv(c,tn)(d)) ∈
α(d) for all d ∈ Dv

(c,tn)

5. ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.
We denote with L(PK) = L(V,E) the leafs of the PDT.

The labelling function α provides for every node v the
set of tasks with which this node can be labelled in a DT.
Requirement 4 of Def. 6 enforces the mechanism of decom-
position. Whenever we can label a node v with an abstract
task c there might be a DT that contains v labelled with c. If
so, the node v must have children in the DT representing the
tasks obtained by applying a method to c. The PDT enforces
that for every applicable method children of v exist that can
serve as the children of v with the correct labels in a DT. An
example for a PDT and a DT as its subtree can be found in
Fig. 3.

The PDT for a given planning problemP and depth bound
K is not uniquely defined. A concrete PDT can be con-
structed by specifying both Dv

(c,tn) – the children of each
node representing the subtasks of a method (c, tn) applied to
v, and φv(c,tn) – the function deciding which child is used to
represent which task in the decomposition. Based on them,
a PDT can be constructed by expanding its current leafs

t1

t2 p1 p2

p1p3 p4

Figure 3: An example PDT, a DT as its subgraph (nodes
filled), and the extension for primitive tasks (dashed line).

until the necessary depth has been reached. The encoding
of PDTs into propositional logic is correct for every PDT,
i.e., one should choose a PDT leading to an easily decidable
formula. The procedure that, given the label set α(v) of a
node, computes all Dv

(c,tn) and φv(c,tn) for applicable meth-
ods (c, tn) is called child arrangement. Behnke, Höller, and
Biundo (2018b) used a greedy child arrangement ignoring
the order in methods to compute their PDTs with the goal of
minimising the number of label-sets α(v) for all children.

Based on a PDT, one can construct a propositional for-
mula that is satisfiable if and only if a DT with height ≤ K
and executable yield exists (Behnke, Höller, and Biundo
2018a; 2018b). Their construction comprises two parts: one
representing the DT as a subtree of the computed PDT and
one ensuring that the yield of the represented DT is exe-
cutable (see conditions 1 and 2 of Def. 4). The first formula
uses only two types of decision variables
• tv – v is part of the DT and labelled with t, i.e., α(v) = t.
• mv – method m was applied to node v, i.e., β(v) = m
Their formula ensures that a satisfying valuation forms a DT.
To ease testing executability it further ensures that whenever
a primitive task is assigned to an inner node of the PDT, it
is inherited to one of its children. Thus the tasks of the yield
of the represented DT are exactly the tasks assigned to leafs
of the PDT. An example for this can be seen in Fig.3. The
primitive p1 is assigned to an inner node and is inherited to
its left child.

The second part of the formula ensures that the yield
of the DT has an executable linearisation. This is done by
choosing such a linearisation and checking its executabil-
ity using the classical planning formula of Kautz and Sel-
man (1996). This formula expresses a plan as a sequence of
timesteps t. Note that in the version of the encoding used
by Behnke, Höller, and Biundo at most a single action can
be executed at each timestep. A task t being executed at
timestep i is represented by the variable t@i. The number of
timesteps is chosen as the number of leafs of the PDT, which
we denote with L = |L(PK)|. The formula by Behnke,
Höller, and Biundo (2018b) matches the tasks assigned to
the leafs L of the PDT to these timesteps. Matching a leaf
node v to timestep i is represented by the variable vi. To en-
sure that this matching creates a valid linearisation, the fol-
lowing conditions are asserted in the propositional formula:
1. every leaf and every timestep is matched at most once
2. a leaf is matched if and only if it is assigned a task
3. the task assigned to a leaf must appear at the timestep that

the leaf is matched to
4. tasks are only present at a matched timesteps



5. the chosen linearisation is consistent with the order in-
duced on the leafs by the applied decomposition methods

For condition 1 any of the known encodings of the at-most-
one constraint can be used. In our experiments, we have used
the sequential encoding (Sinz 2005). We will use the nota-
tion M(V ) to refer to a formula that expresses that at most
one of the decision variables V is true at a time. The first
constraint can be ensured by the following formula:

F1 =

L∧
i=1

M({vi | v ∈ L(PK)}) ∧
∧

v∈L(PK)

M({vi | 1 ≤ i ≤ L})

Next, they define the decision variables av , which are true if
the leaf node v contains any action, i.e., is active.

F ∗ =
∧

v∈L(PK)

¬av →∧
o∈α(v)

¬ov
 ∧

av →∨
o∈α(v)

ov


For conditions 2, 3, and 4, they use the following formulae:

F2 =
∧

v∈L(PK)

¬av →∧
1≤i≤L

¬vi

 ∧
av →∨

1≤i≤L

vi


F3 =

∧
v∈L(PK)

∧
t∈α(v)

∧
1≤i≤L

tv ∧ vi→ t@i

F4 =
∧

1≤i≤L

 ∧
v∈L(PK)

¬vi

→ (∧
t∈O
¬t@i

)
Checking condition 5 is the main difficulty of the encoding.
Since the order of all methods was ignored when construct-
ing the PDT, it has to be traced inside the formula. Behnke,
Höller, and Biundo (2018b) added variables bvv′ indicating
that the leaf v must occur before the leaf v′ in the lineari-
sation. These variables can be maintained by using the mv

decision variables. Based on them, the following formula
checks for every pair of matched leafs and timesteps whether
their relative ordering is forbidden by a bvv′ variable.

F5 =
∧

1≤i≤L

∧
i<i′≤L

∧
v∈L(PK)

∧
v′∈L(PK)

(vi ∧ v′i′)→ ¬bv
′

v

Behnke, Höller, and Biundo (2018b) proved that this encod-
ing is correct and complete for any given PDT. Their en-
coding proved efficient in an empirical evaluation and out-
performed existing HTN planning techniques for satisficing
planning.

Despite its success, it has two major disadvantages. First,
the size of the formula is Θ(n4) in the size of the leafs of the
PDT, i.e., the plan length, due to F5. Second, the encoding
does not take advantage of modern encoding techniques for
classical planning, which were shown to outperform the en-
coding by Kautz and Selman (1996). We show how to over-
come these issues and thereby improve the performance of
SAT-based HTN planning even further.

lca(l1,l2)

v2v1

l1 l2

Figure 4: Order between two leafs of a PDT and their impli-
cation for order inside a method.

Solution Order Graphs
The original encoding has O(n4) clauses due to the for-
mula F5, which performs reasoning about the order between
the leafs of the PDT inside the formula. We generate the
PDT while simultaneously performing reasoning on order
before creating the formula thus easing reasoning for the
SAT solver.

Consider two leafs l1, l2 ∈ L(PK) of the PDT (see Fig. 4).
The ordering between them is determined by the method ap-
plied to their least common ancestor lca(l1, l2) in the PDT.
More precisely, the order between l1 and l2 is the one be-
tween their ancestors v1 and v2, which are direct children of
lca(l1, l2), as determined by the applied method. In the SAT-
tree encoding, this can be any ordering (v1 ≺ v2, v2 ≺ v1,
or no order between them), depending on the chosen decom-
position method. We ensure by construction of the PDT that
irrespective of the method chosen for lca(l1, l2), the order
between v1 and v2 is always the same (provided that both
are part of the selected DT). If so, the order between all leafs
below v1 and all leafs below v2 will be fixed and the same as
the one between v1 and v2. Since the assignment of method’s
subtasks to children in the PDT is done by the child arrange-
ment, we require the following property for it, that ensures
the described property.
Definition 7 (Order-Consistent Child Arrangement). Let
P = (L,C,O,M, cI , sI) be a planning problem. Let v be
an inner node of a PDT PK = (V,E, α) and Dv

(c,tn) and
φv(c,tn) : Dv

(c,tn) → T (tn) its child arrangement function.
They induce the following order ≺∗v on v’s children:

v1 ≺∗v v2 ⇐ ∃c ∈ α(v)∃(c, (T,≺, α)) ∈M∃t1, t2 ∈ T :

t1 ≺ t2 ∧ φv(c,tn)(v1) = t1 ∧ φv(c,tn)(v2) = t2

The child arrangement is order-consistent iff ≺∗ is acyclic
and for all methods (c, (T,≺, α)) with c ∈ α(v):

∀t1, t2 ∈ T : t1 ≺ t2 ⇔ φv(c,tn)
−1(t1) ≺∗v φv(c,tn)

−1(t2)

The order of all applicable methods for an inner node v in-
duces an ordering of all its children, which can be interpreted
as a directed graph. In the above definition we require that
this graph is acyclic, i.e., it is a valid partial order. Consider
as an example an inner node for which two methods are ap-
plicable resulting in the task networks tn and tn′ shown in
Fig. 1. Due to the ordering of both task networks, it is im-
possible to find an order-consistent child arrangement with
only four children while five are sufficient. The minimally



α(t1) = {A,B}

α(t2) = {B}

α(t3) = {c}
α(t4) = {d, f}

α(t5) = {e} A

B

c d

B B

e

f

Figure 5: An order-consistent child arrangement for an inner
node of a PDT with two applicable decomposition methods,
resulting in tn and tn′. The mapping of the two task net-
works to the children (i.e. φv(c,tn)) is indicated with patterns.

possible child arrangement is depicted in Fig. 5, where we
show the five required children, their label sets α(v), and the
partial order induced onto them by the child arrangement.

If we construct the PDT using an order-consistent child
arrangement, the order of leafs, i.e., tasks in a solution, will
be uniquely determined. This order is compactly described
in a graph called the Solution Order Graph (SOG) S(PK).
The SOG represents exactly those ordering constraints that
need to be checked inside the propositional formula. These
constraints are furthermore independent from the chosen de-
composition methods and can thus be checked statically.
Definition 8 (Solution Order Graph). Given a PDT PK =
(V,E, α) that was constructed using an order-consistent
child arrangement. Its Solution Order Graph S(PK) =
(L(V,E),≺L) is given by

≺L= {(l1, l2) | ∃v1, v2 children of lca(l1, l2),

v1 ≺∗lca(l1,l2) v2,
v1 ancestor of l1, and v2 ancestor of l2}

By construction we know that if two leafs l1, l2 have tasks
assigned to them, i.e., are part of the selected DT, their order
in the yield of the DT will be the one between l1 and l2 in
the SOG.
Theorem 2. Given a PDT PK = (V,E, α) that was con-
structed using an order-consistent child arrangement. Let
l1, l2 be two leafs of a selected DT T as a subtree of PK . The
order of l1, l2 in yield(T ) will be the same as in S(PK).

Proof. Let PK be a path decomposition tree and T be a de-
composition tree that is a rooted subtree of PK . Let further
be l1 and l2 two leafs of T . Primitive tasks assigned by the
DT T to any inner node are inherited in PK towards the
leafs. This can equivalently be seen as extending the DT
T by repeating leafs containing these tasks. Thus we can
w.l.o.g. assume that l1 and l2 are also leafs of PK .

Next, we show that any order between l1 and l2 was intro-
duced by the method applied to their least common ancestor
in the DT T . Consider any method m applied to a node v
in T that is not an ancestor of l1 nor of l2. Let tn be the
task network to which m is applied1. According to Def. 3,

1A decomposition tree T can equivalently be seen as sequences
of task networks, where each is created from the next by decompo-
sition. The first task network is the one containing only the initial
task and the last one is yield(T ).

m can only change ordering constraints that were related to
the task it decomposes, any other in tn remain unchanged.
Any changed order will relate l1 and l2 (or their ancestors)
to a direct child of v, i.e., cannot introduce order between
l1 and l2 (or its ancestors). Newly introduced orderings will
only influence descendants of v, i.e., neither l1 nor l2. As
such, m cannot introduce order between l1 and l2.

Consider any node v that is an ancestor of l1 (l2) but not
of l2 (l1, respectively). Let v′ be the ancestor of l2 in the
task network tn and v∗ the child of v that is an ancestor of
l1. Any order between v and v′ is replaced by the same order
between v∗ and v′ while no new ordering constraints can be
added between them. As such, this method cannot introduce
the ordering between l1 and l2, but must only maintain it.

Any method applied to an ancestor v of l1 and l2 above
lca(l1, l2) cannot distinguish between l1 and l2 as they are
still represented by a single task at this point. As such, it
cannot introduce any order between them, nor can any other
method apart from the one applied to lca(l1, l2).

The order introduced by the method applied to lca(l1, l2)
on the respective ancestors v1 and v2 that are children of
v, is inherited towards the leafs of the tree by any method
application, as shown above. As such, if an ordering was
introduced here, it is still present between l1 and l2. In con-
clusion, the order between l1 and l2 is the same as between
their respective ancestors v1 and v2 that are children of v.

What remains to show is that the order between l1 and l2
as induced by the method applied to lca(l1, l2) is the same
as in the SOG S(PK). The child arrangement used to con-
struct PK induces an order ≺∗lca(l1,l2) on the children of
lca(l1, l2). According to Def. 8 the order between v1 and v2
under ≺∗lca(l1,l2) is the same as between l1 and l2 in S(PK).

Let αT be the assignment of nodes of the DT T to
their tasks. Let m = (c, tn) be the method applied to the
task c = αT (lca(l1, l2)). Let t1 and t2 be the tasks with

φ
lca(l1,l2)
m

−1
(t1) = v1 and φlca(l1,l2)m

−1
(t2) = v2, i.e., those

that are mapped by the child arrangement φ to the children
v1 and v2 that are ancestors of l1 and l2. The order between
l1 and l2 should be the same as between t1 and t2. Since
we are considering a DT T as a subtree of a PDT PK , the
method m was taken into account when constructing the
PDT (αT (lca(l1, l2)) ∈ αPK

(lca(l1, l2))). As the child ar-
rangement used to construct the PDT PK is order-consistent,
we can use Def. 7 to conclude that t1 and t2 have the same
order as v1 and v2 and thus l1 and l2.

Constructing Child Arrangements
In the previous section we have only stated requirements to
the child arrangement s.t. we are able to compute a SOG in
conjunction with a PDT. We have not given a method to ac-
tually compute such a child arrangement. Unfortunately the
child arrangement is again not uniquely defined. By adding
new and separate children for every applicable method, we
could easily create an order-consistent child arrangement.
Such an arrangement would, however, not be very efficient
as the resulting PDT would be extremely large. It is, how-
ever, not clear how an optimal child arrangement looks like.
It is uncertain whether it is better to have more leafs with



smaller α sets or fewer leafs with larger α sets – which is
the decision that the child arrangement makes. We presume
that having fewer leafs is advantageous, as it will minimise
the size of the resulting propositional formula.

To further analyse the child arrangement, we first trans-
form it into a more abstract graph problem. Given an inner
node v of a PDT, which is labelled with α(v), all methods
mi = (c, tni) for c ∈ α(v) are potentially applicable. We
assign to each such task network tni = (Ti,≺i, αi) a graph
G(mi) = (Ti,≺i) representing its order. These graphs are
acyclic and transitively closed. We are now looking for a sin-
gle graph G∗ = (V ∗, E∗) which is transitively closed, s.t.
all G(mi) are induced subgraphs of G∗. Given such a graph
and the respective mappings φi : Ti → V ∗, we can easily
construct the child arrangement from it. The set of children
will be V ∗, Dv

mi
= {φi(t) | t ∈ Ti}, and φv(c,tn) = φ−1i .

Since all G(mi) are induced subgraphs, we will fulfil the
main property of Def. 7, and as G∗ is transitively closed, the
resulting order≺∗v will be acyclic. We show that minimising
the size of V ∗, i.e., minimising the number of children for
an inner node, is NP-complete.

Definition 9 (TRANSITIVE INDUCED SUBGRAPH). Let
Gi = (Vi, Ei) be a family of n transitively closed DAGs
and K ∈ N. TRANS-IND-SUBGRAPH is to decide whether a
graph G with at most K vertices exists, s.t. every Gi is an
induced subgraph of G.

Theorem 3. TRANS-IND-SUBGRAPH is NP-complete.

Proof. Membership: Guess a graph G with k =

min{
∑
i |Vi|,K} vertices2. SinceG can have at mostO(k2)

edges, this can be done in quadratic time. Checking whether
G is transitively closed requires cubic time. Next, we loop
over allGi and guess for each an injective function µ : Vi →
V and check whether Gi is an induced subgraph of G under
µ. This loop needs cubic time, as it runs linearly often and
requires a quadratic check (one per edge) per graph Gi.

Hardness: We reduce from the subgraph isomorphism
problem (Garey and Johnson 1979, GT48). Let I1 =
(V I1 , E

I
1 ) and I2 = (V I2 , E

I
2 ) be two undirected graphs with

|V I1 | ≤ |V I2 |. W.l.o.g. we assume that neither I1 nor I2 con-
tain isolated vertices (i.e. those without a connected edge),
else they could be removed. We have to decide whether I1
is isomorphic to a subtraph of I2. We construct two graphs
G1 = (V G1 , E

G
1 ) and G2 = (V G2 , E

G
2 ) with

• V Gi = V Ii ∪ EIi and
• EGi = {(v, e) | v ∈ V Ii , e ∈ EIi , and v ∈ e}
Clearly, G1 and G2 are transitively closed. Then I1 is iso-
morphic to a subgraph of I2, iff TRANS-IND-SUBGRAPH is
true for the family G1, G2 and K = |V G2 |.
⇒: Let I ′2 be a subgraph of I2 that is isomorphic to I1 un-

der the isomorphism φ : I1 → I ′2. We selectG = G2 (i.e.,G
is transitively closed) and show that G1 is isomorphic to an
induced subgraph ofG2. This subgraph isG′2 = (V G2

′
, EG2

′
)

and is defined as
• V G2

′
= {φ(v) | v ∈ V I1 } ∪ {(φ(u), φ(v)) | {u, v} ∈ EI1}

2We cannot guess a graph of size K, as K is encoded logarith-
mically, i.e., the size of G would be exponential in the input.

• EG2
′

= {(v, e) | v, e ∈ V G2
′ and v ∈ e}

We choose µ(v) =

{
φ(v) if v ∈ V I1
(φ(u1), φ(u2)) if v = {u1, u2} ∈ EI2

as the isomorphism from G1 to G′2, showing that TRANS-
IND-SUBGRAPH is true.
⇐: Let G = (V,E) be the transitively closed induced

supergraph of both G1 and G2 with |V | ≤ |V G2 |. Thus,
G2
∼= G, and w.l.o.g. G2 = G and we have an injec-

tive homomorphism µ : V G1 → V G2 . We can choose the
bijection φ = {(v1, v′1) | v1 ∈ V I1 and µ(v1) = v′1}.
We have to show that the domain of φ is V I2 , i.e., that for
every v ∈ V I1 , µ maps it to a vertex in V I2 and not in
EI2 (which are also vertices of G2). I1 does not contain
isolated vertices, v has at least one outgoing edge in V G1 .
Since µ is a homomorphism, µ(v) must also have an out-
going edge. As only vertices v′ ∈ V I2 have outgoing edges
in G2, µ(v) ∈ V I2 . Thus φ maps I1 to a subgraph of I2.
We lastly, have to show that φ is also an isomorphism. If
e = {v1, v2} ∈ EI1 , then (v1, e), (v2, e) ∈ EG1 and thus
(µ(v1), µ(e)), (µ(v2), µ(e)) ∈ EG2 , as µ is a homomor-
phism. By construction of G2, we have {v1, v2} ∈ EI2 . The
inverse holds if e 6∈ EI1 , as µ is a homomorphism.

Due to this result, we have – for the time being – opted
to compute the supergraph G∗ in a greedy fashion. Given
all G(mi), we start with G∗ = G(m1) and try to merge all
other graphsG(mi) with i ≥ 1 intoG∗. For that purpose we
maintain both the actual graph G∗ and a list containing all
forbidden edges, i.e., those that cannot be inserted intoG∗ or
else the already processed graphs would not be induced sub-
graphs any more. In the beginning this list contains all edges
not contained inG(m1). We do the merging of a newG(mi)
node-by-node. We choose repeatedly a non-merged node vi
of G(mi) and check all nodes v∗ in G∗ whether merging
vi with v∗ would violate ordering constraints. For that we
have to check the edges to all vertices vj already merged
with their counterpart v∗j : if the edge (v∗j , v

∗) exists in G∗

and (vi, vj) not in G(mi) or (vi, vj) does in G(mi), but is
forbidden in G∗, then merging is not allowed. If there are
multiple possible merge candidates, we choose randomly. If
there is none, we add a new vertex to G∗. In both cases we
update the edge-set and the list of forbidden edges accord-
ingly. After we have merged all G(mi), we use the mecha-
nism described at the beginning of this section to compute
the child arrangement.

Exploiting SOGs
Having computed the PDT PK and extracted S(PK) using
the above described greedy child arrangement, we can ex-
ploit the structural information it exposes. Let αPK

be the
labelling function of PK . For a SOG S(PK) and a leaf l, we
write N+

S(PK)(l) to denote the direct successors of l in the
transitive reduction of S(PK), i.e., the version of S(PK) in
which all transitive edges have been removed.

We propose a new encoding for constraint number
5, i.e., F5, whose original version consists of Θ(n4)
clauses (Behnke, Höller, and Biundo 2018b). It asserted for
all possible pairs of matchings of leafs l1, l2 to timesteps



i < j that if l1 is matched to i and l2 to j, the order of the
leafs in yield(T ) for the represented DT T does not imply
l2 ≺ l1, which would be violated by this pair of match-
ings. Instead we check the following condition: If a leaf l is
matched to a timestep i, successors of l in S(PK) can only
be matched to positions after i, or equivalently, it is forbid-
den to match them to a position before i. Checking this con-
dition is sufficient: if a leaf l1 is matched to a timestep i, then
any leaf l2 with l1 ≺ l2 cannot be matched to a timestep j
with j < i, which is what the old F5 enforced. For determin-
ing the set of leafs occurring after any given leaf l1, we can
use the SOG S(PK) due to Thm. 2. We construct a replace-
ment for F5 by modelling this reduced condition as follows:
we first introduce new decision variables.
• f li – matching the leaf l to timestep i is forbidden
We then split the replacement for F5 into four parts.

F5 =
∧

l∈L(PK)

∧
1≤i≤L

f1(l, i) ∧ f2(l, i) ∧ f3(l, i) ∧ f4(l, i)

The first asserts that if leaf l is matched to timestep i, no
direct successor of l in S(PK) can be matched to its direct
predecessor i− 1. f2 and f3 will extend this transitively.

f1(l, i) = if i = 1 then true else
∧

l′∈N+
S(PK )

(l)

li→ f l
′

i−1

f2 extends “forbiddenness” from a single leaf l transitively
to all its successors in S(PK).

f2(l, i) =
∧

l′∈N+
S(PK )

(l)

f li → f l
′

i

f3 extends “forbiddenness” from a timestep i to all its prede-
cessors. Thereby the f li variables model the condition above.

f3(l, i) = if i = 1 then true else f li → f li−1

f4, lastly, enforces that the restrictions modelled by f li are
actually respected by he matching variables li, thus achiev-
ing a correct implementation of the above condition.

f4(l, i) = f li → ¬li

We call this encoding SAT-F. The new formula has only
O(n2∆+(S)) many clauses – where ∆+(S) is the maxi-
mum out-degree of any node in the transitive reduction of S.
In the worst case, ∆+(S) can be n, i.e., in the worst case the
encoding hasO(n3) clauses. However, in practice ∆+(S) is
often small and the sum of all direct successors is relatively
small, i.e., constant, making the encodingO(n2) in practice.
To conclude the presentation of the encoding, we formally
show that the SAT-F encoding is correct and complete.
Theorem 4. The SAT-F encoding generated based on a PK
constructed by an order-consistent child arrangement for
depth K has a satisfiable valuation iff the planning problem
P has a solution with a decomposition tree of height ≤ K.

Proof. Let F be the propositional formula generated us-
ing the SAT-F encoding based on a PK constructed by an
order-consistent child arrangement for depth K. It consists

of four conjunctive parts: the unaltered decompositional for-
mula FD by Behnke, Höller, and Biundo (2018a), the unal-
tered order formulae F1, F2, F3, and F4 by Behnke, Höller,
and Biundo (2018b), the encoding for primitive executabil-
ity by Kautz and Selman (1996), and our formula F5. Note
that the first two formulae were constructed using a PDT PK
computed by our new child arrangement.
Completeness: Let π ∈ S(P) be a solution to P with a
decomposition tree T of height ≤ K. Since we have con-
structed the PDT PK using a valid child arrangement, i.e.,
so that PK is actually a PDT according to Def. 6, FD
has a satisfying valuation that represents the decomposi-
tion tree T and assigns the tasks in yield(T ) to the leafs
of PK (Behnke, Höller, and Biundo 2018a, Thm. 3). Fur-
ther, there is a valuation of F1, . . . , F4 and the formula for
primitive executability that represents a mapping of the leafs
of PK to timesteps s.t. the resulting sequence of tasks is ex-
ecutable (Kautz and Selman 1996; Behnke, Höller, and Bi-
undo 2018b, Thm. 3). Note that this theorem already guar-
antees that the assignment of leafs to timesteps is a valid lin-
earisation of yield(T ). What remains to show is that there is
a satisfying valuation of F5. Let for every leaf l of the rep-
resented DT T be τ(l) the timestep it is mapped to. We then
set f li to true for all l and i < τ(l). This valuation satisfies
each conjunct of F5.
• For every leaf l matched to a timestep τ(i) (i.e. lτ(i) is

true) consider any direct successor l′ in the SOG S(PK).
By Thm. 2 we know that l′ is ordered after l in yield(T ),
thus it is matched to a timestep > τ(i). Thus f l

′

τ(l)−1 is
true, fulfilling f1.

• If f li is true, l is matched to a timestep after i. By Thm. 2
we know that any successor l′ of l in S(PK) occurs after
l in yield(T ) and has thus be matched to a timestep >
τ(l) > i. Thus f l

′

i is true, fulfilling f1.
• By choice of our valuation f3 holds.
• If f li is true, l is matched to a timestep > i, i.e., not i,

making li false.

Correctness: Let β be a satisfying valuation of the propo-
sitional formula. We know that β represents for FD a de-
composition tree T and assigns yield(T ) to the leafs of
PK (Behnke, Höller, and Biundo 2018a, Thm. 3). Likewise,
we know that β represents for F1, . . . , F4 a matching of
yield(T ) to timesteps and that yield(T ) is executable in the
chosen order (Kautz and Selman 1996; Behnke, Höller, and
Biundo 2018b, Thm. 3).

What remains to show is that the chosen matching is a
valid linearisation of yield(T ). Assume that this is not the
case. Then two leafs l1 and l2 in yield(T ) exist that are
ordered l1 ≺ l2 in yield(T ), but are matched to timesteps
i > j. As such l1i and l2j are true. Since l1 ≺ l2 in yield(T )
there must be a path in S(PK) from l1 to l2 (Thm. 2). Let
p = (l1, l

∗
1, . . . , l

∗
n, l2) be this path. Since β satisfies f1 and

l1i is true, f l
∗
1
i−1 must be true, as l∗1 is a direct successor of l1

in S(PK). Since β satisfies f2 we can conclude via induc-
tion that all f l

∗
i
i−1 are true and finally that f l2i−1 is true. Since

β satisfies f3 we can conclude via induction that all f l2k with



k ≤ i− 1 are true. Especially f l2j will thus be true. Since β
satisfies f4, l2j must be false, which is a contradiction.

Allowing Parallelism
With the presented encoding we have significantly low-
ered the number of clauses. Both SAT-tree and SAT-F are,
however, still using a fairly old propositional encoding for
checking executability of the chosen linearisation, namely
that of Kautz and Selman (1996). The high efficiency of
modern SAT-based classical planners is to a large extent
based on them allowing for parallel action execution. This
is represented in the encoding by multiple t@i atoms be-
ing true for one timestep i. The state-of-the-art in these en-
codings is the ∃-step encoding by Rintanen, Heljanko, and
Niemelä (2006). It uses the same general structure as the
Kautz and Selman formula. As such we can simply replace
the Kautz and Selman formula with the ∃-step formula.

The formula that matches the leafs of the PDT to
timesteps cannot match two leafs to the same timestep, i.e.
forbids any parallelism. We can remove this constraint by re-
moving the first conjunct from the F1 formula. It asserts that
for every timestep i at most one li atom can be true. After the
removing these clauses, the atoms li still represent a match-
ing that respects all ordering constraints with the sole change
that multiple leafs can be matched to the same timestep.

This however leads to an incorrect encoding. It is now
allowed to match two leafs l1 and l2 to the same timestep i
while l1 and l2 are labelled with the same task t. As a result
the solution will contain the task t only once, despite the
HTN domain having forced us to execute it twice.

To forbid this situation, we define new variables vti stat-
ing that leaf l is matched to timestep i and contains task t:∧

v∈L(PK)

∧
t∈α(v)

l∧
i=1

vi ∧ tv → vti

We then replace the first conjunct of F1 with the following
formula, ensuring correctness of the matching under paral-
lelism.

l∧
i=1

∧
t∈O

M({vti | v ∈ L(PK)})

This replacement can be applied to SAT-tree and SAT-F,
which will lead to the encodings SAT-tree ∃ and SAT-F ∃.

Evaluation
We have conducted an empirical evaluation of our planner
to show that it performs favourably compared to other HTN
planning systems. The code of our planner will be published.

Domains. Due to the absence of a standardised set of
benchmark domains, we have compared our planner against
the state-of-the-art in SAT based HTN planning on the do-
mains used in their evaluations. All of these domains are
freely available for download.

Planners. Each planner was given 10 minutes runtime
and 4 GB RAM per instance on an Intel Xeon E5-2660. We
have compared our new encodings against previous ones, as
well as against the following state-of-the-art HTN planners:

SAT-F ∃ expMC
SAT-F cryptominisat
SAT-tree ∃ cryptominisat
SAT-tree cryptominisat
PANDApro lm-cut
TDG-m greedy A*
HTN2STRIPS jasper
SHOP2
FAPE
totSAT
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Figure 6: Runtime vs number of solved instances per planner

• SHOP2 (Nau et al. 2003),
• FAPE (Dvorak et al. 2014),
• PANDA with the TDGm and TDGc heuristics (Bercher

et al. 2017) using greedy A*,
• HTN2STRIPS (Alford et al. 2016),
• PANDApro (Höller et al. 2018) using greedy A* and the

ADD, FF and lm-cut heuristics,
• totSAT (Behnke, Höller, and Biundo 2018a).
FAPE – according to the description in its paper – does
not support recursive domains. Thus, we ran it only on
the domains SATELLITE, WOODWORKING, and ROVER,
which are the non-recursive domains in our evaluation. Sim-
ilarly, totSAT is only applicable to domains where all meth-
ods are totally-ordered. As such, it was run only on those
36 instances which are totally-ordered. The HTN2STRIPS
planner translates an HTN planning problem into a se-
quence of classical planning problems, which it passes to
a classical planner. We have tested the original planner
from the paper, jasper (Xie, Müller, and Holte 2014), as
well as the best planners from the agile and satisficing
tracks of IPC 2018: Fast Downward Stone Soup (Seipp and
Röger 2018), saarplan (Fickert et al. 2018), and LAPKT-
BFWS-Preference (Frances et al. 2018). Lastly, we have
also included the best known SAT-based classical planner
MpC (Rintanen 2014), since using both the HTN2STRIPS
translation and Madagascars translation, i.e., the ∃-step en-
coding, in a row would also constitute a propositional en-
coding for HTN planning.

We have included both the previous encoding for
partially-ordered domains by Behnke, Höller, and Bi-
undo (2018b), as well as their encoding for totally ordered
domains (Behnke, Höller, and Biundo 2018a). Note that the
latter encoding cannot be used for partially ordered domains.
Thus it was only executed on the domains UM-TRANSLOG
and ENTERTAINMENT, as well as on those five instance
of SATELLITE which don’t contain partial order. Further
note, that in their evaluation partially-ordered instances were
manually changed to be totally ordered.

We have compared all four encodings – SAT-tree, SAT-
F, SAT-tree ∃, and SAT-F ∃ – with the same set of solvers.
For all encodings, we have used the same scheme for con-
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UM-TRANSLOG 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 19 17 17 17 6 22 - 19/19
SATELLITE 25 25 25 25 25 24 24 25 25 25 25 25 25 25 25 25 25 25 24 23 25 21 23 19 14 12 0 22 22 5/5
WOODWORKING 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 9 9 8 10 5 5 5 5 4 8 0 -
SMARTPHONE 7 7 7 7 7 7 7 6 7 6 6 7 7 6 6 6 7 5 5 5 5 5 6 6 5 5 4 4 - -
PCP 17 12 12 12 12 12 12 12 12 12 12 11 12 11 12 11 12 9 10 11 9 8 3 3 3 3 0 0 - -
ENTERTAINMENT 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 12 9 9 5 5 5 4 4 5 - 12/12
ROVER 20 10 11 9 8 5 6 4 4 4 4 4 6 4 4 4 5 4 3 4 2 2 5 5 4 4 4 3 3 -
TRANSPORT 30 22 20 20 20 15 14 15 17 22 20 19 21 15 15 15 18 9 11 7 1 1 19 17 13 13 3 0 - -
total 144 121 120 118 117 108 108 107 110 114 112 111 116 106 107 106 112 95 95 93 81 78 85 77 66 63 25 64 25/56 36/36

Table 1: Number of solved instances per planner per domain. Maxima are indicated in bold.
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Figure 7: Number of clauses in instances compared per en-
coding, axes are scaled logarithmically. Colours indicate or-
ders of magnitude. OOM = Out-Of-Memory

structing and evaluating the formulae. We always start with
a depth bound of K = 1, run the solver until either SAT or
UNSAT is returned, and in case of the latter increase K by
1. We have tested the best performing solvers of the SAT
Competition 2018. Amongst them, expMC (Chowdhury,
Müller, and You 2018), cryptominisat5.5 (Soos 2018), CaD-
iCaL (Biere 2018), and MapleLCMDistChronoBT (Ryvchin
and Nadel 2018) have shown to be the best performing ones
and have thus been included in this evaluation.

Results. We only present information about coverage,
runtime, and relative sizes of encodings in the main paper.

In Figure 7 we present a scatter plot showing the num-
ber of clauses needed to encode each problem for every
attempted depth bound K for the SAT-tree and SAT-F en-
codings. Note that even though we have reduced the size
of the encoding from O(n4) to O(n3) in theory, an empir-
ical evaluation is still warranted. In both cases, the size of
the encoding depends on the number of leafs of the con-
structed PDT. Since we require an order-consistent child ar-
rangement when constructing our PDTs, they might have
more leafs than those constructed with the original method
by Behnke, Höller, and Biundo (2018a). This however can
– counter-intuitively – also lead to a decrease in the num-

ber of leafs, due to a “better” selection of label sets for the
children. On the evaluated domains the number of leafs does
not differ significantly between the two methods. Out of 269
PDTs constructed using the two methods, 68 differed in size.
The highest increase in size was 9.5%, the highest decrease
14.2%. In absolute terms, the highest increase was an ad-
ditional 16 leafs and the highest decrease was 5 leafs. We
can see that SAT-F has by construction fewer clauses and
that the difference can reach up to two orders of magnitude.
Further, there are several instances where the SAT-F formula
could be constructed (and solved) while the SAT-tree encod-
ing caused an out-of-memory. E.g. this is the case in 14 out
of 20 instances of the rover domain.

In Tab. 1 we show the number of instances solved per
planner and domain. Fig. 6 shows the solved instances de-
pending on runtime, where we show for each propositional
encoding only the best performing SAT solver and for the
HTN2STRIPS encoding only the best performing classical
planner, jasper. Unfortunately, the reduction in number of
clauses between the SAT-tree and SAT-F encodings alone
does not improve the performance, as we hoped for. Depend-
ing on the solver, the coverage either rises by 1-2 instances
or falls by 2. However, combining the ∃-step encoding with
SAT-tree improves coverage by between 4 and 8 instances.
Interestingly, if both improvements are combined, coverage
increases by 5 to 15 over the base encoding, by 1 to 8 over
the SAT-tree ∃, and by 7 to 13 over the SAT-F encoding.

The presented encodings outperform all other HTN plan-
ners. This is true for planners based on heuristic search
(PANDA and PANDApro), search space pruning (FAPE),
and translation into classical planning (HTN2STRIPS). As a
side note, we also see that the performance of recent classi-
cal planners on translated HTN problems has degraded com-
pared to the four year old jasper. The poor performance of
MpC is due to an interaction between its disabling graph and
the HTN2STRIPS encoding forbidding all parallelism.

Conclusion
In this paper we introduced a new method for construct-
ing Path Decomposition Trees such that we can extract a
fixed order of their leafs. This order is expressed in the So-
lution Order Graphs (SOG). Based on it, we have introduced
a novel propositional encoding SAT-F ∃ for HTN planning



that is much more compact than previous ones. Our plan-
ner using this new encoding outperforms all state-of-the-art
HTN planners. We think that the SOG is an interesting start-
ing point for further investigations into the solutions of HTN
planning problems and could allow for further exploitation
of domain structure while planning.
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Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of ECAI.
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