Interval Based Relaxation Heuristics for
Numeric Planning with Action Costs

Johannes Aldinger and Bernhard Nebel

Department of Computer Science, University of Freiburg, Freiburg, Germany
{aldinger,nebel}@informatik.uni-freiburg.de

Abstract. Many real-world problems can be expressed in terms of states
and actions that modify the world to reach a certain goal. Such prob-
lems can be solved by automated planning. Numeric planning supports
numeric quantities such as resources or physical properties in addition
to the propositional variables from classical planning. We approach nu-
meric planning with heuristic search and introduce adaptations of the
relaxation heuristics hAmax, hada and hrrp to interval based relaxation
frameworks. In contrast to previous approaches, the heuristics presented
in this paper are not limited to fragments of numeric planning with in-
stantaneous actions (such as linear or acyclic numeric planning tasks)
and support action costs.

1 Introduction

Whereas domain-independent planning has proven successful, numeric quantities
such as physical properties (e.g. velocity) and resources (e.g. fuel level) cannot
be modeled in classical planning. As many real world problems feature numeric
quantities, we aim to advance domain-independent planning by including nu-
meric quantities, leading to numeric planning.

The performance of applying informed search algorithms such as hill-climbing
or best-first search to planning depends on the quality of the underlying heuristic.
One challenge is to design good heuristic estimators for numeric planning. We
are interested in adapting the forward chaining delete relaxation heuristics Amax,
hadd and hpp to numeric planning. The delete relazation from classical planning
ignores negative interactions between actions by neglecting delete effects: effects
that falsify propositional variables. As such the set of achieved propositions grows
monotonically, and heuristics can be computed in polynomial time. For numeric
planning, intervals offer a way to compactly represent an over-approximation of
arbitrarily many values that can be achieved by a variable.

Another challenge is that numeric actions are non-idempotent operations: ap-
plying the same numeric effect to a state more than once can yield a new distinct
successor every time. This makes heuristics based on a basic interval relaxation
only polynomial in the length of a shortest relaxed plan [13]. Recently, Aldinger
et al. [2] proposed a more sophisticated interval-based relaxation framework for

numeric planning that captures arbitrarily many repetitions of applying a nu-
meric action in one step. The plan existence problem in this repetition relaxzation
is polynomial in the input for tasks with acyclic dependencies.

Previous work on numeric relaxation heuristics is either restricted to a frag-
ment of numeric planning, e.g. Metric FF [13] is restricted to linear tasks whereas
MIPS [9], Colin [8] and ENHSP [I8] only deal with uniform action costs. The
hmax and h,qq variants of Scala et al. [I7] correspond roughly to the planning
graph approach with a repetition relazation in this paper. We are interested in
adaptations which offer heuristic guidance for all numeric planning tasks with
instantaneous actions including actions with non-linear effects and non-uniform
action cost. Notably, we are also interested in computing a hpp-like heuristic,
i.e., a heuristic basing its estimate on the extraction of valid relaxed plans.

In this paper, we explore the design space of numeric relaxation heuristics
with regard to two relaxation methods (interval or repetition relaxation), two
methods of aggregating heuristic costs (maz and sum), and two search tech-
niques for relaxed reachability (a planning graph method and priority queues).
We identify tractable combinations and derive heuristics which also take action
costs into account. We propose a new method to handle tasks with cyclic de-
pendencies in the numeric effects which differs from Scala et al. [18]. Finally we
present a generalization to the marking method of relevant operators used by
hgr, which explicates target values in the intervals to extract relaxed plans.

2 Interval Relaxation

A delete relaxation is a simplification of a planning instance where facts which
are achieved once remain achieved. Thus, the set of achieved values grows mono-
tonically. In relaxed classical planning, actions are idempotent and therefore, this
growth is bounded by the number of actions in the planning task. In numeric
planning, actions are non-idempotent operations and the number of values a
variable can attain is unbounded even by executing a single action repeatedly.
Aiming towards a tractable relaxation for numeric planning, intervals are an
obvious choice to represent the achieved values of a variable, as they offer a
compact representation. Furthermore, the number of action applications can
be restricted as well. We discuss two relaxation frameworks that approach this
challenge differently.

The depth of a relaxed planning graph is restricted to the length of a shortest
relaxed plan, which allows us to compute an interval relazed planning graph very
much like in classical planning. However, desired heuristic properties (such as
admissibility for hpax) can not be guaranteed in this framework. The repetition
relazation uses a semi-symbolic representation of intervals to simulate the be-
havior of arbitrary many action repetitions at once. This makes relaxed actions
idempotent, and the plan existence problem can be decided in polynomial time.
In this section, we give a condensed overview of these relaxation frameworks,
borrowing notation from Aldinger et al. [2].

Interval arithmetic [I9] uses an upper and a lower bound to enclose the actual
value of a number. Intervals [z, Z] contain all rational numbers from z to 7. We
refer to the lower bound of an interval by z and to the upper bound by Z.
Intervals can be closed or open and we denote closed interval bounds by brackets
[:,7] and open interval bounds by parentheses (-, 7).

A numeric planning task I = (Vp,Vn,A,Z,G,7) is a 6-tuple, where Vp is
a set of propositional variables with domain {true, false}, Vy is a set of nu-
meric variables with domain Q> := Q U {—o0, 00}, A is a set of actions, Z
the initial state, G a goal condition and v : A — Q7 is a function assigning a
strictly positive rational cost to each action. A state is a (full) mapping from
variables V := Vp U Vy to values from their respective domain. A numeric ez-
pression (&1 0 &) is an arithmetic expression with operators o € {+, —, x, =}
and expressions & and & recursively defined over variables Vi and constants
from Q. A numeric constraint (£ > 0) compares numeric expressions & to 0 with
> € {>,>,=} and a (goal or action) condition is a conjunction of propositions
and numeric constraints. Numeric effects are assignments (v o= £) where v is a
variable from Vy, o= € {:=,+=, —=, x=,+=} and & is a numeric expression.
Actions in A have the form (pre,eff) and consist of a condition pre and a set
of effects eff containing at most one truth assignment for each propositional
variable and at most one numeric effect for each numeric variable.

The semantic of a numeric planning task is straightforward: conditions are
satisfied in a state if all propositions evaluate to true and all numeric constraints
are satisfied, where numeric expressions are evaluated recursively. The evaluation
of expression ¢ in state s is denoted by s(£). Actions are applicable in a state,
iff the precondition is satisfied and none of its effects causes a division by zero.
The successor state s’ obtained by applying an action in state s is s, expect for
variables that appear in an effect. Propositional variables are assigned the new
truth value and the values s'(v,,) of each numeric variable v,, are evaluations of
the expression on the right hand side of the effect in s applied to s(v,,) according
to the assignment operator. A plan w is a sequence of consecutively applicable
actions that leads from 7 to a state satisfying G.

We consider two relaxation frameworks: the interval relaxation and the rep-
etition relaxation. Syntactically, they differ only slightly from the unrelaxed
task. The domains of numeric variables Vy are now intervals. The interpre-
tation of constants and the values of variables in the initial state are degenerate
(one element) intervals. The semantics of both relaxations are based on interval
arithmetic. Numeric expressions evaluate to intervals, and numeric constraints
are satisfied, if numbers exist within these intervals that satisfy the constraint.
Propositional effects that would set a variable to false are ignored.

Numeric effects ensure monotonicity by use of the convex union r = x Uy
where r = min(z,y) and ¥ = max(Z, 7). The successor state s’ obtained by
applying an action in s is again s, except for variables v that appear on the left
hand side of numeric effects. These variables are mapped to s'(v) = s(v)Ueval(v),
where eval(v) is a relaxation dependent evaluation of the numeric effect. For the
interval relazation, eval(v) is the evaluation of the effect right-hand side, using

interval arithmetic on the intervals from s. For the repetition relaxation eval(v)
is the result of simulating arbitrary many repetitions of the effect in isolation.
The idea behind the repetition relaxation is that relaxed actions become
idempotent if arbitrary many repetitions are handled at once. The evaluation
of arbitrary many action applications does not have to be computed with an
actual simulation. More efficiently, it is sufficient to consider the behavior of nu-
meric effects. If an additive effect (+= and —=) extends an interval bound of a
variable in a state once, it can extend that bound to any value by applying the
action multiple times. The repetition result of an additive effect only depends on
whether the evaluated effect interval contains negative or positive numbers, but
it does not depend on the amount. For multiplicative effects, the assignment can
contract or expand depending on whether the effects intervals contains numbers
with absolute value greater or less than 1 and switch signs if it contains negative
elements. This observation allows us to decompose the evaluation of numeric ef-
fects into behavior classes B = {(—o0, —1),{—1},(-1,0),{0}, (0,1),{1}, (1,00)}
and then unite these partial effects to obtain the interpretation of eval(v) in
the repetition relaxation. Detailed semantics are found in the original paper [2].
We remark that the decomposition into behavior classes bases the evaluation
eval(v) on the values of s(v) before the application. As such, s’(v) can hit new
behavior classes. As the number of behavior classes is restricted, the repetition
relaxed actions are “pseudo-idempotent”: they can change up to three times (v
has a different behavior if it is negative, zero or positive). Another source of
non-idempotence comes from the interaction between actions which becomes es-
pecially problematic if these dependencies are cyclic. As such, the authors of the
repetition relaxation deem it only feasible for tasks with acyclic dependencies.

2.1 Cyclic Dependencies

The interval which is reached by applying a numeric effect v, o= ¢ depends
on the values of all variables in £. This dependency relation induces a depen-
dency graph. If the dependency graph is acyclic, sequences of actions are pseudo-
idempotent as the values of the variables stabilize in topological order.

Cyclic dependencies can make sequences of actions non-idempotent. It is an
open research question, whether the interval that is reached after repeatedly
applying a sequence of actions causing a cycle can be determined in polynomial
time. In order to enforce a topology nevertheless, we can break cycles by intro-
ducing auxiliary variables. The check for cycles can be done in polynomial time
by algorithms checking for connected components in the dependency graph. In
the heuristic, we include special cycle breaker actions which can reinsert the val-
ues of the auxiliary variables to the higher level original variable in a controlled
manner. The implementation of these cycle breaker actions opens design space.
Tractable heuristics have to bound the number of reinsertions.

The most coarse cycle breaker action sets changing variables to (—oo, 00):
an interval which can not be extended thus ensuring idempotence. A little more
accurate is to only set an interval bound to infinity if the interval changed into the
respective direction. This relates very much to the additive effects transformation

[18], which compiles assignments z := ¢ into increase effects © += & — z. Both
approaches relax cyclic effects even further by assuming that a shifted bound can
be extended arbitrary often by the same margin. An advantage of our method
is the restriction of cycle handling to the cycle breaker actions, which does not
affect the preconditions of all other actions.

3 Numeric Planning Graph Heuristics

We want to solve a delete relazed simplification of a planning problem in order to
guide search in the original one. For classical planning, the relaxed plan existence
problem is easy: starting from the initial state, we can iteratively apply all appli-
cable actions to the relaxed state in parallel. The procedure terminates when a
fix-point is reached. The relazed parallel planning graph [14] is a graph represen-
tation of this planning procedure. It consists of alternating state layers of reach-
able propositions and action layers of actions which are applicable in that propo-
sitional state. The forward propagation heuristics h,qq [0, [B] and its admissible
counterpart Amax [4] estimate the cost y(v,) to achieve the propositions v, for
each achieving action a by v(v,) := ming(v(vp), v(a) + v(pre(a))). Propositions
that hold in the initial state are initialized to cost y(v,) = 0 and to y(v,) = 0o
otherwise. The action precondition cost y(pre(a)) is an estimate of the cost of a
set of propositions. The heuristics differ in how the cost of this set is estimated.
For hmax, the most expensive proposition cost y(pre(a)) := max, cpre(a) ¥(vp) is
used, while haqq uses the sum of all preconditions y(pre(a)) := 3, cpre(a)¥(p)
instead. The hpp heuristic [I4] improves on h,qq by marking actions that are
required to compute the h,qq estimate regressively, and as such it computes a
relaxed plan, using its cost as hrp estimate.

3.1 Heuristic Estimators for Numeric Planning

We discuss tractable extensions of the heuristics hpmax, hada and hpp in the
two interval based relaxation frameworks introduced in the previous section:
the interval relazation and the repetition relazation. In a purely propositional
setting, facts can be seen as variable-value pairs, where the value of propositional
variables are subsets of {true, false}. Similarly, a “fact” for numeric planning
is a variable-value pair where the values of numeric variables are intervals. In
contrast to classical planning, there are infinitely many such variable-value pairs.
Tractable heuristics have to restrict the number of considered numeric facts.
Numeric facts occur as implicit preconditions of the actions of the planning
task. A numeric effect v o= ¢ can reach a certain interval s'(v) by certain
combinations of the intervals s(v) and s(§) before the application of the action.
In general, there are infinitely many possible combinations of s(v) and s(§) to
reach s'(v) and thus, the pairs (v, s(v)) and all pairs of variables (v, s(v.)) where
ve appears in the expression ¢ are implicit preconditions. Similarly, numeric
constraints £ > 0 can be satisfied by infinitely many target values g. € s(&)

satisfying g. > 0. These target values g. can be reached by combinations of
values of the variables in ¢, making them implicit preconditions, too.

A numeric relaxation heuristic has to ensure that first, values in the precon-
dition enable the required values in the effect and second, that the number of
considered numeric facts is bounded. We discuss a planning graph based and a
priority queue based approach to restrict this number, both of which are moti-
vated by the method of computing the cost formulas in classical planning.

The first approach is based on the parallel planning graph representation for
relaxed planning. The considered facts are restricted to one variable-value pair
for each variable in the state layers of the planning graph. For interval based
planning, several parallel actions can alter the same variable, in which case the
convex union of the individual results is used. The cost of a variable-value pair is
again the cost of the cheapest achiever, and the cost of a set of such numeric facts
is the sum or the maximum of each variable-value pair. Implicit preconditions
from constraints and effects are included in the “fact set cost”.

A different approach to restrict the considered numeric facts is to use a
generalized Dijkstra algorithm for estimating the fact or fact set costs. Facts
are processed according to a priority queue storing the cost to achieve them. As
other actions can alter a variable while a new value is still in the priority queue,
the considered numeric facts are convex unions of the effects values reachable at
enqueue time and the variable’s value at dequeue time.

Both approaches, the planning graph and the priority queue based approach
restrict the number of considered variable-value pairs. Note that other approaches
are conceivable, e.g. Scala et al. [I7] discriminate facts by condition type. We
will now discuss combinations of both approaches with interval or repetition re-
laxation which guarantee polynomial time bounds on the heuristic computation.

3.2 Heuristics Based on Planning Graphs

In the relaxed planning graph, the length of a shortest relaxed plan restricts
the maximal number of layers required until the goal formula is satisfied for the
first time. Therefore, heuristic cost estimations are polynomial in the output
size |A| x |V| x |7*| where 7* is a shortest (but not necessarily cheapest) plan.
Variations of this approach are often used for numeric planning [9, [7] T3], [18].
A weakness of this approach is that, for the interval relazation, hpax does
not compute admissible estimates in tasks with action costs, and the cost es-
timates for haqq can be higher than the estimates that would be computed by
the formulas for classical planning. The reason is that a fact can be achieved
at a better cost in a deeper layer in the planning graph. This is a problem for
numeric planning, because no a priori bound can be given on how deep the bet-
ter value could be found. Opposed to relaxed classical planning, where heuristic
computation terminates when a fix-point is reached and no new facts are added
or reached at a cheaper cost from one layer to the next, interval relaxed “facts”
will usually not reach a fix-point. Instead, graph generation terminates as soon
as the goal formula is satisfied for the first time. Admissibility of hy.x can be

enforced by setting the cost of all actions to the cheapest cost among action costs
applicable in the current layer, which kind of obviates the use of action costslﬂ

A combination of the repetition relaxation with the planning graph based
variable-value pair selection strategy is not as promising as other combinations.
The repetition relaxation is coarser than the interval relaxation as it aggregates
arbitrary many repetitions. The planning graph approach is less accurate than
the priority queue based approach when several actions of different cost alter
the same variable: the result is the convex union of all individual results but the
cost is the cost of the best achiever. The approach combines the downsides of
the components without really making up for that.

3.3 Heuristics Based on Priority Queues

Priority queue based heuristics in the interval relaxation framework lack tractabil-
ity as unboundedly many cheap actions can be processed before relevant ones.

The number of variable-value pairs which are inserted into the priority queue
has to be bounded. Unfortunately, even repetition relaxed actions, or sequences
thereof can be non-idempotent. Effects in the repetition relaxation are applied on
the intervals fixed to the preceding state. Interactions of an action with itself are
not considered when computing the behavior of the action. Similarly, a sequence
of actions can be non-idempotent, even if every single action is idempotent. There
are three sources of non-idempotence: variables hitting new behavior classes,
interacting variables and, finally, cyclic dependencies between variables.

First, applying a numeric effect can cause a variable to hit a new behavior
class. This type of non-idempotence does not impair tractability, as the behavior
of a variable can change at most three times (v > 0, v =0, v < 0).

Second, the result of a numeric effect depends on the variables in the assigned
expression. As such, actions are reenqueued whenever an implicit precondition
achieves a new value. For many planning tasks, the dependency relation between
variables is acyclic. While the plan existence problem in the repetition relazation
is polynomial for acyclic tasks [2] this does not restrict the number of queue in-
sertions polynomially. The problem occurs if cheap actions depend on many
other more expensive actions which reside in topologically higher layers of the
dependency graph. Theorem 1 of the Addendum to this paper [3] shows an ex-
ample requiring exponentially many enqueue operations. The heuristic becomes
tractable if actions which have an implicit precondition on a variable are only
enqueued after all topologically higher variables have been processed. However,
this means that variables in the lower layers have to wait for variables in a higher
layer regardless of their cost. As the values achieved by the topologically higher
variables might not be required, admissibility of Apyax is impaired with this ap-
proach. For h,4q, overestimating the heuristic value is acceptable, allowing us to
block enqueuing of topologically lower variables until topologically higher vari-
ables are processed. A workaround for Apmayx is to compute hyax in two phases.

1 Scala et al. [I7] run into a similar problem using “asynchronous subgoaling” and
have to set the cost of hard conditions to 0 to ensure admissibility of Amax-

In the first phase, maximally reachable intervals for all variables are determined,
and tractability is ensured by delaying topologically lower variables. Then, in a
second phase, the maximally reachable values from the first phase are used for
the assign effects. Topological dependencies do not have to be respected with
maximally reachable intervals, as now action sequences are idempotent.

The third source of idempotence are cycles in the dependency graph, which
can be broken by introducing auxiliary variables as presented in Section

Bounding non-idempotence ensures that priority queue based algorithms can
compute repetition relared estimates for hp.x and haqq in polynomial time.

3.4 hgp-Based Heuristics

The hpp heuristic computes a relaxed plan, and uses the cost of this plan as
heuristic estimate. As in classical planning, this plan is computed regressively
by greedily marking required facts and actions based on the h,qq estimates. The
marking procedure captures beneficial interactions such as an action enabling
precondition facts of several others. Numeric planning offers even more room for
improving hpp over h,qq by not having to fully enable implicit preconditions, as
numeric facts do not necessarily have to enable the whole reachable interval. A
major contribution of this paper is a generalization of the marking procedure
to numeric planning, which selects explicit target values in the precondition fact
intervals in order to determine the necessary part of numeric preconditions.

Ezample 1. Let so(v1) = [0,0] and so(v2) = [1,1] and actions a1 = (P, v += v3)
and as = {0, vo := 5) with cost v(a;) = 1 and y(az) = 10 having to satisfy a
condition C : v1 —1 > 0. Applying a, is sufficient to satisfy C. However, as a; has
a precondition P, ag could be applicable before a; making s(v2) = [1,5] with
v = 10. Explicating target values allows us to set go = 1 for vy, making hpp
chose sg(v2) = [1,1] with v = 0 instead, thus marking a; but not as.

For the repetition relazed approach, explicating target values also allows to de-
termine the actual number of repetitions required for each action, and thus, the
repetition relared hpp heuristic can compute an interval relaxed plan which is
more accurate than accounting for relaxed actions only once.

The progression step generates a sequence of relaxed states with the property
that the intervals for each variable are monotonically increasing and the last state
satisfies the goal condition. Starting from the goal conditions, we explicate target
values in these intervals regressively, while marking actions enabling them. The
hpp estimate is then the cost of marked actions.

3.5 Explication of Target Values

Given a sequence of relaxed states determined by a progressive reachability anal-
ysis and the actions achieving the respective reachable intervals, we want to
explicate target values in these intervals so that the resulting plan has mini-
mal cost. The explication procedure has to respect local target value constraints

for each action, which ensure that all implicit and explicit preconditions of the
action are satisfied and that the action achieves the desired values. These local
target value constraints generate a set of feasible sub-intervals, where each choice
of an explicit target value can lead to some relaxed plan.

The global target value optimization problem is then an optimization prob-
lem that selects target values in the feasible sub-intervals which minimize the
cost of the resulting relaxed plan. Each target value choice influences the local
target value constraints of all preceding states. The global target value opti-
mization problem is NP-complete (see Theorem 2 of the Addendum [3]) and we
will therefore propose approximate target value selection strategies for the local
constraints and drop the requirement that the extracted plan has to be optimal.

The sequence of relaxed states starts in a state sg consisting of degenerate
point intervals, the state for which the hpp estimate has to be computed. The
generated relaxed state sequence depends on the progression method: with the
planning graph approach, relaxed states are the “fact layers” of the planning
graph, whereas with a priority queue based approach the states are given by
all intervals reachable with cost equal to the priority at enqueue time. The last
state of the reachability sequence satisfies the goal condition.

The local target value constraints ensure that for each numeric effect of a
given action a, all implicit and explicit preconditions are satisfied in the relaxed
state before the application of the action, and that the execution of its numeric
effects enables the target values desired from the global optimization component.

Three basic target value conditions ensure satisfaction of a local target value
constraint of an action: Its explicit preconditions have to be satisfied (1). This
requires numeric expressions evaluate to a desired target value (2). Finally, the
numeric effects have to reach the desired target value (3). These basic target
value conditions then restrict the intervals of the preceding state by sub-intervals
containing feasible selection choices for the global target value optimization.

The first basic target value condition has to ensure that a constraint £ &> 0
is satisfied in the state s(£) preceding the action. We know that the action is
applicable in the progression s £ s(§) > 0. Therefore, the feasible sub-intervals
s(&) N[0, 00) for “>7, s(£)N (0, 00) for “>" or s(£)N[0,0] for “=" are non-empty.

Ezample 2. Let € evaluate to s(§) = [—2, 3]. The constraint & > 0 can be satisfied
by any value in the feasible sub-interval [0, 3], the result of [-2, 3] N[0, c0).

The second basic target value condition has to ensure that a numeric expres-
sion &1 0&9 evaluates to the target value q. Feasible sub-intervals can be obtained
by first determining potential partners which make the expression evaluate to
g by solving the equations I; o s(§2) = s(q) and s(&1) o I = s(q) for I; or
I respectively, where I; and I, are intervals containing all numbers that have
a partner in s(&) or s(&;) respectively so that the expression evaluates to g.
The feasible sub-intervals for the optimization component are then s(&;) N Ip
and s(&) N I5. Special care has to been taken if the inversely reachable partner
“intervals” come from a division by an interval containing 0, an interval opera-

tion which can cause gaps in the resulting interval. We cannot relax the partner
property, and therefore, the respective partner interval I; or I is split.

Ezample 3. Let (&) = [—1, 4] and s(&) = [-3 } 2] for &1 x & enabling ¢ = 2. The
partner interval I; = [2,2] <+ [—3, 2] is split into Il =[2,2]+[-3,0) = (— oo, —%]
and I = [2,2] + (0,2] = [1,00). The partner interval I, = [2,2] + [~1,3] is
split into I3 = [2,2] = [~1,0) = (—o0, —2] and I2 = [2,2] = (o,% — [4,00). The
feasible sub-intervals are then s(&)nN I1 =[-1,-%] and s(&)N13 = [-3,-2] as

the disjunctions s(£1) N I? and s(€2) N I3 are empty.

Finally, the third basic target value condition ensures that a numeric effect
v o= ¢ reaches the desired target value ¢, where reaching a target value has to
be considered in a relaxed sense respecting the underlying relaxation semantics
(repetition or interval relaxation). For the interval relazation, this third basic
type can be reduced to the second basic target value condition by interpreting
the assignment v o= £ as an assignment of the expression v := v o £ with the
appropriate assignment operator. This expression v o ¢ (or only £ in the case of
=) has then to reach the required target value ¢q. Care has to be taken here if
the target value ¢ was only reached because of the convex union of the relaxation
semantics. When searching for partner intervals I; and I we can use intervals
(—00,¢] or [g,00) instead of the degenerate interval [gq, q], where the diverging
bound depends on whether the addition of g extends the upper or the lower
bound of the value of v in the previous state ¢ > s(v) or ¢ < s(v). These values
are larger (smaller) than needed and contain ¢ because of the convex union.

Ezample 4. Let s(v) = [0,0] be assigned an expression s(§) = [1,2] by a nu-
meric effect v += & and let the required target value ¢ = 5. The corresponding
expression [0,0] + [1,2] evaluates to [1,2] which does not contain ¢ = 3. The
partner intervals I; and I use [%,) for ¢ and we obtain I} = [%, o0) —[1,2] =
[—3,00) and I = [1,00) — [0,0] = [%,00) So the target values can be chosen in
[0,0)N[-2,00) = [0 O] for s(v) and [2] N [4,00) = [1,2] for s(¢).

—~

(SIS

For the repetition relazation, the feasible sub-intervals are intersections of the be-
havior classes involved to establish the desired target value with the value in the
preceding state. The number of required repetitions is determined analogously
to the repetitions from Theorem 6 of Aldinger et al. [2].

With these three basic target value conditions we can ensure that the propa-
gation of values satisfying the local target value constraints leads to the desired
target value. The explication process can propagate a list of feasible sub-intervals
for the implicit and explicit preconditions to the previous layer.

The global target value optimization problem is now the problem to find a
cost minimal set of target values for each feasible sub-interval of the local target
value constraints. The cost of a target value is the cost of the achieving action
(multiplied by the number of required repetitions for the repetition relaxation)
plus the constraint cost of all of its (implicit and explicit) preconditions.

Determining target values in the feasible sub-intervals optimally is intractable.
Therefore, our explication process selects locally promising target values. The

values of all variables have to reach the point intervals from sqg at the end of
the regression procedure, making proximity to the starting values sg(v) an in-
dicator for good target values. An exception to this rule are open intervals in
the repetition relaxation. As open intervals are only generated by contracting
effects, values close to open interval bounds can only be reached by applying
the contraction repeatedly and it is advisable to keep a safety margin to open
interval bounds.

4 Implementation and Experiments

The Fast Downward planning system [12] is a modular planning system that is
widely used in classical planning. We extend Fast Downward to support numeric
planning from PDDL 2.1, layer 2 [I0] as well as selected features from PDDL 3
such as global constraints. The original Fast Downward does not support floating
point numbers and thus, major modifications had to be performed.

While classical planning tasks are restricted to actions with integer valued
action costs, numeric planning tasks come with more sophisticated metric ex-
pressions instrumenting over several variables. Numeric Fast Downward (NFD)
supports linear state-independent instrumentation effects[7], which are evaluated
in the initial state and compiled into a rational valued action cost. Instrumen-
tation variables are detected automatically and stored separately which allows
search algorithms to prune states that only differ in these variables.

We implemented the heuristics hpax, hadd and App in the two most promising
combinations of relaxation and “fact” selection scheme identified in the previous
section: the planning graph approach in an interval relazation (identified by
the superscript h9%) and the priority queue based approach in the repetition
relazation (identified by the superscript h9").

4.1 Experiments

We performed experiments on various numeric domains [16, 11l [I] comparing
NFD to Metric FF [I3] and two configurations of ENHSP: subgoaling with re-
dundant constraints ﬁ;%gi [I7] and hapr [18]. We used greedy best first search
for all NFD heuristics. Experiments were run on a cluster with a timeout of
30 minutes for each instance. Table [l shows the number of solved instances on
various domains. A star indicates errors in ENHSPs preprocessing component.
Our heuristics perform slightly worse than Metric FF for the planning do-
mains that both planners can solve. In principle, the heuristic estimates from
hiw should resemble Metric FF most. Differences can probably be attributed to
different search search algorihms. Metric FF is restricted to linear tasks and can-
not find solutions for nonlinear problems such as geo-rovers or jumpbot. ENHSP
excels at block-grouping and performs roughly as good as most NFD configura-
tions on the domains both planners can solve. ENHSP ignores action costs and
uses unit cost actions instead. There was no domain in the benchmarks which
exploits this weakness. The priority queue based repetition relaxed hi heuristic

Table 1. Solved instances on various numeric domains

Domain||Metric FF| ENHSP NFD
Afrziglli hater |hiaq hiaa Mie hie
block-grouping (192) 22 122 62 15 18 14 28
counters (78) 36 14 34 |21 11 21 31
depots (22) 20 * * 7 10 10 11
driverlog (40) 34 * * 29 31 30 30
farmland (50) 9 0 50 | 17 10 19 23
geo-rovers (21) 0 * * 1 0 1 2
jumpbot (20) 0 3 15 |17 0 15 13
plant-watering (51) 22 12 22 | 0 15 0 15
rovers (20) 12 * * 0 3 1 4
satellite (40) 26 21 22 12 23 19 29
settlers (20) 9 * * 0 0 0 2
sokoban (325) 0 37 0 |70 70 69 70
zenotravel (20) 20 * * T 7T 8 9
Sum (899) 210 209 205 | 196 198 207 267

does not only solve most instances, but it also solves several instances in each of
the domains, indicating that our heuristics offer guidance for all domains.

The jumpbot domain [I] is particularly interesting as it models physical prop-
erties in a dynamic world. It features cyclic, non-linear effects for turning, accel-
erating or deccelerating the robot, as well as classical preconditions. Therefore,
it can neither be solved by control engineering [I5] nor by planners requiring
linear tasks such as Metric FF.

5 Conclusion

We discussed different approaches to tractable heuristics for interval relaxed
numeric planning and considered different relaxation frameworks: the interval
relazation and the repetition relaxation with different restriction schemes for
the variable-value pairs considered during heuristic exploration: one motivated
from the planning graph, another from a priority queue. We highlighted critical
combinations that impair tractability of the heuristic or restrict algorithms to
a subset of numeric planning tasks. Furthermore, we generalized the marking
procedure of hgp.

We implemented the well known planning graph heuristics hmax, haqq and
hgr from classical planning in these frameworks and established heuristics which
are suitable for all numeric planning tasks expressible in PDDL 2.1, layer 2. We
showed experimentally that the general heuristics can find plans even for plan-
ning tasks with cycles, non-linear effects and action costs, providing a baseline
for future approaches.

Acknowledgments This work was supported by the DFG through grants EXC1086
(BrainLinks-BrainTools) and NE 623/13-2 (HYBRIS-2).

References

(1]
2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Aldinger, J.: The Jumpbot Domain for Numeric Planning. Tech. Rep. 279, Uni-
versity of Freiburg (2016)

Aldinger, J., Mattmiiller, R., Gébelbecker, M.: Complexity of Interval Relaxed
Numeric Planning. In: Proceedings of the 38th German Conference on Artificial
Intelligence (KI 2015) (2015)

Aldinger, J., Nebel, B.: Addentum to ’Interval Based Relaxation Heuristics for
Numeric Planning with Action Costs’. Tech. Rep. 280, University of Freiburg
(2017)

Bonet, B., Geffner, H.: Planning as Heuristic Search: New Results. In: Proceedings
of the 5th European Conference on Planning (ECP 1999). pp. 360-372 (1999)
Bonet, B., Geffner, H.: Planning as Heuristic Search. Artificial Intelligence 129(1—
2), 5-33 (2001)

Bonet, B., Loerincs, G., Geffner, H.: A Robust and Fast Action Selection Mecha-
nism for Planning. In: Proceedings of the 14th National Conference on Artificial
Intelligence and 9th Innovative Applications of Artificial Intelligence Conference
(AAAT 1997/ TAAT 1997). pp. 714-719 (Jul 27-31 1997)

Coles, A., Coles, A., Fox, M., Long, D.: A Hybrid LP-RPG Heuristic for Modelling
Numeric Ressource Flows in Planning. Journal of Artificial Intelligence Research
46 (JAIR 2013) pp. 343-412 (2013)

Coles, A., Fox, M., Long, D., Smith, A.: A Hybrid Relaxed Planning Graph-LP
Heuristic for Numeric Planning Domains. In: Proceedings of the 20th International
Conference on Automated Planning and Search (ICAPS 2008) (2008)

Edelkamp, S.: Generalizing the Relaxed Planning Heuristic to Non-Linear Tasks.
In: Proceedings of the 27th German Conference on Artificial Intelligence (KI 2004)
(2004)

Fox, M., Long, D.: PDDL2.1 : An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20 (JAIR 2003) pp.
61-124 (2003)

Frances, G., Geffner, H.: Modeling and Computation in Planning: Better Heuris-
tics from More Expressive Languages. In: Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS 2015) (2015)
Helmert, M.: The Fast Downward Planning System. Journal of Artificial Intelli-
gence Research 26 (JAIR 2006) pp. 191-246 (2006)

Hoffmann, J.: The Metric-FF Planning System: Translating 'Ignoring Delete Lists’
to Numeric State Variables. Journal of Artificial Intelligence Research 20 (JAIR
2003) pp. 291-341 (2003)

Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research 14 (JAIR 2001) pp.
253-302 (2001)

Lohr, J., Eyerich, P., Keller, T., Nebel, B.: A Planning Based Framework for
Controlling Hybrid Systems. In: Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS 2012) (2012)

Long, D., Fox, M.: An Overview and Analysis of the Results of the 3rd Interna-
tional Planning Competition. Journal of Artificial Intelligence Research 20 (JAIR
2003) pp. 1-59 (2003)

Scala, E., Haslum, P., Thiébaux, S.: Heuristics for Numeric Planning via Sub-
goaling. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016). pp. 655-663 (2016)

[18] Scala, E., Haslum, P., Thiébaux, S., Ramirez, M.: Interval-Based Relaxation for
General Numeric Planning. In: Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI 2016). pp. 655-663 (2016)

[19] Young, R.C.: The Algebra of Many-valued Quantities. Mathematische Annalen
104 pp. 260—290 (1931)

	Interval Based Relaxation Heuristics for Numeric Planning with Action Costs

